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Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field
generation in shear flows
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The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the
magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and
Newton’s method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional
dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical
mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions
between a large-scale axisymmetric toroidal magnetic field and nonaxisymmetric perturbations amplified by the
magnetorotational instability. We demonstrate that this large-scale dynamo mechanism is overall intrinsically
nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear
evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in
shear flows and call for new theoretical dynamo models. These findings may offer important clues to understanding
the transitional and statistical properties of subcritical magnetorotational turbulence.
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I. INTRODUCTION

The generation of coherent, system-scale magnetic fields
in flows of electrically conducting fluids is a long-standing
magnetohydrodynamics (MHD) problem which has so far
mostly been analyzed in terms of linear, kinematic mean-field
dynamo action [1]. Mean-field effects have in particular long
been invoked to explain the origin of magnetic cycles in MHD
rotating shear flows [2,3]. However, there is currently no
mathematical theory and only little physical understanding
of mean-field dynamos in parameter regimes (kinetic and
magnetic Reynolds numbers) typical of laboratory dynamo
experiments and natural MHD shear flows. Overall, the
physical nature of dynamo action in such flows remains a
mostly open question, with critical implications for geophysics
and astrophysics.

Studying the dynamics of shear flows prone to the de-
velopment of various local three-dimensional (3D) MHD
instabilities is one of the most promising avenues of research
on this problem. Numerical simulations of this class of
flows have explicitly demonstrated their potential for coherent
dynamo action [4–13], and it has occasionally been pointed
out that their dynamics differs markedly from that of kinematic
mean-field dynamos, as magnetic field amplification does not
proceed exponentially in time and requires finite-amplitude
magnetic perturbations coupling dynamically to fluid motions.
Identifying the physical mechanisms underlying this behavior
is of prime importance to improve our understanding of
dynamo action.
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It has recently been realized that these instability-driven
[7,8] or subcritical dynamos in shear flows [10,14,15] bear
many similarities to the hydrodynamic transition to turbulence
of shear flows [16–20], a fundamentally nonlinear process
whose dynamics involves a variety of hydrodynamic coherent
structures such as equilibria, traveling waves [21–24], or
limit cycles [25–28]. This naturally raises the question of the
existence and dynamical relevance of coherent structures in
MHD shear flows. Most importantly for dynamo theory, could
time-dependent large-scale dynamo action in such flows be
explained in terms of 3D nonlinear dynamo cycles? Besides,
if nonlinear dynamo cycles exist for this kind of systems, what
can be learned from them regarding how turbulence originates
and develops in MHD shear flows?

The problem of magnetorotational (MRI) dynamo action
in Keplerian flow (often referred to as “zero net flux MRI”),
encountered in the context of astrophysical accretion disks
[29], is particularly interesting to address these questions, as
direct numerical simulations display pseudocyclic magnetic
dynamics [4,11,12] and indicate that transition to sustained
MHD turbulence is intrinsically 3D and nonlinear [5]. Besides,
numerical MRI dynamo turbulence seems to have finite
lifetime and to be structured around a chaotic saddle [15],
much like hydrodynamic turbulence in pipe flow [18,19]. The
search for coherent MRI dynamo structures such as nonlinear
cycles is still in its infancy, though. Progress on these matters
is not only desirable from a general dynamo perspective, it
would also shed light on the transitional properties of MRI
turbulence [30] and on its dynamical properties (saturation,
transport) in fully developed regimes.

The only exact MRI dynamo structure known is a nonlinear
equilibrium in Keplerian MHD plane Couette flow with walls
[10], and it only exists for a limited range of parameters.
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In this work, we report an accurate calculation of a 3D
nonlinear MRI dynamo limit cycle at moderate (transitional)
kinetic and magnetic Reynolds numbers using numerical
techniques similar to those used for computing nonlinear
hydrodynamic cycles in plane Couette flow [27]. The study of
this nonlinear MRI dynamo cycle enables us to investigate in
detail the essential physical mechanisms underlying sustained
time-dependent MRI dynamo action. In particular, we show
that the cycle dynamics is not amenable to a standard
mean-field dynamo description, thereby providing clear and
detailed evidence for a fully nonlinear mechanism of coherent
magnetic field generation in shear flows prone to MHD
instabilities.

The paper is organized as follows. In Sec. II we introduce
the theoretical framework and numerical methods used in
the study. In Sec. III we discuss the physical principles
of the MRI dynamo and describe our strategy to excite
large-scale, coherent recurrent dynamics in direct numerical
simulations. Section IV is devoted to the presentation and
detailed analysis of the main result of the paper, namely the
discovery of a nonlinear MRI dynamo cycle computed thanks
to a Newton algorithm. A discussion (Sec. V) of the results and
of their possible implications for dynamo theory, astrophysics,
and research on hydrodynamic shear flows concludes the
paper.

