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The dynamical response of metallic clusters up to 103 atoms is investigated using the restricted molecular
dynamics simulations scheme. Exemplarily, a sodium like material is considered. Correlation functions are
evaluated to investigate the spatial structure of collective electron excitations and the optical response of laser-
excited clusters. In particular, the spectrum of bilocal correlation functions shows resonances representing
different modes of collective excitations inside the nano plasma. The spatial structure, the resonance energy,
and the width of the eigenmodes have been investigated for various values of electron density, temperature,
cluster size, and ionization degree. Comparison with bulk properties is performed and the dispersion relation of
collective excitations is discussed.
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I. INTRODUCTION

Nano plasmas can now be readily produced in laser-
irradiated clusters, and new physical phenomena have come
into focus experimentally as well as theoretically. Interactions
between laser fields of 1013–1016 W cm−2 and clusters have
been investigated over the last few years (see Refs. [1–9]).
After laser interaction, extremely large absorption rates of
nearly 100% (see Ref. [10]), as well as x-ray radiation
(see Refs. [11–17]), were found. In pump-probe experiments
(e.g., by Döppner et al. [9] and Fennel et al. [18]), the
absorption rate of a second laser pulse is strongly dependent
on the time delay which is caused by the dynamical properties
of the expanding cluster. We discuss the dynamical response
function of the electrons in a nano plasma that is responsible
for scattering and absorption of electromagnetic radiation.

Collective electronic excitations of the nano plasma usually
are interpreted as Mie resonances of a homogeneously charged
sphere. Absorption cross-section experiments by Xia et al.
[19] show multiple resonance structures indeed. The effect of
collective electron motion can also be seen in ultraviolet (UPS)
and x-ray photoelectron spectroscopy (XPS) experiments
(see Ref. [20]), which are used to detect binding energies
of core-level electrons in small metal clusters [21,22]. In
fusion-related experiments by Ditmire et al. [23], Grillon
et al. [24], and Madison et al. [25], ignition processes are
started via irradiation of deuterium clusters. Collective effects
in the optical response are discussed in the context of metallic
nanoshells by Höfflich et al. [26] as well as in the context of
nanocavities by Verellen et al. [27].
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In theoretical calculations of finite systems (see Raitza
et al. [28–31]), a more complex resonance structure was
found. Earlier investigations by Reinhard et al. [32], Greschik
and Kull [33], and Arndt [34] led to comparable results.
The method of resonance structure analysis using spherical
harmonics is known from the discussion of giant dipole
resonances of nuclei (see Reinhard et al. [35]). Quantum
and semiclassical methods (see Refs. [36–38], respectively)
were used to investigate the cluster excitation via laser fields.
Collisional absorption processes in nano plasmas have been the
subject of theoretical investigations by Hilse et al. [39]. Using
density functional theory (DFT) calculations, the electronic
structures of cold clusters were analyzed by Ekardt [40],
Kümmel et al. [41], Brack et al. [42], and Chin and Krotscheck
[43]. The damping of collective electron oscillations was inves-
tigated by Ramunno et al. [44], emphasizing the importance
of collisional processes beside the Landau damping.

In this work, molecular dynamics (MD) simulations are
used to study nano plasmas in metal clusters. Clusters
consisting of 55 up to 1000 sodium like atoms are considered
after short-pulse laser irradiation with intensities of the order
of 1012 W cm−2. Properties of the nano plasma are mainly
determined by the dynamics of electrons which are bound to
the cluster but ionized from the former atoms, comparable
to conduction electrons in bulk systems. As already shown
in earlier publications (see Ref. [28]), plasma parameters
as known from the bulk (temperature and particle density)
but also the cluster size and net charge are justified for
characterization since the electrons can be assumed to be
in local thermal equilibrium within time scales considered
here. We focus on parameter ranges where the plasma can be
treated classically. Strong correlations are taken into account
via collisions of all particles. Concepts that have been well
established for infinite bulk systems near thermodynamic
equilibrium have to be modified for applications to finite
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systems, e.g., clusters. In particular, we are interested in the
dynamical structure factor and the response function for such
finite nano plasmas. In order to bridge from finite systems
to bulk plasmas, we investigate size effects, e.g., in the
dynamical collision frequency. Results in this direction have
been reported by the authors already in Refs. [28,45,46].

In Sec. II, correlation functions and their relation to optical
properties of homogeneous bulk plasma are introduced in
so far as it will be of interest to extend the approach to
finite systems. Expressions are also used for comparison
with nano plasmas in the limit of large clusters. Section III
explains the restricted molecular dynamics (RMD) scheme
for the calculation of the particle trajectories from which
the total and bilocal current-density correlation functions are
determined. Symmetries in the correlation matrix discussed in
Sec. IV can be used for improved statistics. The decomposition
of the correlation matrix into eigenvectors and eigenvalues
is interpreted as a decomposition into collective excitation
modes. In Sec. V, the excitation modes are characterized with
respect to spherical harmonics. In the further analysis, we
focus on modes with a dipole moment, which are also seen in
the total current-density autocorrelation function. Results for
resonance frequencies are presented and damping is discussed.
Regarding the dipole like modes, the spatial structures at the
selected resonance frequencies are discussed in Subsecs. A and
B of Sec. V. Conclusions and outlook are given in Sec. VI.

