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Rarefaction shock in plasma with a bi-Maxwellian electron distribution function

A. Diaw and P. Mora*
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The one-dimensional collisionless expansion into a vacuum of a plasma with a bi-Maxwellian electron
distribution function and a single ion species is studied both theoretically and numerically. A shock wave
occurs when the ratio of the temperatures between the hot and the cold electrons is larger than 5 + √

24
[B. Bezzerides, D. W. Forslund, and E. L. Lindman, Phys. Fluids 21, 2179 (1978)]. The theoretical model
presented here gives a coherent and complete description of the rarefaction shock and its effects on the ion
acceleration process. Analytical expressions of the characteristics of the shock are given. The analytical findings
are compared to the results of a hybrid code describing the plasma expansion, and an excellent agreement is
obtained.
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I. INTRODUCTION

The physics of the interaction of ultraintense lasers with
matter, transformed instantaneously into a very hot plasma,
involves various nonlinear phenomena, which occur on very
short time scales. A general consequence is the generation
of fast electrons (hot electrons) with potentially relativistic
velocities coexisting with low energy electrons [1]. In thin
foil experiments, the hot electrons can accelerate ions to high
energy by causing the foil to expand [2–4].

By studying the expansion of a plasma with electrons
described by a bi-Maxwellian distribution function (with
hot and cold electron temperatures Th and Tc, respectively),
Wickens et al. [5] noticed the possibility of a breakdown of the
quasineutrality assumption when the ratio Th/Tc is greater than
5 + √

24, and Bezzerides et al. [6] demonstrated theoretically
the existence of a rarefaction shock wave in such conditions.
Our aim here is to extend these studies in order to give a
complete description of the rarefaction shock wave.

This paper is organized as follows. In Sec. II, we present the
general equations governing the one-dimensional collisionless
plasma expansion into a vacuum and look for a self-similar
solution in the quasineutral limit. The conditions required for
the occurrence of a rarefaction shock wave are given, and
the equations describing the shock and the charge-separation
effect inside the shock are written. In Sec. III, the case of
a plasma with a bi-Maxwellian electron distribution function
with a single ion species is presented in detail. The different
regimes for which a rarefaction shock can occur in the plasma
are investigated with respect to the ratio of the hot electron
density to the cold electron density in the unperturbed plasma.
Analytical expressions of the parameters of the rarefaction
shock wave are derived by performing expansions for a large
ratio of Th/Tc. Particular attention is paid to the speed of the
rarefaction shock compared to the acoustic velocity. Section IV
is devoted to the numerical simulations performed with a
one-dimensional hybrid code and to their comparison with
the results of the analytical model. Finally, the influence of
the rarefaction shock wave on the ion acceleration and ion
spectrum is discussed.

*patrick.mora@cpht.polytechnique.fr

II. PLASMA EXPANSION

A. General equations

We first recall the general equations describing the plasma
expansion, following Bezzerides et al. [6]. We consider at
t = 0 a one-dimensional plasma composed of cold ions of
mass mi and charge Ze, occupying the half-space x � 0 with
uniform density nu/Z (in the following the subscript u will
always correspond to the unperturbed plasma), and of electrons
in equilibrium with the electric potential φ(x,t = 0) that builds
up due to the charge separation at the plasma edge, with density
ne(φ) and pressure P (φ). We assume that the potential vanishes
in the unperturbed plasma (x < 0, |x| → ∞), with ne(0) = nu.

For t > 0, the ion’s motion is described by the fluid
equations, which can be written as

∂n

∂t
+ ∂(nv)

∂x
= 0, (1)

∂v

∂t
+ v

∂v

∂x
= − e

m

∂φ

∂x
, (2)

where n(x,t) is the ion density multiplied by Z, v(x,t) is the ion
velocity, m = mi/Z, and where φ(x,t) is now time dependent.

