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We analyze the 1D focusing nonlinear Schrodinger equation in a finite interval with homogeneous Dirichlet or
Neumann boundary conditions. There are two main dynamics, the collapse which is very fast and a slow cascade
of Fourier modes. For the cubic nonlinearity the calculations show no long-term energy exchange between Fourier
modes as opposed to higher nonlinearities. This slow dynamics is explained by fairly simple amplitude equations

for the resonant Fourier modes. Their solutions are well behaved so filtering high frequencies prevents collapse.
Finally, these equations elucidate the unique role of the zero mode for the Neumann boundary conditions.
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I. INTRODUCTION

The nonlinear Schrodinger equation in two or three spatial
dimensions has been studied intensively, in particular because
of the collapse phenomenon for the focusing case; see, for
example, the reviews of Berge [1] and Sulem [2]. Most of these
studies have been done for an infinite domain, for which the
equation is invariant by a scaling transformation. This sym-
metry is important to determine the conditions for collapse.
In many applications, like, for example, a laser propagating
in an optical fiber, the domain is finite so the boundaries
play an important role. In a finite domain with Dirichlet
boundary conditions, Brezis and Gallouet [3] established the
existence of a global solution for an initial condition whose L;
norm is below threshold for the focusing case and in general
for the defocusing case. With the same boundary conditions
in R”, Strauss and Bu [4] established global existence for
the defocusing case and a general power nonlinearity. A
pioneering study was conducted by Fibich and Merle [5] for
the 2D cubic nonlinear Schrédinger equation. They showed
that circularly symmetric ground-state waveguide solutions are
stable and that the critical power condition for collapse is sharp
unlike for an infinite domain. For small amplitudes the ground
states reduce to the Bessel linear modes of the Laplacian. An
interesting problem is then how these modes exchange energy
as the solution evolves. This issue is important since some of
these modes can be filtered out.

More generally, the energy exchange between linear modes
is related to the old problem studied by Fermi-Pasta and Ulam
(see the first section of Ref. [6] for subsequent developments).
For a chain of oscillators with cubic nonlinearities, a medium-
amplitude Fourier mode initial condition gives rise to a cascade
of higher Fourier modes and energy flows back into the
initial mode. For the focusing cubic nonlinear Schrédinger
equation in 1D we expect a similar recurrence because of the
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integrability of the model on the infinite line. Here the solution
evolves into pulses due to the modulational instability. The
dynamics of these solitons in domains with Dirichlet, Neu-
mann, or Robin boundary conditions was studied numerically
by Ramos and Villatoro [7], who validated a formalism based
on images. For periodic boundary conditions, the dynamics of
an isolated pulse is close to linear since the Fourier modes are
weakly coupled as shown by Erdogan and Zharnitsky [8]. This
dynamics differ from what happens in turbulence where there
is a one-way flow of energy in wave numbers. For example,
Muraki [9] studied this one-way cascade for the Burgers
equation. Using the Cole-Hopf transformation, he was able
to quantify the phenomenon. Finally, note the study [10] by
Zakharov, Dias, and Pushkarev of wave turbulence carried out
on a 1D model in Fourier space.

Following a similar approach, in this article we have
analyzed the 1D nonlinear Schrédinger equation with cubic
and quintic nonlinearities on a finite interval with Dirichlet or
Neumann boundary conditions. We have chosen to work in 1D
to benefit from the Fourier machinery that enables to solve the
problem numerically fairly easily. A relatively small number of
Fourier modes are necessary to describe well the solution when
it is not singular. Another advantage is that the analysis can be
done easier than for the 2D case. We have studied the stationary
solutions and their stability. We have also obtained simple
models for the resonant transfer of energy between Fourier
modes for the cubic and quintic nonlinearities. As expected,
there is no resonant transfer for the cubic nonlinearity. For a
quintic nonlinearity a resonant transfer exists. The solutions
of these reduced models compare well to the numerical
solutions of the partial differential equation. Their evolution is
nonsingular, confirming that filtering prevents collapse. This
method of analysis of the resonant transfers of energy can
be extended to other operators or higher dimensions. The
principle remains the same but, of course, the machinery will
be much more complicated.

The article is organized as follows. In Sec. II we review the
conservation laws and the virial identity, the main theoretical
tool to establish fitness for both the Dirichlet and the Neumann
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boundary conditions. Section III presents the ground states
and their stability. Numerical results are shown in Sec. IV and
explained in Sec. V by use of the model of resonant energy
transfer. We conclude in Sec. VI.

II. CONSERVED QUANTITIES AND VIRIAL RELATIONS

We consider the one-dimensional nonlinear Schrédinger
(NLS) equation

iV 4+ Yo + Y2 =0 (1)

on the bounded domain [0, 77 ] with the homogeneous Dirichlet
boundary condition

Vvx=0=vyx=m)=0, 2
or the Neumann boundary condition
Ur(x =0) = Y(x =) = 0. 3)

Here d is a positive integer with d = 1, 2, and 3 corresponding
to the cubic, quintic, and septic nonlinearities.