II. LINEAR RESPONSE THEORY OF PLASMAS
IN EQUILIBRIUM

Within linear response theory as derived by Kubo [47] and
Zubarev et al. [48], the reaction of a many-particle system to
weak external perturbations can be related to the dynamical
behavior of fluctuations in thermal equilibrium. Denoting the
equilibrium statistical operator with ρ0, we introduce the two-
time correlation function of the fluctuations δAi(t) = Ai(t) −
Tr{Aiρ0} as the Kubo scalar product

(Ai(t); Aj (0)) = β

∫ 1

0
dλ Tr{δAi(t)δAj (ih̄βλ)ρ0}, (1)

where the time dependence is given in the Heisenberg picture.
The indices i and j identify quantum observables. In particular,
we consider local properties so that they contain also the
position �r . In the case of i = j , this is called the autocorrelation
function (ACF).

In the classical case, equilibrium two-time correlation
functions can be calculated according to

(Ai(�r,t); Aj (�r ′,0)) = lim
T →∞

1

T

∫ T

0
dτδAi(�r,τ + t)δAj (�r ′,τ ),

(2)

where we assumed ergodic systems—the ensemble average
can be replaced by a time average. The spectrum of the
equilibrium correlation function 〈Ai(�r); Aj (�r ′)〉ω then results
from Laplace transformation.

We consider an induced electron density fluctuation
δne(�r,t) = ne(�r,t) − ne,0(�r) at time t as the deviation from
the equilibrium density distribution ne,0(�r) due to an external
potential Uext(�r ′,t ′) at times t ′ < t . Close to equilibrium, the

correlation between the external potential and the induced
density fluctuation is only dependent on the time difference
�t = t − t ′. Thus, one is able to discuss its spectrum after
Laplace transform. In the same way, the induced electrical
current density �je(�r,t) is related to the external electric field
�E(�r ′,t ′). Via Kubo’s theory, these induced quantities, δ〈ne(�r)〉ω
and δ〈 �j (�r)〉ω, can be expressed within the linear response (see
Ref. [48]) as

δ〈ne(�r)〉ω = β

∫
d3�r ′ 〈δne(�r); δṅe(�r ′)〉ω Uext(�r ′,ω), (3)

δ〈 �j (�r)〉ω = β

∫
d3�r ′ 〈 �j (�r); �j (�r ′)〉ω �E(�r ′,ω). (4)

The spectrum of the density fluctuation correlation
〈δne(�r); δṅe(�r ′)〉ω is related to a scalar response function.
The current-density correlation 〈 �j (�r); �j (�r ′)〉ω represents, in
general, a tensor due to the directions of the current-density
vector.

Before considering nonlocal response functions, we briefly
mention homogeneous systems. Properties of the bulk plasmas
with electron density ne and inverse temperature β are only
dependent on the difference of the positions ��r = �r − �r ′.
Thus, after Fourier transform of the spatial difference ��r ,
the correlations are dependent on a wave vector �k.

The dynamical structure factor is directly related to the
density fluctuation correlation as

S(�k,ω) = 1

2πN
〈δnk; δnk〉ω, (5)

with N being the number of particles. For further relations
to the dielectric function and the optical response of a
homogeneous bulk plasma (see Ref. [49]). Note that the
density fluctuations in Eq. (3) as well as the density correlation
function in Eq. (5) can be expressed in terms of the current-
density correlation function via partial integration and using
the continuity equation. Thus, the dynamical structure factor is
divided into a static part, S0(�k), and a dynamical part which is
directly related to the longitudinal part of the current-density
correlation function:

S(�k,ω) = S0(�k)

−iω
+ 1

2πN

k2

ω2
〈 �j ||

k ; �j ||
k 〉ω. (6)

It is of fundamental interest to describe the collective behavior
of the system as a response to external fields, in particular emis-
sion, absorption, and scattering of light. In bulk systems, the
wave vector and frequency-dependent response function reads

χ (�k,ω) = −iβ�0
k2

ω
〈 �j ||

k ; �j ||
k 〉ω, (7)

which can be evaluated using quantum statistical approaches,
such as Green’s function theory, (see Ref. [49]), or numerical
approaches, such as MD simulations (see Ref. [50]). As
collisions are relevant in strongly correlated systems, the
dynamical collision frequency ν(ω) is derived and appears in
a generalized Drude formula [51,52]:

lim
k→0

χ (�k,ω) = ε0k
2 ω2

pl(
ω2 − ω2

pl

) + iων(ω)
(8)

where ωpl =
√

e2ne/(ε0me) is the plasmon frequency.
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In the classical case, the current-density correlation func-
tion has been extensively discussed in the long wavelength
limit k → 0, applying MD simulations and perturbative
approaches. Exemplarily, we refer to Ref. [50].

The state of a homogeneous one-component plasma in
thermodynamic equilibrium is characterized by the nonideality
parameter � = e2(4πne/3)1/3(4πε0kBTe)−1 and the degen-
eracy parameter � = 2mekBTeh̄

−2(3π2ne)−2/3, where Te is
the temperature of the electrons. Considering the response
function χ (�k,ω) in the long wavelength limit, a sharp
peak arises at the plasmon frequency ωpl [see Eq. (8)].
For finite wavelengths, the resonance is shifted and can
be approximated by the so-called Gross-Bohm plasmon
dispersion for small wave numbers k (see Refs. [53,54]),
ω(k) ≈ ωpl + 3k2/κ2 + · · ·, with the Debye screening length
κ−1 = [nee

2/(ε0kBTe)]−1/2. This relation has recently been
revisited with respect to the relevance of collisions by Thiele
et al. [55]. According to Eq. (8), the general behavior of
the response function χ (�k,ω) in the long wavelength limit
is closely related to the collision frequency which is relevant
in nonideal plasmas (see Refs. [52,55]). In the two-component
plasma, a phonon mode can arise in addition to the plasmon
excitations [56].