Due to the smallness of their mass, the electrons are
assumed to stay in equilibrium with the electric potential
φ(x,t), at any position and time, with the same functions ne(φ)
and P (φ) as initially. The equilibrium condition reads as

ne(φ) = 1

e

dP

dφ
, (3)

or, equivalently, considering P as a function of x and t ,

∂φ

∂x
= 1

ene

∂P

∂x
. (4)

Finally, the electric potential satisfies Poisson’s equation

∂2φ

∂x2
= e

ε0
(ne − n). (5)

B. Self-similar solution

If the local scale length n/(∂n/∂x) is much larger than the
local Debye length λD = [ε0/e(dne/dφ)]1/2, we can assume
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quasineutrality and write n = ne(φ). We can then look for a
self-similar solution where the similarity parameter is ξ = x/t .
The fluid equations of ions simplify to

(v − ξ )
dn

dξ
= −n

dv

dξ
, (6)

(v − ξ )
dv

dξ
= −c2

s

n

dn

dξ
, (7)

where

c2
s = ne

dne/dϕ
= 1

m

dP

dne

, (8)

for which we have defined ϕ = eφ/m.
When dn/dξ �= 0, Eqs. (6) and (7) combine to give

(v − ξ )2 = c2
s . (9)

The solution corresponding to an expansion toward x > 0 is
thus given by

v = ξ + cs, (10)

while the electric potential and the position ξ are related by
the equation

dξ

dϕ
= −

(
1

cs

+ dcs

dϕ

)
. (11)

The right-hand side of Eq. (11) is normally negative and the full
solution is obtained by integrating it to obtain ξ as a function
of ϕ. However, if the right-hand side of Eq. (11) happens to be
positive for some values of ϕ, i.e., if

cs

dcs

dϕ
� −1, (12)

one ends up with a mathematical solution where ϕ is a
multivalued function of ξ for a range of values. Physically, a
rarefaction shock appears, as discussed by Bezzerides et al. [6].

C. Rarefaction shock

Let ξs be the self-similar parameter corresponding to
the position of the shock. We may treat the shock as a
stationary discontinuity in the frame moving with the shock.
The equations of conservation of mass and energy flux in this
frame read as

d

dx
(nu) = 0, (13)

d

dx

(
1

2
u2 + ϕ

)
= 0, (14)

where u = v − ξs is the relative velocity. To write the momen-
tum conservation equation, one has to take into account the
charge separation inside the shock. Multiplying Eq. (14) by n,
and using Eqs. (3), (5), and (13), one obtains

d

dx

[
nu2 + P

m
− ε0m

2e2

(
dϕ

dx

)2
]

= 0. (15)

The jump conditions are

n0u0 = n1u1, (16)

1
2u2

0 + ϕ0 = 1
2u2

1 + ϕ1, (17)

where the subscripts 0 and 1 denote the conditions upstream
and downstream of the shock, respectively, and

n0u
2
0 + P0

m
= n1u

2
1 + P1

m
, (18)

where we have taken into account the fact that the term
involving the square of the electric field in Eq. (15) is of
order 1/(ωpi0t)2 on the upstream side, for which ωpi0 =
(n0e

2/mε0)1/2 is the ion plasma frequency, and anticipated the
fact that it vanishes on the downstream side, thus neglecting
both terms in our analysis, assuming ωpi0t � 1.

The conservation equations across the discontinuity com-
bine in the Hugoniot relation

ϕ0 − ϕ1 =
(

P0 − P1

2m

)(
1

n0
+ 1

n1

)
. (19)

Inside the shock, the electrostatic energy can be deduced
from Eqs. (13), (14), and (15), resulting in

ε0m

2e2

(
dϕ

dx

)2

= F (ϕ), (20)

with

F (ϕ) = n0u0

√
u2

0 + 2(ϕ0 − ϕ) − n0u
2
0 + P − P0

m
. (21)