II. THEORETICAL AND NUMERICAL FRAMEWORK

A. The shearing sheet

We use the shearing sheet approach to differentially rotating
flows [31], whereby a cylindrically symmetric differential
rotation profile is approximated locally by a linear shear flow
U s = −Sx ey and a uniform rotation rate � = � ez. For a
Keplerian flow � = (2/3) S. Here, (x,y,z) are, respectively,
the shearwise, streamwise, and spanwise directions (radial,
azimuthal, and vertical in accretion disks). The geometry of
the shearing sheet is represented in Fig. 1. To comply with
dynamo terminology, we refer to the (x,z) projection of vector
fields as their poloidal component and to their y projection
as their toroidal component. “Axisymmetric” fields have no
y dependence. For readers familiar with hydrodynamic plane
Couette flow, nonaxisymmetric perturbations in our problem
correspond to “streamwise-dependent” perturbations in plane
Couette flow.

We consider incompressible velocity perturbations u and
magnetic field B whose evolutions obey the 3D dissipative

Us

x (radial)

y (azim
utha

l)z (vertical)

FIG. 1. Geometry of the shearing sheet. For a Keplerian flow the
vorticity of U s is anti-aligned with the rotation vector.

MHD equations in an unstratified shearing sheet:

∂ u
∂t

− Sx
∂ u
∂y

+ u · ∇ u

= −2 � × u + S ux ey − ∇ � + B · ∇B + ν� u , (1)

∂ B
∂t

− Sx
∂ B
∂y

= −SBx ey + ∇ × (u × B) + η�B , (2)

∇ · u = 0 , ∇ · B = 0 . (3)

The kinetic and magnetic Reynolds numbers are defined
according to Re = SL2/ν and Rm = SL2/η, where ν and η are
the constant kinematic viscosity and magnetic diffusivity and
L is a typical scale of the spatial domain considered. � is the
total pressure (including magnetic pressure) and B is expressed
as an equivalent Alfvén velocity. In the following, velocity and
magnetic field amplitudes are measured with respect to SL,
while times are measured with respect to the inverse of the
shearing rate S−1.

B. Strategy for capturing cycles

Equations (1)–(3) are often implemented numerically using
the Cartesian shearing box model described in Sec. II C. In
the regime of Keplerian differential rotation, MRI dynamo
action has been found in a large number of independent direct
numerical simulations of this kind [4,5,11,30,32], sometimes
in the form of pseudocyclic dynamics. Our strategy to capture a
nonlinear MRI dynamo cycle in this regime follows that used in
Ref. [27] to compute nonlinear cycles in hydrodynamic plane
Couette flow. First, we tried to excite pseudocyclic dynamics in
direct shearing box numerical simulations (DNS) by devising
initial conditions inspired by our partial knowledge of the
underlying physics. Once this was achieved, we attempted
to converge to a cycle using a Newton solver seeded with
a well-chosen DNS snapshot and an estimate for the cycle
period. The first part of this program is described in Sec. III.
Convergence to a cycle using Newton’s method is presented in
Sec. IV. The numerical methods for achieving this result are
explained below.

C. Numerical method for direct numerical simulations

The numerics presented in this paper are done in the
incompressible Cartesian shearing box framework, which
assumes simple spatial periodicity in the y and z directions
and shear periodicity in the x direction. The latter amounts to
assuming that a linear shear flow is constantly imposed and
that all quantities are periodic in a sheared Lagragian frame.
This approximation is justified in the context of centrifugally
supported differentially rotating flows, such as astrophysical
accretion flows. Simulations of this kind are also sometimes
referred to as homogeneous shear flow turbulence simulations
(see, e.g., Refs. [33,34]).

Time integrations (direct numerical simulations) are carried
out in a shearing box of size (Lx,Ly,Lz) using the SNOOPY

code [35]. The numerical time integration scheme used is
a standard explicit third-order Runge-Kutta algorithm. The
code relies on a spectral implementation of the shearing
box model similar to that described in Ref. [36]. A discrete
spectral basis of “shearing waves” (or Orr-Kelvin waves, see
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Refs. [37,38]) with constant ky and kz wave numbers and
constant shearwise Lagrangian wave number k(0)

x is used to
represent the various fields in the sheared Lagragian frame.
The shearing of nonaxisymmetric perturbations in this model
is described using time-dependent Eulerian shearwise wave
numbers,

kx(t) = k(0)
x + kySt. (4)

This equation for the radial wave number provides an exact
description of the evolution of nonaxisymmetric waves with
initially leading polarization (k(0)

x ky < 0) into trailing waves
[kx(t) ky > 0, corresponding to a trailing spiral in cylindrical
geometry] under the action of shear.

