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Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability
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In the present work, four nontrivial stages of electrokinetic instability are identified by direct numerical simu-
lation (DNS) of the full Nernst-Planck-Poisson-Stokes system: (i) a stage of the influence of the initial conditions
(milliseconds); (ii) one-dimensional (1D) self-similar evolution (milliseconds—seconds); (iii) a primary instability
of the self-similar solution (seconds); (iv) a nonlinear stage with secondary instabilities. The self-similar character
of evolution at moderately large times is confirmed. Rubinstein and Zaltzman instability and noise-driven nonlin-
ear evolution toward overlimiting regimes in ion-exchange membranes are numerically simulated and compared
with theoretical and experimental predictions. The primary instability which happens during this stage is found
to arrest a self-similar growth of the diffusion layer. It also specifies its characteristic length as was first experi-
mentally predicted by Yossifon and Chang [G. Yossifon and H.-C. Chang, Phys. Rev. Lett. 101, 254501 (2008)].
A novel principle for the characteristic wave-number selection from the broadband initial noise is established.

DOI: 10.1103/PhysRevE.84.036318

I. INTRODUCTION

Pattern formation in dissipative systems has a long and
intriguing history in a number of disciplines. It is generally
associated with nonlinear effects which lead to qualitatively
new phenomena that do not occur in linear systems [1].
Problems of electrokinetics have recently attracted a great
deal of attention due to the rapid development of microtech-
nologies, nanotechnologies, and biotechnologies. Curious and
fascinating electrokinetic instability and pattern formation in
an electrolyte solution between semiselective ion-exchange
membranes under a potential drop were theoretically predicted
in Refs. [2,3] and experimentally confirmed in Ref. [4], includ-
ing direct experimental proof [5—7]. This type of instability can
be found in many related phenomena, for example, in ramified
electrodeposition [8]. Both the theory and experiment show
that these instabilities are reminiscent of the Rayleigh-Bénard
convection and the Bénard-Marangoni thermoconvection, but
from both physical and mathematical points of view are much
more complicated.

In the present work nontrivial stages of the noise-driven
electrokinetic instability have been obtained by direct numeri-
cal simulation (DNS) of the full Nernst-Planck-Poisson-Stokes
system. Small-amplitude initial room disturbances have the
following stages of evolution: (i) a transient stage of the influ-
ence of the initial conditions 7 = O(3% /4D) (milliseconds);
(i) a one-dimensional (1D) self-similar stage of evolution
i% /4D « T « L?/4D (milliseconds—seconds); (iii) a stage in
which instability becomes manifest and arrests any self-similar
growth and selects a diffusion layer characteristic length
f= 0([7/4D) (seconds); (iv) a nonlinear stage with sec-
ondary instabilities 7 > L?/4D.

A work [9] devoted to a close problem of metal electrodepo-
sition has been published recently. Unfortunately, the authors
could not refer to it in their work since it had already been
reviewed at the time they became aware of that paper.
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II. FORMULATION

A binary electrolyte between perfect semiselective ion-
exchange membranes is considered. A tilde is used to denote
the dimensional variables, as opposed to their dimensionless
counterparts without the tilde. The diffusivities of cations
and anions are assumed to be equal, D* = D~ = D. The
following characteristic values are taken to make the system
dimensionless: distance between the membranes L: dynamic
viscosity ji; thermodynamic potential &, = RT/F; bulk
ion concentration at initial time &,. Then, the characteristic
time and characteristic velocity are scaled, respectively,
by L?/D and D/L. Here F is Faraday’s constant; R is
the universal gas constant; T is Kelvin temperature; [ is the
dynamic viscosity of the fluid; & is the permittivity of the
medium; and the dimensional Debye length is taken as
Ap = ERT | F2&,.