Equation (1) with both Dirichlet and Neumann boundary
conditions admits the following conserved quantities, the L>
norm

P = f [¥|*dx, 4)
0
which is the total power in optics and the Hamiltonian
T 1
H = . 2_ _ - 2d+2 dx. 5
/0<|¢| ) )
The momentum
=i [ - v, (©)
0

which is conserved for the infinite domain now has a flux
M, = —4[|y.°I5 . ©)
for Dirichlet boundary condition and
2d d
I — 2 a2 | 8
: [(Il/fl) +—d+1|1/f| . 3

for Neumann boundary condition.
We can analyze the evolution of following integral quanti-
ties related with the model (1)

Li(t) = / ’ |y |2x2dx, (9a)
0
— i Z_L 2d+2>
Iz(l)—/o (nm 2(dH)nm dx
_ _l ﬂd_z 2d+2
=H 2/0 —d+1|¢| dx. (9b)

Here, I, is the variance, which is a common tool for predicting
collapse of NLS equation solutions in infinite domain and we
assume that I; (j = 1,2) are initially well defined.
For Dirichlet boundary, some algebra leads to
d’1, d—2

— = —4a[|[Y [ lier +8H — 4 2¥2gx,
A /0d+1|w| x

dt?
(10
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which shows that H < 0 is a sufficient condition for collapse.
Note that the right-hand side of (10) can be negative even
though H > 0. In the infinite domain the first term is
absent. Therefore, compared with the infinite line, Dirichlet
boundaries focus the solution and enhance the collapse.
For the Neumann boundary conditions, we have
d’1 1 2 2d 2d+2
o= [mm oo IV }

X=m

+8H—4/nu|¢|2"+2dx (11)
o d+1 '

From Eq. (11) we note that H < 0 is not a sufficient condition
for the collapse. Therefore, the Neumann boundary can be
either reflecting or absorbing and enhance or suppress the
collapse.

III. BOUND STATES

The time periodic solutions of Eq. (1) can be searched in
the form

Y(z,x) = u(x)exp(iEt), 12)

where u(x) is areal function and E is the propagation constant
that is also real. The resulting equation then reads

—Eu+u" +u "t =0 (13)

with the Dirichlet boundary conditions
ux =0 =ux=m)=0 (14)

and the Neumann boundary conditions
Uy(x =0 =u,(x =m)=0. (15)

A conserved quantity of Eq. (13) can be found by multiply-
ing with «’(x) and integrating over x

1 E 1
K=— /2__2 2d+2’ 16
PR Ly L (16)

which can be further integrated to give

| 2 —1/2
/dx =j:§/dz |:z <4K+2Ez— FERE “)] (17)

by defining z = u?. The above integral can be expressed in
terms of Jacobi elliptic functions in both the cases of cubic and
quintic nonlinearities. However, in the latter case the resulting
expressions are rather complicated.

The phase portrait associated with Eq. (16) is shown in
Fig. 1 for E = —1 (left panel) and E = 1 (right panel). The
points such that u = 0 (u, = 0) correspond to the solutions
boundaries for Dirichlet (Neumann) boundary conditions.

If u <« 1, the nonlinearity does not play an important role
and the solutions are close to the linear limit of Eq. (13), i.e.,

U, (x) = Asin(mx) (18)
for the Dirichlet boundary condition and
U, (x) = Acos(mx) 19)

for the Neumann boundary condition. Here m denotes the
index of the wave number m = 0,1,2, ... and A denotes the
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FIG. 1. (Color online) Phase portrait associated with Eq. (16) for
E =—1(a)and E =1 (b) for d = 2. The levels presented for K are
K =0,0.1, 1, 10, 20, 30, 40, 50, 60.

amplitude with A < 1. The propagation constant, K, and the
power are then given by

2 m* T 42
E,=-m", K,=-—A°, P=—-A" (20)
2 2
When |u| starts to increase, the propagation constant, as well
as the form of the solutions, is slightly modified due to the
effect of nonlinearity, i.e., E = E,, + 6 E with§ E < E,,. The
relationship between the correction of the propagation constant
S E and amplitude A (and thus P) can be computed by

(2d +2)! (2d +2)!

SE= —— A% —
224+1(d + 1)I]? w24+ [(d + )12

When u ~ 1, the nonlinearity has a strong effect and we have
to resort to numerical methods to find the solution. We also
notice that Eq. (13) with the Neumann boundary condition
admits constant solution, i.e., u = Ay with E = A(z)d > 0.