An important comment is in order at this stage. If we were
to simply consider the evolution of a given initial set of such
waves, we would only be able to observe dynamics that decay
on long times. Indeed, the fate of all shearing waves is to evolve
into strongly trailing structures with ever smaller scale in x, and
such structures are extremely efficiently dissipated by viscous
and resistive processes (see, e.g., Refs. [39,40]). In order
to accommodate for possible physical interactions leading
to long-lived nonlinear dynamics in numerical shearing box
simulations, a procedure must therefore be used that leaves
open the possibility of physical generation and dynamical
evolution of new leading nonaxisymmetric structures in the
course of the simulations. The solution to this problem is
to regularly “remap” the basis of shearing waves used to
describe the various fields. At regular time intervals during the
simulations, the energy content of strongly trailing shearing
waves is set to zero, the corresponding basis vector is pruned
and replaced by a new shearing wave basis vector with strongly
leading wave number (see Ref. [41], Chap. 5, Sec. 4). If
the simulation is well resolved spatially (as is the case for
the results presented in this paper), the energy contained
into strongly trailing waves when they are pruned should be
negligible (as a result of their enhanced dissipation), and the
remap procedure should not therefore artificially affect the
dynamical evolution of the system in any significant way.
A way to check this is to compare the energy lost by this
procedure with the energy dissipated by viscous and resistive
diffusion. We always find that artificial energy losses are
negligible in SNOOPY for spatially well-resolved simulations
[42]. We also point out that the remap procedure does not
by itself inject energy into new leading waves but merely
provides room for them in the wave number grid. Finally,
we emphasize that all nonlinearities of the shearing sheet
MHD Eqs. (1)–(3), including nonlinear interactions between
all the shearing waves present at a given spatial resolution, are
retained in our numerical model. A standard pseudospectral
method with de-aliasing is used to compute all nonlinear terms
at each time step.

D. Newton’s method for computing nonlinear cycles

Newton’s method is a standard tool for computing nonlinear
coherent structures such as saddle points, traveling waves, or
nonlinear cycles in high-dimensional dynamical systems. In
recent years, the method has been applied successfully to the
three-dimensional Navier-Stokes equations for various wall-
bounded shear flows [21–24,27,28] and to the MHD equations
in Keplerian plane Couette flow [10]. For the purpose of this

study, we developed a new Newton solver called PEANUTS.
The solver makes use of the PETSC toolkit [43] and is based on
an efficient matrix-free Newton-Krylov algorithm particularly
well adapted to calculations for high-dimensional dynamical
systems such as those resulting from the discretization of
the three-dimensional partial differential equations of fluid
dynamics. It can be used to compute nonlinear equilibria,
traveling waves, and limit cycles for a variety of partial
differential equations. For a nonlinear cycle search, the code
minimizes ||X(T ) − X(0)||2/||X(0)||2, where X(t) is a state
vector containing all independent field components at time t ,
and T is a guess for the period [27]. An eigenvalue solver
based on the SLEPC toolkit [44] was implemented to compute
the stability of nonlinear states. The code was tested against
solutions to the Kuramoto-Sivashinsky equation [45] before
being implemented for the 3D MHD equations in the shearing
box, using SNOOPY as time integrator.

III. EXCITATION OF RECURRENT DYNAMICS

In this section we describe our strategy to approach a
nonlinear MRI dynamo cycle using DNS of the 3D MHD
equations in the shearing box. We first discuss in detail what
is the “minimal” set of initial conditions required to excite a
long-lived MRI dynamo in direct numerical simulations. We
then explain how smooth-enough pseudocyclic dynamics can
be excited at moderate Re and Rm with this kind of initial
conditions by varying the aspect ratio of the simulations and
by restricting the dynamics to an invariant subspace associated
with a natural symmetry of the original equations.

A. Devising a good initial guess for a Newton search

Previous work has demonstrated that instability-driven
dynamo action requires a dynamical interplay between a
“large-scale” axisymmetric, instability-supporting magnetic
field and perturbations unstable to nonaxisymmetric MHD
instabilities, whose amplification to nonlinear levels may gen-
erate an electromotive force (EMF) with the ability to sustain
the large-scale field [7–11,13,14,46]. The basic processes
thought to be responsible for MRI dynamo action are described
below and in Fig. 2. Let us focus on the time evolution of

Advection by shear

Trailing amplified 

MRI waves

Toroidal MRI

Regeneration of MRI 

unstable fluctuations

Leading MRI 

wave seeds

 effect

Nonlinear electromotive

feedback E

    Axisymmetric 

toroidal field By

     Axisymmetric 

poloidal field Bx

B0y

Bmod y

FIG. 2. (Color online) Suggested physical mechanism of the MRI
dynamo. Full arrows: main dynamo loop. Dashed arrows: nonlinear
regeneration of MRI-unstable fluctuations. The various colors are
used to identify the active modes taking part in the cyclic MRI dynamo
described in Fig. 5: red (top left box) and blue (top right box) denote
axisymmetric field components, different colors in the bottom boxes
denote successive nonaxisymmetric MRI waves.
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the axisymmetric magnetic field B(x,z,t), where the overbar
denotes an average over y, and

∫ Lz

0

∫ Lx

0 B(x,z,t) dx dz = 0
for the MRI dynamo (“zero net flux”) problem. The induction
equation for B reads

∂ B
∂t

= −S Bx ey + ∇ × E + η�B. (5)