The function F (ϕ) verifies

dF (ϕ)

dϕ
= ne − n (22)

and

d2F (ϕ)

dϕ2
= ne

c2
s

− n

u2
. (23)

The function F (ϕ) and its first derivative vanish on both
sides of the discontinuity (as the electric field and the charge
separation do), but F (ϕ) has to be positive in the interval
ϕ1 < ϕ < ϕ0, which implies that the second derivative of F (ϕ)
has to be � 0 both for ϕ0 and ϕ1, meaning that the flow has to
be sonic or supersonic on both sides of the discontinuity, i.e.,

u0 � cs0, u1 � cs1. (24)

On the other hand, at the position of the maximum of the
electric field, dF (ϕ)/dϕ vanishes and the second derivative
d2F (ϕ)/dϕ2 has to be negative, which means that the flow has
to be subsonic at this point.

An alternate way to define an acoustic velocity is by
reference to the ion density instead of the electron density,
with

c2
si = 1

m

dP

dn
. (25)

The two velocities cs and csi coincide in the quasineutral part
of the expansion, but differ inside the shock. Differentiating
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Eq. (21) and using Eq. (22) and the conservation of mass flux,
one obtains inside the shock

csi =
√

ne

n
u. (26)

With this definition of the acoustic velocity, the flow is sonic
both on the upstream and on the downstream sides. Inside the
shock, it first becomes subsonic and then supersonic, as we will
illustrate in the case of a bi-Maxwellian electron distribution
function.

III. CASE OF A BI-MAXWELLIAN ELECTRON
DISTRIBUTION FUNCTION

We now consider the case of a bi-Maxwellian electron
population, with

ne(φ) = nh(φ) + nc(φ)

= nhu exp

(
eφ

kBTh

)
+ ncu exp

(
eφ

kBTc

)
, (27)

where kB is the Boltzmann constant, Th and Tc are, respec-
tively, the hot and cold temperatures, and nhu and ncu are
the corresponding densities in the unperturbed plasma, with
nhu + ncu = nu.

The ion acoustic velocity is

cs(y) = csh

√
1 + y

α + y
, (28)

where csh = √
kBTh/m is the sound velocity associated with

hot electrons only, and

α = Th/Tc, y(φ) = nh/nc. (29)

As shown by both Wickens et al. [5] and by Bezzerides
et al. [6], a necessary condition for Eq. (12) to be valid is
α � 5 + √

24 ≈ 9.9. Figure 1 shows the electric potential
normalized to kBTh/e as a function of ξ/csh precisely for
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FIG. 1. Electric potential φ as a function of ξ , calculated by
numerical integration of Eq. (11). The parameters are α = Th/Tc =
5 + √

24 ≈ 9.9 and yu = nhu/ncu = 0.1.

the critical temperature ratio α = 5 + √
24 and a density ratio

yu = y(0) = nhu/ncu = 0.1. In this case, the derivative dξ/dϕ

vanishes at a position where y = 5 + √
24. Note that this

occurs only when yu is smaller than this critical value.

A. Rarefaction shock: Standard case

Figure 2 shows the solution of Eq. (11) for α = 102

and yu = 10−2. The portion of the curve between C and D

corresponds to the values of ϕ for which the condition (12)
is true. Also shown in Fig. 2 is the physical solution obtained
by using the jump conditions (16)–(18) with the constraint
(24). The following regions are identified: the unperturbed
plasma on the left of the rarefaction wave situated in A, an
expansion dominated by cold electrons between A and B, the
shock rarefaction joining B and E, a plateau between E and
F , and an expansion dominated by hot electrons on the right of
F . Contrary to what was supposed by Wickens and Allen [7],
the discontinuity does not coincide with the first occurrence of
the singular point on the multivalued self-similar solution. In
other words, the discontinuity occurs before reaching C.