The response function χ (�k,ω) and the related dynamical
structure factor S(�k,ω) as well as the optical properties have
been intensively investigated for electron-ion bulk systems
(see Refs. [55,57]). In this work, the inhomogeneous case of
finite clusters in local thermal equilibrium is discussed. The
response of inhomogeneous systems is not only dependent on
the difference of the positions but also on �r and �r ′ separately.
Therefore, spatially resolved current-density correlation func-
tions 〈 �j (�r); �j (�r ′)〉ω cannot be diagonalized by spatial Fourier
transform. Instead of plane waves, other basis functions have
to be found in order to characterize the collective excitations
of electrons.

III. MD SIMULATIONS OF FINITE PLASMAS

Finite plasma systems have been investigated using RMD
simulations (see Raitza et al. [28]). A two-component system
of singly charged ions and electrons is described using an
error function pseudopotential for the interaction of particles i

and j :

Verf(rij ) = ZiZje
2

4πε0rij

erf
( rij

λ

)
, (9)

where Zi is the charge of the ith particle. The Coulomb
interaction is modified at short distances, assuming a Gaussian
wave function for electrons motivated by the account of
quantum effects. Considering a sodium like system, the
potential parameter λ = 0.318 nm was chosen in order to
reproduce the ionization energy of IP = Vei(r → 0) = −5.1
eV for solid sodium, as already discussed for MD simulations
by Belkacem et al. [58].

The velocity Verlet algorithm [59] was applied to solve
the classical equations of motion for electrons and ions. This
method takes into account the conservation of the total energy
of the finite system, as long as there is no external potential. To
follow the fast electron dynamics, time steps of 0.01 fs were

taken to calculate the time evolution. Contrary to bulk MD
simulations, no periodic boundary conditions are applied.

Icosahedral arrangements of 55, 147, and 309 ions (see
Ref. [28]) were considered as initial configurations for the
ion positions. For these nearly spherically, homogeneously
distributed ions, the ion density typical for solid sodium is
given by an ionic next-neighbor distance of d0 = 0.212 nm.
In addition, randomly distributed ion configurations within a
given sphere were considered for comparison and the number
of ions was increased up to 1000 particles. Starting with a
neutral cluster, the electrons have been positioned nearby the
ions with small, randomly distributed deviations from the ion
positions.

To simulate experiments where clusters are excited by
short-pulse lasers, MD simulations are performed under the
influence of an electric field, assuming a Gaussian shape and
pulse duration of about 100 fs. Due to the largely increased
kinetic energy of the electrons, ionization processes occur.
After the laser field is switched off, the ionization degree
of the cluster is determined by the number of electrons
found outside the cluster radius with positive total energy, so
that they can escape from the cluster. Due to ion excitation
on larger time scales, a slow expansion of the positively
charged cluster is obseved [60], leading to Coulomb explosion
experimentally.

Considering the single-time properties, it was found in
Ref. [28] that local thermodynamic equilibrium (LTE) is
established already within a few femtoseconds after the elec-
tron heating. In particular, at each time step, the momentum
distribution of electrons is well described by a Maxwell
distribution, and the spatial density profile agrees with a
Boltzmann distribution with respect to the average potential
that is determined by the actual ion configuration and the
self-consistent electronic mean field. The fact that electrons
are considered within sub-femtosecond time intervals, while
the ion configuration remains nearly unchanged, enables us to
separate the electron dynamics from the ion dynamics.

Subsequently, the dynamical properties of the electron
subsystem can be calculated for a frozen ionic configuration,
thus referring to a specific time. This is considered as an
adiabatic approximation to the true dynamical properties
of the electron subsystem which have to take into account
the slow change in the ion configuration. More rigorously,
nonstationary time-dependent correlation functions have to be
treated for the full charged particle system.

Using the RMD simulations scheme as introduced in
Ref. [28], the ions are kept fixed acting as an external trap
potential. Starting from an initial state, the many-electron
trajectory {�rl(t), �pl(t)} is calculated, solving the classical
equations of motion of the electrons. From this, all further
physical properties of the electron subsystem inside the cluster
are determined. Within RMD simulations, we consider no tem-
poral variation of the plasma parameters that are determined
by the frozen ion distribution, the electron temperature, and
the degree of ionization. A long-time run can be performed in
order to replace the ensemble average by a temporal average.
This has been successfully done for the single-time properties
such as the momentum distribution and the density profile (see
Ref. [28]) and will now be applied to the two-time correlation
functions.
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FIG. 1. (Color online) Simulation data of the cluster charge Z

(symbols) and a power fit (solid line) for clusters with different
numbers of ions, Ni , at different temperatures are shown.

Using classical MD simulation techniques, the results are
valid for nondegenerate plasmas. This restricts the temperature
range to T � 1 eV where our simulations can be compared
with realistic sodium clusters. Values for the plasma parameter
� > 1 can be treated since we are not confined to the weak
coupling limit as, e.g., in perturbation theory.