The first term on the right-hand side (r.h.s.) describes the
stretching of the axisymmetric poloidal field into an ax-
isymmetric toroidal field (the so-called � effect in dynamo
theory), the second term is a nonlinear induction term involving
the axisymmetric projection E = u × B of the electromotive
force resulting from the nonlinear coupling of velocity and
magnetic perturbations, and the third term is the magnetic
diffusion term. In the following we will be particularly
interested in the time evolution of the fundamental Fourier
mode in z of B, defined as

B0(z,t) = B0(t) cos (kz0 z) (6)

with kz0 = 2π/Lz, as this mode is always and by a large
amount the dominant contribution to the total axisymmetric
field for the type of dynamics excited by the class of symmetric
initial conditions described below (a large-scale field with
an arbitrary phase in z can of course be excited if the
simulation is initialized with nonsymmetric perturbations or if
symmetry-breaking instabilities are allowed to develop during
the simulations). Following Eq. (5), we also introduce the
nonlinear EMF acting on B0,

E0(z,t) = E0(t) sin (kz0 z). (7)

The time evolution of B0(t) is given by

∂ B0

∂t
= −S B0x(t) ey + kz0 ez × E0(t) − ηk2

z0 B0(t). (8)

The physical interpretation of the various terms on the r.h.s.
of this equation is the same as for Eq. (5). Our goal to
obtain sustained time-dependent MRI dynamo action in direct
numerical simulations was to excite a dynamo loop involving
the first two terms on the r.h.s. of Eq. (8), as depicted in Fig. 2.
To do so, we first attempted to start from a very simple class
of initial conditions combining

(1) a “large-scale,” axisymmetric poloidal magnetic field
B0x (blue box in Fig. 2) whose stretching by the shear (“�
effect,” full line blue arrow in Fig. 2) produces an MRI-unstable
axisymmetric toroidal field B0y (red box in Fig. 2) and

(2) nonaxisymmetric perturbations subject to joint am-
plification (full line red arrow in Fig. 2) by a transient
toroidal MRI [46–49] of B0y and by a kinematic Orr
mechanism (swing amplification of nonaxisymmetric waves,
see Refs. [38,50,51]). These perturbations were chosen in
the form of real random shearing wave packets with a full
spectrum of kz and a single “horizontal” wave number pair
(k(0)

x , ky) = ±(−2 π/Lx,2 π/Ly) with leading (k(0)
x ky < 0)

polarization (different colors in the bottom left box of Fig. 2
represent successive individual leading waves). In the course
of their evolution, such perturbations may generate a nonlinear
electromotive feedback E0 with the ability to sustain B0 (full
line green arrows in Fig. 2), thereby closing the main dynamo
loop.

It turns out that, independently of the initial amplitudes
of each of these perturbations, this restricted class of initial
conditions can only trigger transient, short-lived dynamics. As
explained in Sec. II C, nonaxisymmetric perturbations with a
single initial horizontal wave number (k(0)

x , ky) can only be
amplified for a few shearing times before they get sheared
into a strongly trailing [kx(t) ky � 0, bottom right box with
multiple colors in Fig. 2], rapidly decaying structure [46].
Besides, their nonlinear self-interaction cannot give rise to
new nonaxisymmetric leading waves, making it impossible
to sustain B0 against ohmic diffusion on long times. Hence,
long-lived dynamics can only be excited if a distinct physical
mechanism operates that generates new leading, transiently
MRI-unstable perturbations. Exploring this issue, we then
found that much longer-lived dynamics is obtained as soon as

(3) an x-dependent axisymmetric modulation

Bmod(x,z,t) = Bmod(t) cos (2πx/Lx) cos (kz0z) (9)

of B is initially added on top of B0, that is,

B(x,z,t = 0) = B0(z,t = 0) + Bmod(x,z,t = 0). (10)

This simple numerical observation indicated that the phys-
ical mechanism by which new leading shearing waves are
generated requires that B be modulated along the x direction.
The physical explanation for this behavior is rather subtle,
though: such a modulation of B confines MRI-unstable per-
turbations in x and allows for reflections of nonaxisymmetric
waves, somehow taking on the role of walls in a wall-bounded
shear flow (nonaxisymmetric instabilities in wall-bounded
shear flows take on the form of global standing modes, see,
e.g., Ref. [17]). In more mathematical terms, the nonlinear
triad interaction (shown by dashed arrows in Fig. 2) of the
“confining” (say with kx = −2π/Lx,ky = 0) axisymmetric
mode Bmod (red dashed arrow) with a trailing shearing wave
[say kx(t) = π/Lx , ky = 2π/Ly , green dashed arrow] can
seed a new leading [kx(t) = −π/Lx , ky = 2π/Ly] wave (light
blue dashed arrow). This type of mechanism, which has long
been suspected to be at work in nonrotating hydrodynamic
shear flow turbulence (see for instance the discussion in
Ref. [52]) and has more recently been invoked in the context
of hydrodynamic stability of accretion disks [53], is in fact
essential to any sustained nonaxisymmetric dynamics in the
shearing box. We did check that the seeding of new leading
waves in the simulations was not related to our implementation
of the remap procedure (see Sec. II C and Ref. [36]), but had a
genuine physical origin. In particular, the fact that long-lived
dynamics and new leading waves can only be excited in
the simulations if a Bmod component is added to the initial
condition demonstrates that our numerical method does not
artificially inject energy into leading waves.