Figure 2 shows the solutions of Eq. (13) obtained via a
shooting method for both Dirichlet and Neumann boundary
conditions. The right panel shows the behavior P(E). The
stationary solutions u(x) for d =2 are shown. The initial
conditions are the solutions of the linear problem (18) and
(19). We see that the family of solutions with m = 1 bifurcates
from zero at E = E; = —1 while the family of solutions with
m = 2 bifurcates from zero at E = E, = —4. Close to the
bifurcation points the P — E curves follow the relation (21).
P(E) is monotonically increasing with the growth of E while
dP(E)/dE|g—c — O.

The linear stability of the stationary solutions can be studied
by solving numerically the linearized eigenvalue problem.
Particularly, we assume that

Y(x,1) = [ux) + (a +if)le'™, (22)

where «, § are small perturbations that are proportional to
exp(—iAt). The coupled eigenvalue problem then reads

PY. (21

L\B = —iAA, L,A=iAB, (23)

where L) = -8, +E —u(x)> and L,=—08,,+FE —
2d + Du(x)*. The growth rate is defined as max[Im(})]
at which an unstable solution will grow. We find that the
family of solutions with m = 1 is always stable against linear
perturbations, whereas only a very narrow stability region
close to the bifurcation point exists for the family of solutions
withm = 2,3,4, ....
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FIG. 2. (Color online) The stationary solutions u(x) for d = 2.
The initial conditions are taken as sin(mx) and cos(mx), naturally
satisfying the Dirichlet and Neumann boundary conditions, respec-
tively, with m = 1 [the upper two panels in (a)] and m = 2 [the
lower two panels in (a)]. The dependence of P on E are shown in
the (b) and (c¢) for m = 1 and m = 2, respectively. The total power
Plgo — 27755 for m =1 and P|g_ — 5.447 for m = 2. The
dashed line (red online) denotes the value of P, from (25).

In the case of infinite domain, Eq. (13) admits the localized
soliton solution

i = [(d + 1)E]"*sech!/d [dﬁ (x — %)] .24

where the solution is centered in the center of the domain
x = /2. The total power for d = 2 is a constant

Pu= [upar = V=272 (25)

i.e., it is independent on E. The solutions with power P <
P.; disperse during the propagation, whereas if P > P the
solutions collapse. A similar analysis can be carried out for
the case of d = 3 leading to

2B7I2R(7/6) 1
_ 2 _
Po= [far = S0 o)

which is expressed in terms of I" functions and depends on E.
Although the soliton solutions do not satisfy the NLS equation
on a bounded domain with specific boundary conditions, they
are particularly useful as limiting cases of solutions.

The solution (24) can be considered a good approximation
to the solutions satisfying both Dirichlet and Neumann
boundary conditions in the limit £ — oo. This is because
in this latter limit the maximum intensity increases as E'/?
while the pulse width decreases as E!/2. The narrowing of
the pulse makes the soliton tails, as well as their derivatives,
almost zero on the boundaries. The critical power for collapse
P does not change with the growth of E.
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FIG. 3. Time evolution for a cubic nonlinearity and Dirichlet
boundary conditions of the sine mode amplitudes ¢, (t),m = 1,3,5
starting from two different initial conditions ¥ (0,x) = sin(x) +
2 sin(3x) shown in panel (a) and ¥ (0,x) = sin(x) + sin(3x) shown in
panel (b).

IV. THE NUMERICAL SIMULATIONS

To understand the dynamics of the Fourier modes, we relied
heavily on numerical solutions of the NLS equation on the
interval [0,77]. As confirmed by the previous section, the well-
posedness of the initial value problem is not trivial even for the
quintic nonlinearity. We therefore concentrate our efforts on
the cubic and quintic nonlinearities. For the latter and an initial
condition close to collapse, we make sure that the solution
remains regular by computing it on long time intervals.

The equation was solved using the split-step Fourier method
where the linear part is advanced using the sine or cosine
Fourier transforms, respectively, for Dirichlet and Neumann
boundary conditions. Consider, for example, the Dirichlet
boundary conditions. The sine Fourier modes form a complete
and orthogonal set in (0,7) so any function in L?(0,7) that
satisfies Dirichlet boundary conditions can be expanded into
these modes. The solution of the NLS has finite and constant
L? norm and satisfies the boundary conditions. It can then be
written as

Y(t.x) =Y cn(t) sinmx. (27)

m=1

The details of the numerical implementation are given in the
Appendix A.

We first describe the results for the Dirichlet boundary
conditions. For d = 1, there is no collapse for Eq. (1). As
expected, the evolution of a sine initial condition gives rise to a
cascade of modes. For ¢1(0) = 2 and ¢;1(0) = 0 we observe a
cascade to c3 and ¢s with maximum amplitudes max(c3) = 0.7
and max(cs) = 0.15 with the other modes being insignificant.
For ¢3(0) = 2 and ¢;+3(0) = 0 we get almost no cascade.