The Hugoniot relation (19) can be written as

w = 1

2

[
y0(1 − e−w) + 1

α
(1 − e−αw)

]

×
(

1

y0 + 1
+ 1

y0e−w + e−αw

)
, (30)

where w = e(φ0 − φ1)/kBTh, y0 = nh0/nc0, nh0 = nh(φ0),
and nc0 = nc(φ0). Given w (>0 for a rarefaction), Eq. (30)
is a quadratic equation for y0, which has two positive solutions
provided that w is not too large. The upstream and downstream
velocities are

u0 = csh

⎡
⎣ 2w(

y0+1
y0e−w+e−αw

)2 − 1

⎤
⎦

1/2

(31)
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FIG. 2. Electric potential φ (solid line) as a function of ξ ,
calculated by numerical integration of Eq. (11), for α = 102 and
yu = 10−2. Also shown (dashed line) is the physical solution obtained
by using the jump conditions (16)–(18) with the constraint (24). The
upper part, down to point B (thick black line), is common to the two
solutions.
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FIG. 3. (Color online) Ion velocity as a function of the electrons
density ratio y0 upstream of the shock for a temperature ratio α = 102.
The dotted-dashed blue lines represent the sound velocity upstream
cs0 and downstream cs1 of the shock. The solid black lines are the ion
velocity upstream u0 and downstream u1 of the shock. The dashed
line represents the values of u0 for which the constraint (24) is not
fulfilled.

and

u1 =
√

u2
0 + 2w c2

sh. (32)

The upstream velocity u0 is plotted in Fig. 3 as a function of
y0 for α = 102. Also shown is the upstream sound velocity cs0.
The solutions for which u0 < cs0 (which would correspond to
a plateau on the upstream side) are plotted as dashed lines, as
they violate the constraint (24) and, thus, do not correspond to
a physical solution. Also shown are the downstream velocity
u1 and the downstream sound velocity cs1 (only drawn for the
physical solution).

Let us now discuss the position of the upstream point B of
Fig. 2 on the graph of Fig. 3. First of all, B must correspond
to a solution of the Hugoniot equation. Second, it also belongs
to the rarefaction expansion dominated by the cold electrons,
with v0 = ξs + cs0 and thus u0 = cs0. As a result, point B is at
the intersection of the Hugoniot curve u0(y0) and of the sonic
curve cs0(y0), so that, combining Eqs. (28) and (31), one has

w = 1

2

1 + y0

α + y0

[(
1 + y0

y0e−w + e−αw

)2

− 1

]
. (33)

B. Detailed structure of the shock

Figure 4 shows the P,Ve and the P,V diagrams (where
Ve = 1/ne and V = 1/n) of the rarefaction shock for a
temperature ratio α = 102. The points A–F identified in the
plasma expansion in Fig. 2 are also shown. The two curves
coincide on the left of B and on the right of points E, F ,
where the flow is quasineutral. The dashed line is the straight
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P(V
e
)
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FIG. 4. (Color online) Electron pressure as a function of the
electron specific volume Ve = 1/ne (dotted-dashed brown line) and
of the ion specific volume V = 1/n (solid line) for α = 102. The
points A–F identified in the plasma expansion in Fig. 2 are also
shown. The dashed line is the straight line connecting B to E. The
specific volumes Ve and V and the pressure P are normalized to their
values on the upstream side of the shock (point B).

line connecting B to E, and corresponds to the equation

nu2 + P

m
= n0u

2
0 + P0

m
, (34)

with nu = n0u0. The difference between the curve P (V )
(black line) and the straight dashed line is simply proportional
to the electrostatic energy density in the shock. The three
curves are tangents at point B, which is related to the fact
that the sound velocities cs and csi coincide and are equal to
the upstream flow velocity u0. At point E (but on the left of
point E), the tangent to the curve P (V ) coincides with the
dashed line, which is due to the fact that the sound velocity
csi coincides with the downstream flow velocity u1, but differs
from the tangent of the curve P (Ve). This can be explained by
the fact that the two sound velocities differ on the left of point
E, and that the flow is supersonic in the sense that u1 > cs .