To summarize this paragraph, using various relative com-
binations of axisymmetric and nonaxisymmetric initial condi-
tions composed of B0, Bmod and a random leading shearing
wave packet, we found it possible to obtain long-lived MRI
dynamo action in direct shearing box simulations for different
regimes. Based on these experiments, we claim that the essence
of the driving mechanism of the MRI dynamo can be fully
explained in terms of the few generic physical mechanisms
described above and in Fig. 2. As will be shown below, this
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claim is well supported by the targeted numerical experiment
presented in Sec. IV.

B. Simplifying the dynamics

Approaching nonlinear cycles by DNS finally required us to
find regions of parameter space in which only a small number
of these structures are present. The dynamics in regimes
(Re, Rm of a few thousands) typical of simulations displaying
pseudocyclic dynamics [4,11,12] being complex and probably
involving a lot of different coherent structures, we restricted
our investigations to Re, Rm of a few hundreds. In such
regimes, however, shearing waves are quickly damped after
they turn trailing, unless kx(t) changes on a time scale much
longer than S−1. Exciting long-lived dynamics in this Re and
Rm regime therefore further required setting Ly � Lx [|ky | �
|k(0)

x | in Eq. (4)]. Starting from various nonsymmetric initial
conditions, we then spotted that nonlinear states approaching
a symmetry A1 [54] of the shearing box MHD equations were
regularly excited in DNS. This symmetry, described in the
Appendix, allows for a large-scale axisymmetric magnetic
field with the symmetry of B0. In order to isolate these
structures more easily, we then enforced numerically that the
dynamics take place in the corresponding invariant subspace.
This strategy was sufficient to excite recurrent dynamics
in a large aspect ratio shearing box with (Lx,Ly,Lz) =
(0.7,20,2) L and Re = 70, Rm = 360. A projection in the
B0x − B0y plane of a DNS trajectory approaching a nonlinear
cycle in this regime is depicted in Fig. 3. The trajectory is seen
to approach a periodic orbit after a few tens of shearing times
and then to stay close to it for several hundred shearing times.

C. Sensitive dependence on initial conditions

Before we close this section, we find it necessary to
emphasize that the dynamical system at hand has a very high

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

B0x

−1.0

−0.5

0.0

0.5

1.0

B0y

FIG. 3. (Color online) Projection in the B0x-B0y plane of a
DNS trajectory approaching a nonlinear cycle for (Lx,Ly,Lz) =
(0.7,20,2) L and Re = 70, Rm = 360. The full blue circle whose
coordinates are (0.046,0) marks the position of the system at t = 0
and the red one located at (−0.046,0.997) marks the position at
t = 457.1 S−1. Typical amplitudes of the various components of the
initial conditions used to obtain this kind of trajectory are given in
Sec. III C.

sensitivity on initial conditions. This feature seems to be a very
common property of shear flow turbulence (see for instance
Ref. [18] for the case of hydrodynamic turbulence in pipe flow)
and was explicitly demonstrated for the MRI dynamo problem
in Ref. [15]. In the course of this work, we clearly observed
that the set of initial conditions leading to long-lived dynamics
for the system at hand is fractal. For this reason, any statement
of a set of precise numerical values for the amplitudes of
the various types of perturbations involved in the design
of the initial conditions leading to pseudocyclic dynamics
is rather pointless. The problem is that different numerical
codes, initialized exactly in the same way, will almost certainly
diverge after a few shearing times because their algorithms will
generate different numerical “noise” (low amplitude numerical
errors) at each time step, subsequently leading to a rapid
divergence (between different codes and also possibly different
computer architectures) of phase-space trajectories such as that
shown in Fig. 3. The initial amplitudes and relative mixtures
of modes required to approach nonlinear cycles are therefore
in the end specific to the numerical methods used in the
code (this does not imply that the cyclic nonlinear solutions
are not themselves robust, as discussed in the next section).
The only relevant helpful information for a reader eager to
reproduce the results presented in Sec. IV and trajectories
similar to that shown in Fig. 3 is a set of approximate values
for the amplitudes of the perturbations entering our class of
initial conditions, around which we found it possible to excite
recurrent dynamics for (Lx,Ly,Lz) = (0.7,20,2) L and Re =
70 and Rm = 360: B0x � 0.046SL, Bmod y � 0.11SL, and
nonaxisymmetric shearing wave packets (with random relative
amplitudes for different kz, as described earlier) with compa-
rable velocity and magnetic amplitudes of the order 0.3SL.

IV. A NONLINEAR MRI DYNAMO CYCLE

Following the strategy defined in Sec. II B, we then
attempted to capture precisely the nonlinear cycle underlying
the recurrent dynamics spotted in Fig. 3 using the Newton-
Krylov solver PEANUTS.