In our RMD calculations, we start from a homogeneous ion
configuration (icosahedral or randomly distributed) inside the
cluster at fixed ion density. In the case of random distribution,
we perform averaging over different initial configurations of
ions. The Langevin thermostat was chosen to heat the electrons
at an initial stage as it provides a good mixture of particle
trajectories. It has a more negative influence on the equilibrium
distribution functions than the more popular Nose-Hoover
thermostat but in our case the thermostat is switched off
for the production run so that these negative effects are lost
in the beginning of the equilibrium trajectory. Hot electrons
are emitted during the equilibration phase so that the cluster
becomes ionized. Evaluating the trajectories of electrons,
sufficient time, typically of about 200 fs, has to be allowed
before a stationary ionization degree is established. Then the
thermostat is switched off and the system becomes almost
adiabatic, which ensures that all thermodynamic quantities are
conserved on average. In Fig. 1, the cluster charge Z depending
on cluster size Ni is shown. A power fit Z(Ni) = ANB

i with,
for example, A = 0.165 and B = 0.197, for Te =1 eV shows
the trend of the size-dependent ionization degree.

Using the trajectories of all Ne electrons obtained from the
RMD simulations scheme, the local current density �je(�r,t) at
position �r was calculated for each time step t :

�je(�r,t) = lim
�V�r→0

e

me

1

�V�r

Ne∑
l=1

�pl(t) δ�V�r [�rl(t)], (10)

which is the sum over all electron momenta �pl inside a
small volume �V�r at position �r , where δ�V�r [�rl(t)] = 1 and
δ�V�r [�rl(t)] = 0 for electrons found outside �V�r . The size of the
volume determines the spatial resolution of the local current
density �je(�r,t). However, it must be taken sufficiently large to
reduce statistical fluctuations.

The bilocal correlation tensor of the normalized spatially
resolved current density is calculated according to Eq. (2) as

( �je(�r,0); �je(�r ′,t)) =
∑Nτ

i=1
�je(�r,iτ ) ⊗ �je(�r ′,iτ + t)

Nτ

〈 �j 2
e

〉 , (11)

with �je being the total current density. Typical values are Nτ =
105–106 and τ ∼ 0.1 fs. Its Laplace transform reads

〈 �je(�r); �je(�r ′)〉ω =
∫ ∞

0
dteiωt ( �je(�r,0); �je(�r ′,t)). (12)

In the following, we restrict ourselves to the diagonal
components 〈j ||

e ; j ||
e 〉ω of this tensor, where only parallel

components of the current-density vectors are correlated as
already introduced in Sec. II. As is shown in the following
sections, this bilocal current-density correlation is important
to understand the excitation modes of nano plasmas. The
nondiagonal components of the bilocal correlation tensor are
small in comparison to the diagonal components. Besides the
bilocal current-density correlation function considered here,
the bilocal density fluctuation correlation 〈δn(�r),δn(�r ′)〉ω and
the bilocal force correlation 〈 �F (�r), �F (�r ′)〉ω are useful quantities
in the context of optical properties. These correlations can be
evaluated from the trajectory in a similar way and are related to
the bilocal current-density correlation. This will be discussed
in a future presentation.

Because of the spherical symmetry of the cluster geometry
during excitation and expansion, the volume is divided into
sections �V�r according to Nr , Nθ , and Nφ equidistant
intervals of spherical coordinates, i.e., the distance r to
the center of the cluster, the inclination angle θ , and the
azimuthal angle φ, respectively. The cluster radius Ri is
given by the root-mean-square radius of ions according to
R2

i = 5/3〈r2〉. The sections are numbered by a single counter
a = NφNθ (k − 1) + Nφ (j − 1) + i with three independent
counters according to the three coordinates: i = 1, . . . ,Nφ ;
j = 1, . . . ,Nθ ; and k = 1, . . . ,Nr . With respect to Eq. (11)
the bilocal correlation matrix Da;a′(t) = (j ||

e (�ra,0); j ||
e (�ra′ ,t))

for the spatially resolved cluster and its Laplace transform
Da;a′(ω) = ∫ ∞

0 dteiωt Da;a′(t) have been calculated.
The total current-density ACF can be calculated from the

trajectories directly. Please note, that it can be also calculated
from the bilocal current-density correlation matrix

〈j ||
e ; j ||

e 〉ω = 1

V 2
cl

∑
a,a′

Da,a′ (ω)�Vi,j,k�Vi ′,j ′,k′ , (13)

using the cluster volume Vcl = 4π
3 R3

i and the individual cell
volumes

�Vi,j,k =
∫ 2πi/Nφ

2π(i−1)/Nφ

dφ

∫ πj/Nθ

π(j−1)/Nθ

dθ

∫ Rik/Nr

Ri (k−1)/Nr

drr2 sin θ

= 2π

3Nφ

(
Ri

Nr

)3

(3k2 − 3k + 1)

(
cos

[
π

Nθ

(j − 1)

]

− cos

[
π

Nθ

j

])
. (14)

The consistency of these expressions has been checked
throughout our explicit calculations.
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IV. FROM BILOCAL CORRELATION FUNCTION TO
EXCITATION MODES

In the following, we discuss calculations for the current-
density ACF, Eq. (13), and the bilocal current-density corre-
lation spectrum Da,a′ (ω). Exemplarily, we present results for
the Na309 cluster at electron temperature Te = 1 eV, cluster
charge Z = 16, and ionic density ni = 2.80 × 1022 cm−3.
The electrons form a nano plasma with nonideality parameter
� = 6.964 and degeneracy parameter � = 0.664. Starting
with a solid density cluster, these are typical parameters
obtained directly after the interaction with a short-pulse laser
of 100-fs duration and an intensity of I = 5 × 1011 W cm−2.
Calculations of other cluster sizes are presented in the
following sections.