If we now consider the function P (V ) on both sides of
point E, we observe that its derivative is discontinuous, which
means that the sound velocity csi is discontinuous. Thus,
two characteristics C− with different slopes emanate from
the break point E, leading to the formation of a plateau, the
length of which is given by 
csi t , where 
csi = csi − cs is
the difference between the two sound velocities. Note the
similarities with the case of a rarefaction shock wave in a
medium undergoing a phase transition with (∂2P/∂V 2)s < 0,
as discussed schematically by Bethe [8] and in more details
by Zel’dovich and Raizer [9]. Here, the condition (12) instead
reads as (∂2P/∂V 2

e )Th,Tc
< 0, and the break point is on the

downstream side, not on the upstream side.
Once the shock parameters are known, it is possible to

determine the structure of the electric field E = −∂φ/∂x in
the rarefaction shock by solving Eq. (20) with the appropriate
boundary conditions. The result is given in Figs. 5(a) and 5(b),
where φ and E are shown as functions of X ≈ x − ξst for a
temperature ratio α = 102. The position is normalized to the
local Debye length λDh0 =

√
ε0kBTh/nh0e2, and the position
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FIG. 5. (Color online) (a), (b) Profiles of the potential and the
electric field in the shock wave. (c) Profiles of the ion and electron
densities. (d) Profiles of the ion sound velocities and of the velocity of
the ion stream. All profiles correspond to the standard case of Fig. 2,
with α = 102. The electric field is normalized to E0 = √

nh0kBTh/ε0.
The position X ≈ x − ξs t is normalized to the Debye length λDh0 =√

ε0kBTh/nh0e2, with X = 0 corresponding to the maximum of the
electric field.

X = 0 has been arbitrarily assigned to the position of the
maximum of the electric field.

Figure 5(c) shows the corresponding ion and electron
densities’ profiles in the rarefaction shock as functions of X.
Finally, Fig. 5(d) shows the profiles of the ion velocity and
of the acoustic velocity. One observes that the flow, which is
sonic upstream, becomes successively supersonic, subsonic,
and supersonic (here we refer to the ratio of the flow velocity
u to the acoustic velocity cs).

C. Asymptotic expressions for α � 1

For a large temperature ratio α � 1, it is possible to obtain
asymptotic expressions for the quantities characterizing the
plasma expansion. Here, we complete or correct expressions
given in [6,10,11]. First of all, the rarefaction wave enters the
unperturbed plasma at the sound velocity cs(yu), so that

ξA ≈ −
(

1 + yu

2

) csh√
α

. (35)

In Fig. 2, the points C and D between which the solution
of Eq. (11) has a nonphysical slope are such that

yC ≈ 2

(
1 + 6

α

)
(36)

and

yD ≈ α2

2

(
1 − 6

α

)
. (37)

The sound velocity in the upstream region is given by

cs ≈
(

1 + y

2

) csh√
α

. (38)

The position of the rarefaction shock ξs is obtained by using
Eq. (38) to integrate Eq. (11) between ξA and ξs , which gives

ξs ≈
[

ln

(
y0

yu

)
+ yu

2
− y0 − 1

]
csh√

α
. (39)

The upstream density ratio y0 and the potential jump w

are obtained by looking for expansions of both quantities
as powers of the small parameter 1/

√
α, inserting these

expansions into Eqs. (30) and (33), and solving order by order.
The results are (keeping only the leading two terms)

w ≈ 1.26 − 2.10√
α

, (40)

y0 = yB ≈ 2.22√
α

+ 4.57

α
, (41)

while the downstream density ratio y1 = yE = yF =
y0 exp(1 − α)w is completely negligible. The upstream ve-
locity u0 coincides with the sound velocity in B,

u0 ≈
(

1 + 1.11√
α

)
csh√

α
. (42)

The downstream velocity is

u1 ≈
(

1.59 − 1.32√
α

)
csh. (43)