A. Convergence with Newton’s method

Because of shearing-periodic boundary conditions, only
cycles whose period is a multiple of Ly/(SLx) are allowed
in shearing boxes. The periodicity of the recurrent dynamics
spotted in the DNS being very close to T = 2 Ly/(SLx) �
57.143 S−1 this period was imposed on the Newton solver.
Initializing the solver with a snapshot of a DNS displaying
dynamical recurrences (the red full circle point of Fig. 3),
we obtained convergence to a cycle after O(10) iterations
with a relative error of 10−8. Each Newton step requires
O(10) Krylov iterations to solve the Jacobian system with
a relative error smaller than 10−7. As each Krylov iteration
requires running a DNS over a cycle period, O(100) numerical
integrations are needed to “capture” this cycle with this
iterative method. The dynamics of this nonlinear MRI dynamo
cycle is illustrated in Fig. 4. The results presented here are for a
resolution (Nx,Ny,Nz) = (48,24,72) with 2/3 de-aliasing (the
same resolution used to approach the cycle by DNS). Half that
resolution already ensures convergence to very good accuracy.
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FIG. 4. (Color online) Volume renderings of By and isosurfaces of B = 0.9 colored by By every T/8 (positive By in red/light gray, negative
By in blue-violet/dark gray). The coordinates of the bottom left corner of each box are x = 0, y ′ = 0, z = 0, where the y ′ coordinate is defined
as y ′ = y − (Lx/2)St (see Appendix). The arrows field in the y ′ = 0 plane traces nonaxisymmetric MRI velocity perturbations (velocity
perturbations in the y ′ = Ly/2 plane have opposite sign), whose effect is to distort and advect magnetic field lines of opposite polarities in
opposite directions.

Analyzing the energy spectrum of the cycle, we only found
differences of a few percent between the full-resolution and
half-resolution runs.

With respect to the observations made in Sec. III C, we
emphasize that the cycle calculated by the means of Newton’s
method is not a spurious numerical feature. The most important
requirement for convergence, as is standard with Newton’s
algorithm, is that the DNS snapshot used as a starting guess for
the algorithm be in close-enough vicinity of the cycle. Provided
that this requirement is satisfied, convergence to the cycle is
robust and can be obtained by using (as a starting guess for
the Newton solver) various adequate DNS snapshots resulting
from integrations of various sets of initial conditions, for
various Courant-Friedrichs-Lewy conditions for the numerical
time integrator, using either fixed or adaptive time stepping.

Finally, it is important to stress that the cycle at hand is
a genuine solution to the full discretized nonlinear 3D MHD
equations in the shearing box, not just a solution to a low-
dimensional, reduced dynamical model of the problem. The
imposition of symmetries in the numerical resolution only
helps to target nonlinear cycles with a given natural symmetry
(i.e., a symmetry allowed by the full MHD equations in the
geometry studied) more easily. In fact, once convergence is
achieved with the Newton solver, the cycle can be integrated
for several periods in a standard DNS without enforcing any
symmetry.

B. Description of the cycle

The physics of the cycle is best understood by looking
at Fig. 4. A large-scale axisymmetric toroidal field By

with z-dependent polarity dominates at t = 0. The MRI
mediated by that field progressively amplifies weak, leading
nonaxisymmetric perturbations. The effect of the instability is
to separate “radially” (in x) fluid particles initially attached to

individual, almost frozen-in field lines [29], leading to their
nonaxisymmetric distortion (T/8 to T/4). In addition, for the
cycle at hand, linear MRI velocity perturbations drag fields
lines with opposite polarities in opposite directions. As they get
sheared, MRI-amplified velocity perturbations take the form
of a nonaxisymmetric pattern of counterrotating poloidal flow
cells. The z component of the flow advects distorted magnetic
field lines with opposite polarities in opposite z directions,
effectively reversing regions of positive and negative polarities
(T/4). The x component of the cellular flow eventually
advects field lines back to their original x location (3T/8),
producing at T/2 an axisymmetric magnetic field opposite to
the original one. Hence, the reversal is the pure outcome of
the nonlinear evolution (self-interactions) of nonaxisymmetric
MRI perturbations. As a result of the confinement of MRI
perturbations by the shearwise-modulated MRI-supporting
toroidal field, new leading perturbations seeds are generated
during the first half of the cycle. Their subsequent amplification
and nonlinear evolution during the second half of the cycle
result in a new field reversal after another T/2, back to the
initial state.