Now let us compare the outcomes for d = 1 with the
initial conditions ¥ (0,x) = sin(x) 4+ 2 sin(3x) and ¥ (0,x) =
sin(x) + sin(3x). The time evolution of the mode amplitudes
are shown in Fig. 3. The mode amplitudes fluctuate in a fairly
narrow range around an average value. This range decreases
even more for smaller initial amplitudes as shown in the right
panel. We will explain these effects in the next section.

Consider now the quintic case (d =2) with Dirichlet
boundary condition. In Fig. 4, we show the time evolution of
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FIG. 4. [(a), (¢), and (e)] Time evolution of the maximum of
[Y| for a quintic nonlinearity and Dirichlet boundary conditions
for three different initial conditions, from the top to the bottom,
¥(0,x) = 1.0sin(x) (P = 1.57), ¥(0,x) = 1.3sin(x) (P = 2.65),
and ¥(0,x) = 1.31sin(x) (P =2.70). [(b), (d), and (f)] The cor-
responding Fourier spectra at time ¢t = 4. Note the collapse occurring
at t ~ (.7 in the last row.

solution (18) with m = 1 and different values of amplitude A.
No collapse is observed when A (P) is small, whereas collapse
occurs when A > 1.3 (P > 2.65). The condition P > P, for
collapse seems to hold in this situation. A collapsing solution is
shown on the last row of Fig. 4 for A = 1.31. The right panels
of Fig. 4 show the Fourier spectra. We notice that only the odd
modes are excited. Actually, we can explain that the cascade
of Fourier modes for Eq. (1) starting with a particular mode
q (g =0,1,2,...)1s always restricted to the modes g(2n — 1)
(n=1,2,3,...) irrespective of the boundary conditions. In
other words, we can expand the solutions of Eq. (1) as

Y(t.x) =) cqen-1ysinlg(2n — 1)x] (28)

n=I

for the initial condition ¥ (0,x) = sin(gx). For the Neumann
boundary conditions the sines should be changed to cosines.
Details are given in Appendix B. In Fig. 5, we show the recur-
rence of the solutions and spectrum cascade at different times
when no collapse occurs. We will explain this phenomenon
in the next section. We also note that for large propagation
constant, the solutions appears in the form of the hyperbolic
secant function.

In Fig. 6, we show the time evolution of the Fourier am-
plitudes for a initial condition (18) with m = 1 and increasing
amplitude A. Each panel calculated for a single amplitude
corresponds to different regions of similar behaviors for the
modes. When 0 < A < 0.5, there is only the mode m = 1.
The other modes are insignificant. When 0.5 < A < 1.0, we
observe two modes m = 1 and 3. When 1.0 < A < 1.2, we
observe three modes m =1, 3, 5. When 1.2 < A < 1.3,
four modes, m =1, 3, 5, and 7, are observed. The larger
the amplitude of the initial condition, the more modes are
excited. When A > 1.3, collapse occurs. This is a much
faster mechanism than the recurrence. The energy travels
very suddenly from the low-frequency modes to the higher-
frequency modes. For the Neumann boundary conditions, the
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FIG. 5. Snapshots of the wave profiles [panels (a), (c), (e), and (g)]
and corresponding Fourier spectra [(b), (d), (f), and (h)] for quintic
nonlinearity and Dirichlet boundary condition. The times shown are
t =0,0.6, 1.2, and 1.8, respectively. The initial condition is ¥ (0) =
1.3sin(x) (P = 2.65). The recurrence of the wave profile and the
spectrum cascade is evident. The profiles shown in (c) and (g) follow
the hyperbolic secant function (24).

zero mode plays a special role. For example, it does not give
rise to a spectrum cascade. We will see below how it couples
to the other modes. Apart from this, the simulation results for
the Neumann boundary conditions are similar to the ones for
the Dirichlet boundary conditions.

V. EVOLUTION OF THE RESONANT FOURIER MODES

In the interval of existence of solutions, one can use the
Fourier sine or cosine series depending on whether we have
Dirichlet or Neumann boundary conditions. In both cases we
have a complete basis for functions satisfying the boundary
conditions. As opposed to the numerical method, here we
require that at least the second derivative of the solution is
continuous. Only then we can use the expansion to derive
amplitude equations from the operator. We will first consider
the Dirichlet boundary condition and examine cubic and

15 15
@ A=1.0,P=1.57 (b) A=1.1,P=1.90
1 1
< &
0.5 0.5
0% 3 2 3 4 % 1 2 3 4
t t
15
1-5((c) A=1.2,P=2.26] __ "[(d)
==
— 1 o 1
£ =
05 S 05
. g ,/
0 4

0 1 2 3 4 00.1 04 07 10 13
t A

FIG. 6. Time evolution of the Fourier amplitudes for quintic
nonlinearity and Dirichlet boundary condition for a 1 mode initial
condition ¢;(0) = A = 1.0,1.1, respectively, in panels (a), (b), and
(c). Panel (d) shows max(|c,,|) for m = 1,3,5,7, and 9 as a function
of the initial amplitude A.
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quintic nonlinearities. The results that we will obtain for these
are very similar for the Neumann boundary condition unless
the zero mode is involved. This specific case will be addressed
at the end of the section.