Finally, the position of point F , where the expansion domi-
nated by the hot electrons begins, is given by

ξF ≈ ξs +
(

0.59 − 1.32√
α

)
csh. (44)

D. Supersonic rarefaction shock case

When yu = yB , the analysis of Secs. III A–III C still applies,
although the region of expansion dominated by the cold
electrons (line A-B in Fig. 2) disappears, and A and B become
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FIG. 6. Electric potential φ (solid line) as a function of ξ ,
calculated by numerical integration of Eq. (11), for α = 102 and
for the transition value yu = yB ≈ 0.28. Also shown (dashed line) is
the physical solution obtained by using the jump conditions (16)–(18)
with the constraint (24).
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FIG. 7. Electric potential φ (solid line) as a function of ξ ,
calculated by numerical integration of Eq. (11), for α = 102 and
yu = 10. Also shown (dashed line) is the physical solution obtained
by using the jump conditions (??) with the constraint (24).

merged. The unperturbed plasma is directly connected to the
rarefaction shock, which propagates inside the unperturbed
plasma at the sonic velocity. This is illustrated in Fig. 6.

For yu > yB (and still yu < yD), the structure of the
expansion becomes different, as illustrated in Fig. 7, which
plots the electric potential φ as a function of ξ for α = 100 and
yu = 10. The unperturbed plasma is again directly connected
to the rarefaction shock, but the shock now propagates inside
the plasma at a supersonic velocity, as its position B ′ is further
inside the plasma than the position A of a virtual sound wave.

Furthermore, one can note that, in contrast with the cases
where yu < yB , the potential jump and the width of the plateau
now become smaller and smaller as yu increases.

The Hugoniot relation (30) is still valid, with y0 now given
by yu. Figure 8 is identical to Fig. 3, except that the positions
of the points A, B ′, E, and F corresponding to the parameters
of Fig. 7, i.e., α = 102 and yu = 10, have been added. In the
same way, Fig. 9 is similar to Fig. 4 with the positions of the
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FIG. 8. (Color online) Same as Fig. 3, with the positions of the
points A, B ′, E, and F corresponding to the parameters of Fig. 7, i.e.,
α = 102 and yu = 10.
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FIG. 9. (Color online) Same as Fig. 4, with the points B ′, D, E,
and F corresponding to the parameters of of Fig. 7, i.e, α = 102 and
yu = 10.

points B ′,D, E, and F corresponding to the parameters of
Fig. 7.

In B ′, the slope of the curve P (V ) is larger than the slope
of the curve P (Ve). This can be understood by the fact that
u0(=csi) >cs and that the rarefaction shock propagates at a
supersonic velocity inside the unperturbed plasma.

On the downstream side, the situation is similar to that of
the standard case, except that the difference of the values of the
slopes of the two curves P (V ) and P (Ve) in E,F is smaller,
implying a smaller plateau length.

In the limit α � 1, Eqs. (28), (30), and (31) can be
simplified by neglecting terms of order 1/α or e−αw, giving

cs(yu) ≈ csh

√
1 + yu

α
, (45)

w = 1

2
(1 − e−w)

(
yu

yu + 1
+ ew

)
, (46)
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1

10
20

0.05

0.1

0.15

0.2

0.25

y
u

(u
0/c

s )
 /α

1/
2

FIG. 10. Ratio of the upstream velocity to the acoustic velocity
in the unperturbed plasma, as a function of the density ratio yu, in the
supersonic rarefaction shock case, in the limit α � 1.
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FIG. 11. Electric potential φ as a function of ξ , calculated by
numerical integration of Eq. (11), for α = 102 and yu = yD ≈ 4700.

and

u0 = csh

⎡
⎣ 2w(

yu+1
yu

ew
)2 − 1

⎤
⎦

1/2

. (47)

The corresponding ratio u0/cs is plotted in Fig. 10 as a function
of yu. The ratio is maximal for yu ≈ 3.2, for which it reaches
u0/cs ≈ 0.24

√
α (i.e., u0 ≈ 0.48csh).