This qualitative physical scenario is fully supported by
a quantitative analysis of the time evolution (Fig. 5). The
linear MRI of the z-dependent axisymmetric toroidal field
B0y [Fig. 5(a) in red] amplifies successive nonaxisymmetric
shearing MRI waves [Fig. 5(d), rainbow colors] with ky =
±2π/Ly and a kz spectrum. The nonlinear self-interaction of
a single wave packet translates into an axisymmetric EMF
E0 whose x and y components are clearly responsible for the
reversals of B0 [Fig. 5(b)]. Interestingly, a calculation of the
various terms on the r.h.s. of the projection of Eq. (8) on ey

throughout the cycle shows that the � effect is not the dominant
term in this equation for this particular cycle and geometry
[Fig. 5(c)]. Hence, B0x and B0y are almost in antiphase,
whereas they are almost in quadrature for the pseudocycle
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FIG. 5. (Color online) From top to bottom: evolution over two
cycles of (a) B0x (blue/dark gray) and B0y (red/light gray); (b) −E0y

(blue/dark gray, source term for B0x) and E0x (red / light gray, source
term for B0y); (c) amplitudes of the three terms on the r.h.s. of the
projection of the axisymmetric induction Eq. (8) on ey (dotted blue:
� effect, full line red: nonlinear EMF, dashed magenta: magnetic
diffusion); (d) total energy of successive MRI shearing waves
with ky = ±2π/Ly (rainbow colors, dashed/full line: leading/trailing
phase. Each color represents a different shearing wave); (e), amplitude
of the axisymmetric magnetic field modulation Bmod y .

described in Ref. [11]. Figure 5(d) clearly demonstrates the
periodic seeding of new leading perturbations (yellow, green,
light blue, etc. represent successive shearing waves, as in
Fig. 2). The evolution of the amplitude of Bmod y , defined in
Eq. (9), is depicted in Fig. 5(e). Bmod y is very small compared
to B0y , which demonstrates that a very weak confinement of
the MRI is actually sufficient to generate new leading waves.

As seen in Fig. 4, the reason why such a cycle can be com-
puted at fairly low resolutions (in particular in the y direction)
is that it is a large-scale, time-dependent coherent structure
whose nonaxisymmetric dynamics (and the corresponding
axisymmetric dynamo feedback E0 that it induces) is largely
dominated by MRI shearing waves supported by the funda-
mental Fourier mode ky = 2π/Ly of the shearing box in the y

direction. We also note that all the physical processes involved
are not actually specific to the shearing box, and may therefore

also be present in cylindrical geometry, with nonaxisymmetric
perturbations taking on the form of sheared spiral waves.

Finally, remark that the energy required to sustain the three-
dimensional cyclic dynamics against resistive and viscous
dissipation is extracted from the shear (which is the only
available energy source of the system) thanks to the toroidal
MRI of nonaxisymmetric shearing waves.

C. Stability

Using the Floquet eigenvalue solver, we found that the
cycle has a single unstable eigenmode, with a Floquet
eigenvalue 	 � 32.33 corresponding to a positive growth
rate λ = ln 	/T � 0.061 S (at half resolution, 	 = 22.63,
λ � 0.055 S), and the same A1 symmetry. Hence, any small
perturbation to the cycle, independently of its initial amplitude,
ultimately kicks the system out of its initially periodic
trajectory in phase space. This exponential instability of the
cycle was observed in the simulations and leads to complete
escape from the neighborhood of the cyclic solution after a
few hundred shearing times. Unstable periodic orbits such as
this one are a typical feature of chaotic dynamical systems
and play an important role in their dynamics (see discussion
in Sec. V).

D. Investigating the nature of dynamo action

One may finally wonder if the nonlinear couplings leading
to this dynamo can be described by standard mean-field
theory. α2 or α� dynamos are ruled out: both net kinetic and
current helicities are negligible in the DNS. For our cycle, the
axisymmetric field and EMF are largely dominated by their
projection B0 and E0 on cos(2πz/Lz) and sin(2πz/Lz) plan-
forms [see Eqs. (6) and (7)], so one may be tempted to interpret
the dynamo feedback in terms of a nondiagonal “turbulent
resistivity” η̄ tensor [55] that would couple the amplitudes of
the components of B0 and E0 linearly. However, not only is
the instantaneous relationship between these two quantities
unambiguously nonlinear (Fig. 6), it also looks rather difficult
to model analytically based on simple physical arguments.
Hence, this periodic MRI dynamo does not reduce to a simple
standard mean-field dynamo, a conclusion that also seems to
apply to the magnetic buoyancy-driven dynamo [8,56].

V. DISCUSSION AND CONCLUSIONS

We have presented the first accurate numerical determina-
tion of a cyclic nonlinear MRI dynamo solution to the original
3D dissipative incompressible MHD equations in the regime of
Keplerian differential rotation. Preliminary investigations indi-
cate that its existence is not limited to a narrow range of Re and
Rm, unlike the plane Couette flow stationary solution reported
in Ref. [10], and may notably extend down to low magnetic
Prandtl number regimes in which recent studies have found
it difficult to obtain sustained MRI dynamo turbulence [30].
A detailed parametric study of the cycle and an assessment
of its importance for the MRI dynamo transition problem is
currently underway and will be presented in a separate paper.