For the Dirichlet boundary conditions, we expand ¥ in a
sine Fourier series

Y(x,0) =Y cn(t) sin(mx), (29)

m=1

where the ¢,, are given by

cn(t) = ; /0” Y(x,t)sin(nx)dx. 30)

Let us briefly discuss the collapse phenomenon. The conser-
vation of the power implies for any m’

ad 2
m’ 2 < m 2= —P= s 31
|C (1)] ;w W =—P="P 31)

because of Parseval’s relation,

" lwitdr = T,
f0|w|x P

When i is unbounded this relation still holds because the
L, norm is conserved [11]. In that case the Fourier series
converges to ¥ in norm only and not pointwise. More precisely,
when collapse occurs, it is in a given region of the interval
(0 : 7). There the Fourier series ceases to converge pointwise
to ¥. On the other hand, if v is continuous, the Fourier series
converges to v uniformly and, of course, pointwise.

Substituting the expansion (29) into Eq. (1), we obtain the
coupled equations of Fourier amplitudes. Note that we have
assumed uniform convergence of the different Fourier series
in order to invert the order of the sum and the integral. For the
quintic nonlinearity (d = 2) we get

2
i¢, —q’cy + - Z ckciemeycy(klmnplg) =0, (32)

k,lm,n,p
where
(klmnplq) = /n sin(kx) sin(Ix) sin(mx) sin(nx)
><0 sin(px) sin(gx)dx.
Equation (32) can be simplified by the transformation
cq = aqe_i‘fzt
yielding

2
.. * ok
ia, + p E akalamanap(klmnp|q)
k,l,m,n,p

x e*i(k2+12+mzfn27p27q2)t —0. (33)

Similarly, the coupled equations of Fourier amplitudes for the
case of septic nonlinearity (d = 3) read

ias+% >

k,,m,n,p,q,r

araiapayata’a’ (klmnpgqr|s)

pq-r

« e_i(k2+12+m2+n2_p2_q2_r2_52)f _ O. (34)
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Note that in Egs. (33) and (34) most terms are rapidly
rotating and average out to zero. Only the ones such that
K2+ 12 +m?—n? —pz—q2 =0 for (33) [k2+12+m?+
n? — p* — q* — r* — s> = 0 for (34)] i.e., the resonant terms,
will contribute to the long-term dynamics of a,.

A detailed study can be carried out of the dynamics of the
Fourier coefficients for different types of nonlinearities. We
have used the Maple software [12] to identify all the resonant
terms in the equations for the mode amplitudes. For the cubic
nonlinearity (d = 1) the amplitude equation equivalent to (33)
reads

2 5 .
ia;+ = aaa (kim| j)e” EH=m I =, (35)
b
k,l,m

Taking into account the resonance condition, Eq. (35) turns
into the following equations:
|2

ia.,-+aj< —|‘L>=o, (=1,2,...,00, (36)

4

where P = Zj‘;l la j|2 is conserved. An obvious implication

is that d/dt(|a; [2) = 0 so there is no transfer of energy from
one mode to another. Equation (36) admits the solution

aj = laj|e! PP/ (37)

This analysis is in agreement with the numerical results of
Fig. 3. Over a short time the modes oscillate in a periodic
fashion; however, their average over a long time is constant.
Therefore, for cubic nonlinearity, near k = 0, Fourier modes
are not coupled in a resonant way. A similar conclusion was
reached in Ref. [8] but for a pulselike initial condition. As
expected, no collapse will occur in the cubic NLS equation
irrespective of the initial total power.

The case of the quintic nonlinearity, (d =2) is more
complicated. For simplicity, we consider a solution consisting
of three modes, i.e., m = 1, 3, and 5,

Y(t,x) = aje " cos(x) + aze " cos(3x)

+ase” " cos(5x). (38)

Equation (33) then gives rise to the following coupled resonant
amplitude equations

iar + a3l PP — Flai|* + 3las *|as|?

+3(as|* + las|h)] — 3ajajai =0, (392)
ias + az[3las|*P — Blas|* + 3lai[*|as|?

+ (ar]* + las|")] — Faiai?as =0, (39b)
ias + as[3las|*P — 2las|* + 3|ai[*|as|?

+ 2arl* + las|h] — Lai?a3 =0, (39¢)

where P = |a1]? + |as|* + |as|>. It is easy to check that
Eqgs. (39) satisfy the condition “(|a;|* + |as|* + las|*) = 0,
i.e., P is a conserved quantity. The last terms in the equations
represent the mixing between the three modes and therefore
the intensity of each mode is not conserved as in the case
of d = 1. At this point, note that, if we had included a7 in
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the description, we would have had the additional resonant
terms

22 2 2 2 2
las| asa7sas|a7| a;vas|a5| a;k~

If |a7] <« 1, then their contribution would be very small.
Another point is that, if we had included the even modes in the
description, we would have obtained the extra resonant term
a%a22a5 in the equation for a;. This indicates that the modes 2
and 4 couple through mode 5.