The real part of the total current-density ACF Re〈j ||
e ; j ||

e 〉ω
is shown in Fig. 2. Three maxima are obtained. This feature
differs from the bulk behavior and is interpreted as different
resonances of the electron system. To investigate the origin
of the different maxima as collective excitations of the
nano plasma, the bilocal current-density correlation matrix
is calculated as well.

The following spatial symmetries in the matrix Da;a′(ω)
were found:

Di,j,k; i ′,j ′,k′(ω) = D|i−i ′|+1,j,k; |i−i ′ |+1,j ′,k′(ω), (15)

Di,j,k; i ′,j ′,k′(ω) = Di,Nθ−j+1,k; i ′,Nθ −j ′+1,k′ (ω), (16)

Di,j,k; i ′,j ′,k′(ω) = Di,j,k′; i ′,j ′,k(ω). (17)

In our case, the N2
sec elements of the full matrix can be reduced

to Nind = (Nr Nθ + 1) Nr Nθ (Nφ + Nφmod2)/4 independent
elements due to the symmetries Eq. (15) to Eq. (17), thus
improving statistics via averaging equal elements.

Because of the different sizes of section volumes in spher-
ical coordinates there are large variations in the mean number
of particles in a section. Provided that we have Ne = 50−1000
electrons and Nsec = NφNθNr = 128 sections, the average
number of particles in some sections can be even smaller
than unity. In this case, the local current-density Eq. (10),
is affected by strong fluctuations due to the discrete number
of particles. This problem is reduced when you consider
the current �Je(�r,t) = je(�r,t)�V�r because the contribution

3 4 5 6 7 8 9 10

ω [fs
-1

]

0.0001
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R
e 

<
j|| e; j

|| e>
ω
 [
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-1

]

FIG. 2. (Color online) Frequency spectrum of the real part of
the current-density ACF of a Na309 cluster at electron temperature
Te = 1 eV, cluster charge Z = 16, and ionic density ni = 2.80 ×
1022 cm−3.
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FIG. 3. (Color online) Eigenvalues of the Na309 cluster sorted by
size for the resonant case at ω = 4.42 fs−1 (black) and a nonresonant
case at ω = 5.50 fs−1 (shaded, red online), for parameters as in Fig. 2.

of smaller cells will be damped. Therefore, we used the
non-normalized form of the correlation function for further
analysis,

Ka,a′ (ω) = Da;a′(ω)�Vi,j,k�Vi ′,j ′,k′ , (18)

for which the following eigenproblem was solved,∑
a′

Re Ka,a′ (ω)�μ,a′(ω) = Kμ(ω)�μ,a(ω). (19)

Thus, the matrix is decomposed into eigenvectors �μ,a(ω) =
�μ,i,j,k(ω) as well as their eigenvalues Kμ(ω) at each fre-
quency. The eigenvectors represent the spatial structure of the
mode [�μ,i,j,k(ω) → �μ(�r,ω)]. The orthonormality condition∫

d3�r �μ(�r,ω) �μ′ (�r,ω) = δμ,μ′ . (20)

holds.
For two selected frequencies, the ten strongest eigenvalues

of the Na309 cluster are shown in Fig. 3. At ω = 4.42 fs−1

(black), a resonance frequency was found with one out-
standing, leading eigenvalue. The second and third largest
eigenvalues are of same strength, which suggests degeneracy
due to the symmetry of the correlation matrix. At off-resonant
frequencies, i.e., at ω = 5.50 fs−1 (shaded, red online), all
eigenvalues are of the same order of magnitude.

In Fig. 4(a) the strongest eigenvalues Kμ(ω) of the Na309

cluster are shown in dependence of frequency. They are
colored according to their strength and numbered ascending
with descending strength. In the shown frequency range,
modes Kμ(ω) with well-defined maxima are found. The
spatial oscillation structure can be identified by analyzing the
eigenvectors.

In Fig. 4(b), the spectra of eigenvalues are sorted in an
alternative way, according to the spatial structure of the
eigenvector which is obtained over the whole frequency
range. Overall, the black solid mode is the strongest. Its
resonance frequencies are also found in the total current-
density ACF (indicated via vertical dashed lines, blue online)
and are therefore of particular interest. Resonances in the
total current-density ACF, shown in Fig. 2, are only possible
in the case of nonzero total current, which is caused by
a dipole like oscillation. Thus, resonances which are seen
in the total current-density ACF are oscillation modes with
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RAITZA, RÖPKE, REINHOLZ, AND MOROZOV PHYSICAL REVIEW E 84, 036406 (2011)

4 5 6 7 8 9

ω [fs
-1

]

0

0.001

0.002

0.003

0.004

K
μ ( ω

)

1
2
3
4
5
6

(a)

4 5 6 7 8 9

ω [fs
-1

]

0

0.001

0.002

0.003

0.004

K
μ ( ω

)

Y
00

, Y
20

Y
11

Y
10

Y
21

(b)

FIG. 4. (Color online) (a) Spectrum of the six highest eigenvalues Kμ(ω) of the Na309 cluster for the same parameters as in Fig. 2. (b)
Eigenvalues of the same cluster selected in terms of the corresponding spherical harmonics Yl,m(θ,φ).

a dipole moment. Other resonance structures, for example,
are breathing modes that have no dipole moment. After
characterization of the resonance structures, the dipole like
resonances are investigated in more detail.