E. Hot electrons rarefaction : yu � yD

In the limit yu � yD , the cold electrons are almost
negligible. Figure 11 shows the electric potential for α =
102 and yu = yD ≈ 4700. The shock rarefaction completely
disappears as expected, and the region of expansion dominated
by the hot electrons is directly connected to the unperturbed
plasma. The parameters of the expansion can be expressed with
the self-similar model with a single hot electron population,
with

eφ/kBTh ≈ −(1 + x/csht). (48)

IV. NUMERICAL SIMULATIONS

A. General features of the code

Numerical simulations were made with the collisionless
one-dimensional hybrid code described in [12]. In this code,
the ions are treated as macroparticles, the electrons are treated
as a fluid with a density determined by a given function ne(φ),
and the nonlinear Poisson equation is solved iteratively. Such
a code has been used in similar conditions in Ref. [13]. Here,
the electrons satisfy Eq. (27) with Th and Tc independent
of time. The time step 
t is chosen to satisfy the plasma
stability and, in most cases, is such that ωpih
t = 0.1, where
ωpih = (nhue

2/mε0)1/2 is the ion plasma frequency associated
with the hot electrons density in the unperturbed plasma.

B. Simulation results

Figure 12 shows the profile of the electric potential for
α = 102 and yu = 10−2, which are the parameters also used
in Figs. 2–5, and for ωpiht = 20, 100, and 500. To facilitate

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

ξ/c
sh

−
eφ

/k
B
T

h

ω
pih

t=100

ω
pih

t=500

ω
pih

t=20

n
hu

/n
cu

   = 10−2

T
h
/T

c
     = 100

FIG. 12. (Color online) Electric potential φ (dotted-dashed brown
line) as a function of ξ for α = 102 and yu = 10−2 and at different
times ωpiht = 20, 100, and 500, as obtained with the hybrid code.
Also shown (solid line) is the result obtained from the numerical
integration of Eq. (11). The dashed line is the result of the analytical
model presented in Sec. III.

the comparison with Fig. 2, we also show in green the result
obtained from the numerical integration of Eq. (11) and in blue
the result of the analytical model presented in Sec. III. There
is an excellent agreement between the analytical model and
the numerical results, in particular for large values of ωpiht .

As discussed in Sec. III B, the width of the shock is
determined by the local Debye length. The electric field
is shown in Fig. 13 as a function of ξ , for the earlier
time ωpiht = 20. Here, the electric field is normalized to
Eu = √

nhukBTh/ε0. Also shown in the inset is a zoom around
the shock position, with E shown as a function of X′ =
x − ξst . For ease of comparison, the same normalizations are
used in the inset as in Fig. 5(b). With the parameters of the
simulation, nh0 ≈ 0.967nhu, so that the difference between Eu

and E0 is less than 2%.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

ξ/c
sh

E
/E

u

−2 0 2 4 6 8
0

0.2

0.4

(x−ξ
s
 t)/λ

Dh0

E
/E

0

FIG. 13. Electric field as a function of ξ . The parameters of the
simulations are α = 102 and yu = 10−2, and ωpiht = 20. The inset
is a zoom around the shock position for an easier comparison with
Fig. 5(b). The normalizations are discussed in the text.
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FIG. 14. (Color online) Ion front velocity as a function of time
for α = 102 and yu = 10−2. Also shown is the case where the cold
electrons have been suppressed (yu = ∞).

One observes two peaks in the profile of the electric
field [14,15]. The first peak, which stands at x ≈ ξst (more
precisely X′ ≈ 0.5λDh0), corresponds to the rarefaction shock,
and compares favorably with what has been discussed in
Sec. III B [compare the inset of Fig. 13 to Fig. 5(b)]. The second
peak corresponds to the ion front as discussed in Ref. [16] and
observed in Ref. [17]. The first peak is almost independent
of time in a ξ , E diagram, while the second peak shifts
logarithmically toward large values of ξ with an amplitude
going to 0 as 2Eu/ωpiht .