Equations (39) can be written into a more compact form
by defining I; = |aj|2 (j =1,3,5). Here, I; represent the
intensity of each mode satisfying P = I, 4+ I3 + Is. We then
obtain

L =301"1sine, (402)
Iy =311 sing, (40b)
Is = 301”1 sin6, (40c)

where 6 = —20, + 303 — 05 with 0; = arga;. We note that
the driving terms on the right-hand side of Egs. (40) are
proportional to the intensities of the modes and their phases.
In addition, we have the constraints

%11 + 513 = K1, (41a)
Sh+ 515 = o, (41b)
L= 315 = — o = ps, (41c)

where w;,(i = 1 — 3) are constants of the motion. Using the
above relations, the dynamics can be reduced to the equations
for I) and 6. They are

.3
h=7h 571 sine, (42a)

1
6 = (1317 + 31 + 715 + 211 Iy + 271115 + 1213155)

cos 6 _
—— 61,11} — 211,17 - 31,1717,

(42b)

together with the constraints (41).

In order to check the equations for the resonant Fourier
modes, we compare the solutions of the reduced equations and
the NLS. In Fig. 7 we show the time evolution of the solutions
of Egs. (40) and (1) by using the Runge-Kutta method and
split-step Fourier method, respectively. The initial conditions
are the same. As expected the amplitudes of the Fourier modes
for (1) present fast periodic oscillations. However, over a long
time interval the solutions of the reduced equations and the full
partial differential equation match well, supporting the validity
of the reduced model.

At this point, consider the Neumann boundary conditions
for which there is the additional zero mode. This mode leads
to the well-known modulational instability. For the cubic
nonlinearity d = 1, the evolution of the Fourier modes follows
(36) so there is no resonant energy exchange between the
modes, /; = 0,j = 0,1, .... For the quintic nonlinearity d =
2, assuming a solution containing the three modes i = 1,3,5,
we obtain evolution equations identical to (39) except that the
signs of the resonant terms are reversed. We then obtain the

036601-6



FOURIER-MODE DYNAMICS FOR THE NONLINEAR ...

0.8 -2

j=5 (a) (b)
0.6 25
S © -3
02 =1 |
0 -4
0 5 , 10 15 0 5 , 10 15
0.8 -2
=5 (c) (d)
0.6 1 2.5
—043 "‘"3/%/
=1 35
02 JL-!“—“—L-\_.\_t Ak ‘_u_u_,_,,_u.j.u._\_.\.;..-. 35
0 -4
0 5 , 10 15 0 5 , 10 15

FIG. 7. (Color online) Comparison between the solution of the
reduced model and the numerical solution of the NLS for quintic
nonlinearity and Dirichlet boundary condition. Panel (a) [respectively,
(b)] shows the time evolution /,(t), I5(¢), and I5(¢) [respectively, the
time evolution of 8(¢)] for the reduced model (V). Panels (c) and (d)
shows the corresponding plots for the partial differential equation. The
initial conditions are taken as I; = 0.64, I; = 0.36,and I5s = 0.16 and
0 =—m.

same final equations (42) except that the evolution of the phase
0 is reversed.

To show the importance of the zero mode, consider the
following example. Assume a solution containing the three first
modes i = 0,1,2, we obtain evolution equations of the form
(39) but with no terms outside the brackets. This means that,
again, no resonant transfer of energy exists between modes. If
the third mode is added to the expansion, new terms appear
outside the brackets. The evolution equations are

iag +aol...]+ 2ajaialai =0, (43a)
iar +ail...]+ 2ajaz’as = 0, (43b)
iay + aol...) + 2adataia; =0, (43¢c)
ias +as[...] + 303 a3 =0, (43d)

where the ... terms in the brackets are all real. Following
a similar procedure as above, the modal energies /; = |a;|*
evolve as

172, 4172

Iy= 311" LI,  sin, (44a)
h =311 L1" sine, (44b)
L =311 1,1} sine, (44c¢)
Iy =310 L1 sing, (44d)

where 6 = —20y + 0; + 26, — 65. As above, one can then
reduce the problem to two equations, one for I and one for 6.
We do not write these equations because they are cumbersome.
The interesting fact is that one needs the 4 modes 0-3 present
in order to see this resonant transfer of energy. If one of them is
missing, there is no energy transfer. This particular feature of
Neumann boundary conditions changes the route for collapse
for the Dirichlet case and the Neumann case.
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FIG. 8. (Color online) [(a) and (c)] Time evolution of the maxi-
mum of || for quintic nonlinearity with different initial conditions.
[(b) and (d)] The corresponding Fourier spectra at t+ = 4. The initial
conditions are ¥ (0,x) = 1.4sin(x) [P(0) = 3.08] in (a) and (b),
and ¥(0,x) = l.4sech(x — %) [P(0) =3.56] in (c) and (d). We
compare the results with and without filtering the high Fourier modes
designated, respectively, by the continuous and dashed lines (black
and red online). The collapse is efficiently prevented by filtering in
both cases.