V. ANALYSIS OF THE COLLECTIVE MODES

The decomposition of the locally resolved current correla-
tion matrix into eigenvalues Kμ(ω), as shown in Fig. 4, gives
a very complex set of resonance structures in comparison to
the one-dimensional (1D) case (see Ref. [30]). The spatial
mode structures in 1D chains were characterized by their wave
number k. To analyze the more complicated spatial oscillation
structure of 3D clusters, a spherical Fourier decomposition of
the eigenvectors into the spherical Bessel function jl(kn,lr) and
spherical harmonics Yl,m(θ,φ) was performed according to

�μ(�r,ω) =
Nn∑
n=1

Nl∑
l=0

l∑
m=−l

Sn,l,m(ω) Nn,ljl(kn,lr)Yl,m(θ,φ),

(21)

where Sn,l,m(ω) is the spherical Fourier component with
ordinal numbers n, l, and m. The normalization factor Nn,l

as well as the wave number kn,l are chosen in such a way that
the eigenvector has a root at the cluster surface.

In Fig. 4(b), the four strongest eigenvalue modes are
characterized by pairs of ordinal numbers l and m, which

determine the main angular part of the eigenvector by the
spherical harmonics Yl,m(θ,φ). The leading dipole like mode,
represented via solid black lines in Fig. 4(b), is characterized
by the overlap of the spherical harmonic functions Y0,0(θ,φ)
and Y2,0(θ,φ). For the Na309 cluster, one can find three
resonance frequencies which are identical to the ones found
in the total current-density ACF. The latter are indicated by
vertical dashed lines (blue online).

In our investigations, we looked at other cluster parameters
as well and found similar behavior. Comparisons are made in
the following sections. For further analysis of the excitation
modes, we now consider a larger cluster consisting of 1000
ions. There, four pronounced dipole like resonances were
found. In Fig. 5, the spatial structures of the current density
j

||
e (�r) ∼ �(�r)

�V (�r) is shown for the Na1000 cluster at the resonance
frequencies of the leading dipole like mode. The behavior is
shown in the z-x plane at a fixed azimuthal angle φ on which
it does not depend.

At the resonance frequency ωR = 4.80 fs, the electrons
are oscillating with a current density j

||
e (r) = v(r)ne(r). As

shown in Fig. 5(a), all electrons of this mode are moving in the
same direction and no nodes can be seen. Assuming a constant
velocity field amplitude v = const, the change of the current
density with distance r is directly related to the density profile
ne(r) of the electrons.

The modes in Figs. 5(c) and 5(d) are similar to a plane-
wave oscillation of electrons, but trapped inside the cluster. To

ω = 4.80 fs−1 = 6.18 fs−1 = 9.15 fs−1 = 8.23 fs−1

1.0

0.5

0.0

0.5

1.0

A
m

pl
it

ud
e

ω ω ω

FIG. 5. (Color online) Selected eigenvectors of the dipole like mode in the Na1000 clusters for the same parameters as in Fig. 2 but Z = 19.
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identify a wave number of the plane-wave oscillation, a Fourier
decomposition of plane waves in the z direction was done. A
maximum at k = 1.6 nm−1 and a maximum at k = 4.7 nm−1,
respectively, were found which identify the wavelengths of the
plane-wave oscillations. A plane-wave oscillation with higher
wavenumber was only found in the large clusters of 1000 ions.
All other modes can be seen in smaller clusters as well. The
resonance structure in Fig. 5(b) looks like a mix of the first
and the third resonance structure.

We want to point out one further feature of the mode
spectra in Fig. 4(b). The dashed red line represents in fact
two resonance structures with exactly the same eigenvalues
at all frequencies. The eigenvectors are orthogonal since they
are characterized by the same spherical harmonic function
Y1,1(θ,φ) but have a phase shift in the φ direction: Y

(1)
1,1(θ,φ) =

Y
(2)
1,1(θ,φ + π

2 ). Further degenerations are obtained for weaker
eigenvalue modes as well.

All eigenvectors �μ(�r,ω) are decomposed into a superposi-
tion of spherical Bessel functions jl(kn,lr) with a set of ordinal
numbers n. No leading ordinal number n was found, which
characterizes the spatial resonance structure in the r direction.

A. Resonance frequency of the rigid oscillation

The total current-density ACF shown in Fig. 2 and the
leading eigenvalue mode in Fig. 4(b) show the strongest
resonance at the frequency ωR ≈ 4.42 fs−1. This resonance
belongs to the dipole like mode with the eigenvector shown in
Fig. 5(a). We now analyze this collective excitation mode in
terms of a rigid oscillation.

The electrons with density profile ne(�r) are assumed to
move nearly rigidly in the external potential Vext,ei(�r) due to

the fixed ions. The potential energy of the electrons due to a
small shift with respect to the ions reads

Ue(z) =
∫

d3�rne(�r)Vext,ei(�r − z�ez). (22)

The change of the potential energy Ue(z) in the z direction is
due to the restoring force on the electron profile. In harmonic
approximation of the equation of motion, the resonance
frequency is identified as

meNeω
2
R = − ∂2 Ue(z)

∂ z2

∣∣∣∣
z=0

. (23)

For small rigid shifts z → 0 and assuming that electron density
profile and external potential are radially dependent only, the
angular integration in Eq. (22) can be executed. The resonance
frequency Eq. (23), is then given according to

ω2
R = 4π

3meNe

∫ ∞

0
drne(r)r2

(
V ′′

ext,ei(r) + 2
V ′

ext,ei(r)

r

)
.