Overall, the discovery of this MRI dynamo limit cycle
significantly extends and consolidates earlier findings [10]
and claims [14,15] that dynamo action and MHD turbulence
in shear flows prone to local MHD instabilities has a similar
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FIG. 6. (Color online) Projection of the periodic MRI dynamo
orbit in the Ex (blue/dark gray)|Ey (red/light gray) vs. Bx |By

planes.

nature to hydrodynamic turbulence in shear flows. The results
notably provide clear evidence that magnetic field generation
and sustenance at moderate Re, Rm in a numerical setup
comparable to that of most MRI dynamo simulations so far
results from a nonlinear mechanism of interaction between
axisymmetric fields and nonaxisymmetric instability modes.
The detailed description of the process may guide future
studies of dynamos mediated by MHD instabilities other than
the MRI [7–9,13,57].

Our findings also demonstrate that new theoretical models
of large-scale dynamo action are required. Progress on this
problem may be possible thanks to periodic orbit theory [58],
which offers formal mathematical connections between the
statistical properties of dynamical systems with a small number
of active degrees of freedom and their unstable cycles. One
should therefore attempt to identify new MRI dynamo cycles,
analyze their dependence on various parameters, and assess
their relative dynamical importance using stability analysis. It
is almost certain that, similarly to hydrodynamic shear flows

[27], many such structures exist in the phase space of MHD-
unstable shear flows at moderate and large Re and Rm.

This approach may also prove useful for the astrophysics
problem of turbulent transport of angular momentum in
accretion disks [29]. The fact that the MRI dynamo cycle
described above generates an average turbulent MHD stress
α ∼ 0.025 (SL)2 directly comparable to that obtained in
direct numerical simulations of similar configurations [30]
constitutes a notable preliminary finding in this respect.

We finally point out that the MHD findings reported in this
study, which have partly been inspired by recent advances in
the field of shear flow hydrodynamics, may in return be helpful
to make progress in understanding hydrodynamic shear flow
turbulence. The leading wave regeneration mechanism that
was clearly identified in the shearing box in this work offers an
interesting connection between three-dimensional turbulence
in wall-bounded and homogeneous shear flows, which may
notably help to understand if regeneration pseudocycles in the
latter (see, e.g., Ref. [34]) share a common physical origin
with nonlinear cycles in wall-bounded shear flows [27].
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APPENDIX: SYMMETRIES

Nagata [54] identified several possible symmetries for
three-dimensional nonlinear hydrodynamic solutions in cen-
trifugally unstable (Rayleigh-unstable) Taylor-Couette flow in
the thin-gap limit, which corresponds to a Cartesian plane
Couette flow with walls, rotating along its spanwise z axis.
These symmetries can be adapted to the shearing box and
generalized to MHD flows.

We consider a physical domain with 0 � x < Lx , 0 � y <

Ly , and 0 � z < Lz. For visualization purposes, we assume
that the observer is co-moving with the base flow at x = Lx/2
and therefore introduce

y ′ = y − Lx

2
St. (A1)

In Fig. 4 the coordinates of the lower left corner of each
box are x = 0, y ′ = 0, z = 0. The various fields entering the
nonlinear dynamo cycle solution presented in this paper have
the following generalized A1 symmetry:

u :

⎧⎪⎪⎨
⎪⎪⎩

ux = ux,ee(t) cos(kzez) sin[kyey
′ + kx(t)x] + ux,oo(t) cos(kzoz) cos[kyoy

′ + kx(t)x]

uy = uy,ee(t) cos(kzez) sin[kyey
′ + kx(t)x] + uy,oo(t) cos(kzoz) cos[kyoy

′ + kx(t)x]

uz = uz,ee(t) sin(kzez) cos[kyey
′ + kx(t)x] + uz,oo(t) sin(kzoz) sin[kyoy

′ + kx(t)x]

⎫⎪⎪⎬
⎪⎪⎭

, (A2)
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B :

⎧⎪⎪⎨
⎪⎪⎩

Bx = Bx,eo(t) cos(kzez) sin[kyoy
′ + kx(t)x] + Bx,oe(t) cos(kzoz) cos[kyey

′ + kx(t)x]

By = By,eo(t) cos(kzez) sin[kyoy
′ + kx(t)x] + By,oe(t) cos(kzoz) cos[kyey

′ + kx(t)x]

Bz = Bz,eo(t) sin(kzez) cos[kyoy
′ + kx(t)x] + Bz,oe(t) sin(kzoz) sin[kyey

′ + kx(t)x]

⎫⎪⎪⎬
⎪⎪⎭

, (A3)

where the e and o subscripts indicate that the associated
discrete wave numbers are based on even and odd relative
integers, respectively. kx(t) in each individual trigonometric
expression is defined implicitly by Eq. (4) using the ky wave
number of the same expression. It can be checked that this
symmetry is conserved by the MHD equations (1)–(3). When

needed, we enforced numerically that the dynamical evolution
took place in the invariant subspace defined by this symmetry
by imposing it in the initial conditions and by further enforcing
it every shearing time during the numerical integrations
in order to avoid the growth of nonsymmetric numerical
noise.
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