VI. DISCUSSION AND CONCLUSION

A first outcome of this study is that filtering Fourier
modes prevents collapse. This is because the projection of the
nonlinear Schrodinger equation on a finite number of Fourier
modes yields amplitude equations that are well behaved and
do not exhibit collapse. As we have seen, collapse is related
to a sudden energy flow to high frequencies. Thus, one
can arrest the collapse by filtering the high Fourier modes
and, therefore, preventing the sudden energy flow to high
frequencies. Physically this can be done by introducing a
nonlocal absorption in the model (1). This conclusion is also
available for the models with septic nonlinearity and Neumann
boundary condition.

In Fig. 8 we show the time evolution of solution with or
without filtering high Fourier modes. The initial conditions
are taken as a sine wave (the first row) and a hyperbolic secant
pulse (the second row). In both cases, the collapse is efficiently
prevented by filtering. Because of the absorption of the higher
modes, there is a small loss (less than 10%) of the total power.
This can be decreased by including more lower frequency
modes.

More generally, the resonant transfer amplitude equations
can be found in different situations. A first example is
the defocusing case. Other types of operators and general
boundary conditions can also be studied. As an example
consider the following inhomogeneous NLS

iV +d)Yex + WYY =0, (45)
with inhomogeneous Neumann boundary conditions
Ye(x =0)=a, ¥ (x =m)=0b. (46)

Then one can transform (45) by setting

¢=v% —ax(x —m)+px =9y — fx), (47)
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where

‘We obtain
i +d(x)ex + ) + 8NP+ fI* (P + f) =0, (48)

with homogeneous Neumann boundary conditions. One can
then apply to this equation the formalism we introduced. Of
course, the results will not be as simple as for the standard
NLS because of the different inhomogeneous terms.

To conclude, we have analyzed and solved numerically
the one-dimensional nonlinear Schrodinger equation on a
finite interval with Dirichlet or Neumann boundary conditions.
A preliminary analysis reveals that H < 0 is sufficient for
collapse in the Dirichlet case but not for the Neumann case.
The bound states have been computed. The first nontrivial one
corresponding in the linear limit to sin x (cos x) for Dirichlet
(Neumann) boundary conditions is always linearly stable as
opposed to the higher-order modes whose window of stability
is very small and reduces as the order is increased.

We have solved the partial differential equation for the cubic
and quintic nonlinearities. In the cubic case there is no resonant
transfer of energy between Fourier modes, while it is present
in the quintic case. Identifying resonant terms in the evolution
equations of the Fourier modes, we have written reduced
systems. Their evolution is in excellent agreement with the
solutions of the NLS, even close to collapse. For the Neumann
boundary conditions the Goldstone mode plays a particular
role as it couples the modes m = 1,2,3. For the Dirichlet case,
there is no coupling between the first three modes. Note that
this model reduction can be extended to higher dimensions
and other systems like a cylindrical waveguide. The machinery
would be more complicated but the overall method remains the
same.
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APPENDIX A: NUMERICAL PROCEDURE FOR SOLVING
THE 1D NLS (1)

The 1D nonlinear Schrédinger equation (1) with Dirichlet
or Neumann boundary conditions is solved as usual by splitting
the linear and nonlinear part of the operator. The linear part

i +uxe =0, (A1)
is such that
idr) = e 415(0),

where # is the sine or cosine Fourier transform of u to
satisfy the boundary conditions. The solution of the nonlinear
stepping is the standard one

u(2dt) = M@ty (gyy,

PHYSICAL REVIEW E 84, 036601 (2011)

The numerical implementation is done in MATLAB [13] and
the solution is evaluated at discrete points u,,n =1,...,N.
The sine and cosine Fourier transforms for the linear step
(A1) are then done using the discrete sine and cosine Fourier
transforms.

For the Dirichlet boundary conditions, we use the discrete
sine Fourier transform

N
wkn

(k) = sin , k=1,...,N, A2

(k) ;um)l (N+1) (A2)

and inverse discrete sine Fourier transform

N wkn

— i(k)si , =1,...,N. A3

u(n) =y i )Sln<N+ 1) n (A3)

k=1

The Neumann boundary conditions are trickier to implement
because one needs to use the discrete cosine Fourier transform

N
(k) = w(k) > u(n) cos [%]\;(k_l)} k=1,....N,

n=I

(A4)

with

w(l) =1/+/N, w(k)z\/%, 2<k<N.