(24)

As a first example for a density profile, we assume a homoge-
neously charged ion sphere with radius Ri = [3Ni/(4πni)]1/3

and an electron sphere with radius Re = [3Ne/(4πne)]1/3.
The densities of the electron and ion spheres are equal
(ne = ni). Therefore, the difference of ion and electron radius
is determined by the cluster charge, basically the difference of
the simulated electron number Ne and the ion number Ni . Thus,
in the case of positively charged clusters, as discussed here,
the electron sphere radius is smaller than the ion sphere radius
(Re < Ri). The error function potential, Eq. (9), was taken as
the electron-ion interaction potential for the calculation of the
resonance frequency, as it was used for the MD simulation as
well. The resonance frequency than reads

ω2
R(Ri,Re) = ω2

Mie

[
R3

i + R3
e

2R3
e

erf

(
Ri + Re

λ

)
− R3

i − R3
e

2R3
e

erf

(
Ri − Re

λ

)

+ e
− R2

i
+R2

e

λ2

√
πR3

e

{[
λ3

2
− λ

(
R2

i + R2
e

)]
sinh

(
2RiRe

λ2

)
− λRiRecosh

(
2RiRe

λ2

)}]
. (25)

In the limit of large clusters with high numbers of ions the reso-
nance frequency equals the Mie frequency, limRi→∞ ωR(Ri) =
ωMie. Assuming only a weakly charged cluster, the sphere radii
have nearly the same size (Re → Ri) and the system is nearly
neutral. The limit for small clusters, down to just one atom,
depends strongly on the pseudopotential. In our case, the res-
onance frequency limNi→1 ωR(Ni) = e2/4πε04/(3

√
πλ3me)

is due to the oscillation of a single electron in the ionic
error-function pseudopotential Eq. (9).

In Fig. 6(a), the resonance frequency ωR of the dipole like
mode is shown in dependence on the size of the ion sphere.
Results from MD simulations (empty circles) for the Na55,
Na309, and Na1000 clusters at ni = 2.80 × 1022 cm−3 as well

as for the Na55 cluster at ni = 2.15 × 1022 cm−3 are shown.
The resonance frequencies have been calculated using Eq. (25)
for ion densities of ni = 2.15 × 1022 cm−3 (solid shaded
line, red online) and ni = 2.80 × 1022 cm−3 (solid black
line). The limits of large clusters, the Mie frequency ω2

Mie =
e2ni/(3ε0me), are given as dotted lines colored according to
the two densities.

Additionally, the electron density profile ne(r) was de-
ducted from MD simulations for all cluster sizes and used
to derive the resonance frequency ωR solving Eq. (24)
numerically. As a result [solid circles in Fig. 6(a)], the
resonance frequency of the dipole like mode is obtained with
a deviation to the direct simulation results of less than 5%.
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FIG. 6. (Color online) (a) Cluster-size-dependent resonance frequency ωR (Ri). Simulation results (empty circles) and analytical calculations
(solid lines) using Eq. (25) are shown for ni = 2.15 × 1022 cm−3 (shaded, red online) and ni = 2.80 × 1022 cm−3 (black). The Mie frequencies
are given as dashed lines. Numerical calculations using Eq. (24) are presented (solid dots). (b) Dispersion Eq. (32) of a plane wave in
a homogeneously charged sphere (solid line) for ne = 2.80 × 1022 cm−3 as well as simulation results (empty symbols) and bulk plasmon
frequency.

Using homogeneously charged ion and electron spheres leads
to reasonable agreement in the limits of large clusters as well
as of small clusters. Taking the spatial structure of the density
profile into account, there is good agreement with the direct
simulation results in the intermediate cluster size regime as
well.

B. Dispersion of the plane-wave mode

While the Mie-like resonance, discussed in the previous
subsection, is almost spherically symmetric, we obtain an
increasing plane-wave character of the dipole like mode
with increasing frequency. The third resonance frequency of
the total current-density ACF for the Na309 cluster at ωR =
8.14 fs−1 (see Fig. 2) is mainly caused by a plane-wave-like
eigenvector, which is similar to the eigenvector of the Na1000

cluster, shown in Fig. 5(d). This mode is discussed by Xia
et al. [19] as compressional volume plasmon. Here, oscillations
of electrons in opposite directions must be taken into account
for the analytical calculation of the resonance frequency. We
assume homogeneously charged spheres for the electrons with
radius Re and for the ions with radius Ri as was already
discussed in the previous subsection. The electron motion is
treated as a hydrodynamical liquid using the Euler equation:

∂ �j (�r,t)
∂ t

= −div[ �j (�r,t) ⊗ �v(�r,t)] − 1

me

grad p(�r,t)

− ne(�r,t)
me

grad Vext(�r,t), (26)

where �j (�r,t) = ne(�r,t)�v(�r,t) is the spatially resolved current
density of the electrons, p(�r,t) is the pressure of the electron
gas, and Vext = Vext,ei + Vext,ee is the external potential, com-
posed of contributions from the electrons and ions. Using the
following assumptions,

jz(�r,t) = δj �eze
i(kz−ωt), (27)

vz(�r,t) = δv�eze
i(kz−ωt), (28)

ne(�r,t) = ne,0(r) + δnee
i(kz−ωt), (29)

Vext(�r,t) = Vext,0 + δVext(�r), (30)

we consider small perturbations in the z direction, restricting
ourselves to longitudinal effects. One is able to linearize
the Euler equation. The system is assumed to be in LTE,
described by the quantities ne,0(r), �j0(�r) = 0, �v0(�r) = 0 as
well as Vext,0(r). Electrons are moving in the external field of
ions and in the mean field of electrons. The external potential
is

Vext(�r,t) =
∫

d3�r1

(
ni(r1) − ne,0(r1)

2

)
Ve,i(�r1 − �r)

+ 1

2

∫
d3�r1δne(r1,t)Ve,e(�r1 − �r),

Vext(�r,t) = Vext,0(r) + δVext(�r,t). (31)

The external potential has an equilibrium part and a perturba-
tive part δVext(�r,t), which is mainly dependent on the linear
density perturbation δne(�r,t).