The time evolution of the ion front velocity (corresponding
to the second peak in Fig. 13) is illustrated in Fig. 14 for
α = 102 and yu = 10−2. Also shown is the case where the
cold electrons have been suppressed (yu = ∞). One observes
that the difference between the two curves is mainly due
to the initial phase of the ion acceleration, where the cold

0 2 4 6 8 10
10

−4

10
−2

10
0

10
2

10
4

v/c
sh

(λ
D

hu
/n

hu
t)

 d
n/

dv

ω
pih

t=20

ω
pih

t=100
ω

pih
t=500

FIG. 15. (Color online) Normalized ion velocity spectrum as a
function of time for the same parameters as in Fig. 12, i.e., α = 102

and yu = 10−2 and for ωpiht = 20, 100, and 500.

electrons slightly enhance the strength of the accelerating field,
as discussed for initial time t = 0 in Refs. [18,19].

Finally, the velocity spectrum is shown in Fig. 15 for the
same parameters as in Fig. 12. The spectrum is normalized
to time, as the number of accelerated ions increases almost
linearly with time. One recognizes on the spectrum the low
velocity part corresponding to the expansion dominated by the
cold electrons (line A-B in Fig. 2), the dip corresponding to
the shock (line B-E), the peak corresponding to the plateau
(line E-F ), and the high velocity part corresponding to the
expansion dominated by hot electrons (right of F ) down to the
velocity cutoff.

V. CONCLUSION

A complete theory of rarefaction shocks occurring in a
plasma with a bi-Maxwellian electron distribution function
has been presented in this paper. The existence of the shock
results from the breakdown of the self-similar model that
happens when the ratio between the hot and the cold electron
temperature is larger than 5 + √

24 ≈ 9.9.
Two main cases were distinguished. In the standard case

(Secs. III A–III C), corresponding to low values of the hot
electron density in the unperturbed plasma, the plasma can
be divided into five different regions: the unperturbed region
of the plasma, a zone of expansion dominated by the cold
electrons, the rarefaction shock itself, a plateau, and finally
a zone of expansion dominated by the hot electrons ending
at the ion front. The various quantities characterizing the
expansion have been accurately determined. The rarefaction
shock structure and the ion front structure are determined by
charge-separation effects and involve the local Debye length.
The other characteristics of the expansion can be determined
by a self-similar analysis and a classical Hugoniot treatment
of the discontinuity.

The supersonic rarefaction shock case (Sec. III D) corre-
sponds to intermediate values of the hot electron density in the
unperturbed plasma. In this case, the rarefaction shock is di-
rectly connected to the unperturbed plasma, and the rarefaction
shock propagates inside the plasma at a supersonic velocity.

Numerical simulations with a one-dimensional hybrid code
confirmed our findings, and show that the rarefaction shock
leads to a dip in the velocity spectrum, the depth of which
increases with time. On the other hand, the maximum ion
velocity is mainly dependent on the hot electrons component
of the electron distribution function.

In our analysis, the unperturbed densities nhu and ncu are
assumed to be independent of time, as well as the hot and
cold electron temperatures Th and Tc. This means that the un-
perturbed plasma is an infinite source of particles and energy.
For a finite plasma foil, the number of particles is conserved,
and the electron distribution function may vary in time, in
particular, due to the energy exchange with ions [13,20].
For instance, it has been shown recently in the case of an
initial single Maxwellian distribution function that the electron
distribution function is strongly modified by the expansion,
resulting in a surprising acceleration of the rarefaction wave in
spite of the overall loss of energy of the electrons [21,22]. The
corresponding study in the case of an initial bi-Maxwellian
distribution function is left for another paper.
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