The inverse discrete cosine Fourier transform is

N
u(n) = 3 w(k)i(k) cos [%]3(’{_1)} n=1,...N.

k=1
(AS)

The number of discretization points was chosen to be N =
2" — 1 or N =2'2 — 1 with a step dt = 10~*. The L, norm
was checked during the computation and it is conserved up to
1071% in absolute value.

APPENDIX B: PARITY ARGUMENT FOR THE MODE
CASCADE

In order to prove Eq. (28), consider the case of d = 1 and
Neumann boundary conditions. The argument for the cases
d = 2,3 are similar. Equation (1) with d = 1 can be written
into the form

2
Y(t+dt,x) = Y(t,x)+i [lw—i—lw(t,x)ﬁ/f(t,x)] dt,
2 ox

(BI)

for small dr. We now assume tha}t the injtial condition is
taken as (0,x) = cos(gx) = %(e“’x + e7'9%). Substituting
the initial condition into Eq. (B1), we have

Y(dt,x) = 5(e" 4 o711 i — 3(e 4 e7Y)
+ (€395 4 317% 4 3714 4 74%)|dr. (B2)
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As we see, after a short time interval dr, the solution v (dt,x)
can be expressed as v (dt,x) = ¢, cos(gx) + ¢34 cos(3gx).
We can repeat this process and obtain that ¥ (¢,x) =
Zm=(2n71)q cmcos(imx) (n=1,2,...). In other words for
d = 1 we obtain modes 1, 3, and 5 while for d = 2 we obtain
modes 1, 3, 5, and 7, and so on. This simple argument, using
as time integrator an explicit Euler scheme, can be extended
to other time integrators.

Note that, if we had introduced a symmetry breaking in
the operator, for example, by multiplying the dispersion or
nonlinearity by a function of x, then we would get both odd
and even modes for a cos(gx) initial condition. Also note that
the zero mode m = 0 does not give rise to any cascade to
higher Fourier modes.

APPENDIX C: EVOLUTION OF THE RESONANT FOURIER
MODES FOR THE NEUMANN BOUNDARY CONDITIONS

For the Neumann case, we expand v in a cosine Fourier
series

Y(x.t) =Y cult)cosimx), (C1)

m=0

where the ¢, are given by

co(t) = %/{;n Y(x,t)dx, (C2a)

cy(t) = %/ﬂ Y(x,t)cos(nx)dx (n #0). (C2b)
0

Substituting the expansion (C1) into Eq. (1), we obtain the
coupled equations of Fourier amplitudes for the case of quintic
nonlinearity (d = 2)

1

ico+ — Z CkC[CmC;:C; (klmnp|0) = 0, (C3a)
T

k,,m,n,p
2
—q%c, + ~ Z ckciemcyc, (klmnplg) = 0,
k,,m,n,p
(g #0), (€30)

where

(klmnp|q) = f” cos(kx) cos(Ix) cos(mx) cos(nx)
0
x cos(px)cos(gx)dx.

Equations (C3) can be simplified by the transformation
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P2
— —ig-t :
cq = age to yield

o,
iag + - Z araamaa (klmnplq)
T k,,m,n,p

% e—t(k2+12+1n —n?—p>—q?) O (C4)

where o, = 1 for ¢ = 0 and o, = 2 for g # 0. Similarly, the
coupled equations of Fourier amplitudes for the case of septic
nonlinearity (d = 3) read

.. Oy
iag + — E akalamana a, raX{klmnpqrls)
kJ,m,n,p,q

> e—i%(k2+12+m2+n2—p2—qz—rz—sz)l — 0 (CS)
where oy, = | for s = 0 and oy = 2 for s # 0.

For simplicity, we consider the solution (38). Then, Eq. (C4)
turns into the following coupled equations:

.. 1
m+mwM2—%mﬂwm%#

+ 3(azl* + las|M)] + 3ajajat = 0, (C6a)
m+@Wm2—ﬁmWHmum2

+ 3(ja1[* + las|h] + afai?as =0,  (C6b)
%+%Hm2—ﬁmWHmum2

+ 2(arl* + las|H] + Eai?a3 =0, (C6e)

where P = |a;|?> + |a3|* + |as|>. These are exactly the same
as (39) except that the terms outside the brackets have the
opposite signs.

As done above, Egs. (C6) can be written into a more
compact form by defining /; = |aj|2 (j =1,3,9),1.e.,

3/2,1/2

LT =-3LI sin@, (C7a)
I=3n1"1sin6, (C7b)
Is = =3n1;"1,"sin6, (C7c)

where 6 = —20; + 363 — 05 with 8; = arga;. Equation (C7)
can be further written into the form

I
172

3. 3p

I =—--n1"1"?
4

I sin0, (C8a)

o1
6 = (307 £33+ 70 +- 211013 + 2711 Is + 121315)
cos 6
- [61)/° 1,71} — 271,131,

_31 I%/z 1/2]7

together with the constraints (41).

(C8b)
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