Assuming the Boltzmann distribution we express the ideal
gas pressure of the electrons p(�r,t) via the electron density.
Using the equation of continuity, one is able to express
the Euler equation in terms of linear perturbations of the
density. Thus, the equilibrium part of the external potential
compensates the pressure term on the right-hand side of
Eq. (26). Restricting ourselves to linear perturbations, only the
third term on the right-hand side remains, which is connected to
the external potential. Finally, all terms of the Euler equation
lead back to a linear density fluctuation δne(�r,t). Thus, one
ends up with

ω2(k) = ωpl

4
e− k

4 (kλ2+4iRe)
{
ieikRe

[
erfi

(
kλ2 − 2ikRe

2λ

)

− erfi

(
kλ2 + 2ikRe

2λ

)]
− e

k2λ2

4

×
[

1 + e2ikRe erf

(
Re

λ

)]}
. (32)

This relation leads to real valued solutions for the resonance
frequencies for standing waves with kn = nπ/Re only and
scales with the plasma frequency ωpl. In the limit k → 0 we
find ω(0) = ωpl, which coincides with the bulk limit.
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From the eigenvector of the plane-wave mode, one can
derive the wave number k = π/Re, which corresponds to
n = 1. This means the dispersion of the plane-wave mode is
determined by the radius of the electron cloud. Results for this
case are shown in Fig. 6(b) for different cluster sizes and are
compared with the simulation data. For the cluster with 1000
ions a plane-wave mode with k = 3π/Re and n = 3 was found
as well. In Fig. 6(b), it is marked with an empty square. Its
spatial structure is shown in Fig. 5(d). The simulation data for
the Na1000 cluster fits the dispersion relation, Eq. (32), as well.
Deviations of the plane-wave resonance for smaller clusters
are caused by the radial dependence of the electron density
profile.

VI. CONCLUSION

We have investigated collective excitation modes of a
nano plasma in highly excited metal clusters. The collective
excitation of electrons inside the cluster is obtained from
bilocal current-density correlation functions by solving the
eigenvalue problem of the current-density correlation matrix.
Using RMD simulations, the local current density �j (�r,t) for
excited clusters of 55 up to 1000 ions with densities of
ni = 2.15 × 1022 cm−3 and 2.80 × 1022 cm−3 and temperature
of Te = 1 eV has been investigated. Pseudopotentials of
sodium were used to calculate the electron dynamics without
consideration of degeneration effects any further. For the
analysis of electron dynamics at lower temperatures, the
inclusion of quantum effects for the calculation of the local
current density �j (�r,t) of cluster electrons is an open question at
this point. It would be useful to go beyond the present classical
description to discuss, for example, cold, nonexcited clusters.

The spectrum of dipole like modes was investigated in more
detail. Using analytical calculations, it was possible to relate
the position of resonance modes in the frequency domain
to their spatial mode structure. Results for the cluster size
dependence of the resonance frequency have been shown. A
smooth transition to the bulk behavior has been obtained. The
analysis of further resonance frequencies and also other modes
including breathing modes would be desirable. The width of
mode resonances and the role of collision-less damping effects
as well as the collision frequency need to be investigated in the
future. The systematic change of the collision frequency with
cluster size up to the bulk limit remains an interesting field.

From RMD simulations, different collective excitations
have been found in nano plasmas, including dipole like and
breathing modes. These collective excitations influence the
scattering and absorption properties of clusters (see Ref. [19]).
The collective effects of electron motion play a role when
analyzing UPS or XPS experiments, as has been pointed out
by Andersson et al. [22]. It is a challenge to experimentalists
to confirm the occurrence of different collective excitations in
nano plasmas.
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RAITZA, RÖPKE, REINHOLZ, AND MOROZOV PHYSICAL REVIEW E 84, 036406 (2011)

[22] T. Andersson et al., J. Chem. Phys. 134, 094511 (2011).
[23] T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays,

and K. B. Wharton, Nature (London) 398, 489 (1999).
[24] G. Grillon et al., Phys. Rev. Lett. 89, 065005 (2002).
[25] K. W. Madison, P. K. Patel, M. Allen, D. Price, R. Fitzpatrick,

and T. Ditmire, Phys. Rev. A 70, 053201 (2004).
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[41] S. Kümmel, M. Brack, and P.-G. Reinhard, Phys. Rev. B 62,

7602 (2000).

[42] M. Brack, P. Winkler, and M. V. N. Murthy, Int. J. Mod. Phys.
E 17, 138 (2008).

[43] S. A. Chin and E. Krotscheck, Phys. Rev. E 72, 036705 (2005).
[44] L. Ramunno, C. Jungreuthmayer, H. Reinholz, and T. Brabec,

J. Phys. B 39, 4923 (2006).
[45] H. Reinholz, T. Raitza, and G. Röpke, Int. J. Mod. Phys. B 21,
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