Electroconvection is then described by the transport equa-
tions for the concentrations of positive and negative ions
ct, ¢~, the Poisson equation for the electric potential @,
and the Stokes equation for creeping flow, presented in
dimensionless form

dct

e +U-Vet =4V - (¢FVD) + V3T,

(D
V20 = — ct,

VA = —kV x (V2D - V),

where V = (9/0x,0/0y) is the Hamilton operator, U =
(0W/0y,—aW/dx) is the velocity vector, the two-dimensional
case is considered. Boundary conditions at the membrane
surfaces y = 0 and 1 are taken as follows: There is a fixed
concentration of positive ions, no flux condition for negative
ions, and a fixed drop of potential and velocity adhesion

N 0D 3¢
ct=p,—c—+—=0 & _ =0 _ =AV,
ay ay y=0 y=1
oW
U="—=0, ()
ay

with the characteristic electric current j at the membrane
surface y =0, j = ¢Ta®/dy + dct/dy.
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The problem is described by three dimensionless parame-
ters: the drop of potential A V; the dimensionless Debye length
v = Ap/L, and the coupling coefficient between hydrodynam-
ics and electrostatics k = é&bé /D (the last case is fixed for a
given electrolyte solution). The dependence on the parameter
p for overlimiting regimes is practically absent [3] and, hence,
p is not included in the parameter list.

The typical bulk concentration of the aqueous electrolytes
varies in the range & = 1-10° mol/m?; the potential drop is
about AV = 0-5 V; the absolute temperature can be taken to
be T = 300K; the diffusivity is about D = 2 x 1072 m?/s; the
distance L between the electrodes is of order 0.5—1.5 mm; the
concentration p on the membrane surface must be much larger
than &, and it is usually taken within the range from 5¢; to 10¢.
The dimensional Debye layer thickness Ap varies within the
range from 0.5 to 15 nm depending on the concentration ¢&.

The DNS of the system (1), without any simplification,
is implemented by applying the Galerkin pseudospectral ©
method. A periodic domain along the membrane surface
allows the utilization of a Fourier series, exp (inkx), in the
x direction. Chebyshev polynomials 7,,(y) are applied in the
transverse direction y. The accumulation of zeros of these
polynomials near the walls allows properly resolving the thin
space charge regions. Eventually, the physical variables are
presented in the form

D™ T, (),

v
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M=

0n=—N
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=
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The reality of the solutions implies @, _, = @m,n,
Wy —n =Wy, and ¢, _, =c*,,, where the barred
quantities denote complex conjugates.

Substituting the finite Fourier-Chebyshev series into the
system (1) and using the Lanczos t method (see Ref. [10])
to satisfy the boundary conditions (2) leads to a system
of coupled ordinary differential equations for the unknown
Galerkin coefficients ¢, (r) and two systems of linear al-
gebraic equations with respect to ®,,, and W, ,. To ob-
tain these systems, all nonlinear algebraic operations are
executed in physical space, in the collocation points, while
derivatives with respect to both spatial variables x and y
are calculated in the space of the Galerkin coefficients.
Derivatives of the Chebyshev polynomials are calculated by
means of the collocation matrix method (see Ref. [10]).
The connection between the collocation points and the
Galerkin coefficients is performed by means of fast Fourier
transform.

A special method is developed to integrate the system
in time. To continue the solution ¢ (f) from some time
layer t to a new time layer 7 + Az, first a linear algebraic
system with respect to the potential &,,, corresponding to
the Poisson equation is solved. Second, the stream-function
W,,, is found from a linear algebraic system corresponding
to the biharmonic equation. Third, the transport equations for
the concentrations are integrated and ¢ (f + At) is found.
The second-order Adams-Bashforth scheme for nonlinear
terms and the Crank-Nicholson scheme for linear terms are
used. The details of the numerical scheme will be presented
elsewhere [11].

The basic wave number k is connected with the membrane
length [ as k = 2w /1. Then, k = 1 and [ = 27 are taken such
that the dimensional length of the membrane [ corresponds
to the experimental one in Ref. [5]. The problem is solved
for v =103 and 5 x 107, dimensionless drop of potential
AV =0-200(A V =0-5 V), and for a typical value of x, k =
0.2; p = 5. The results of the full-scale numerical investigation

lim

AF

FIG. 1. (Color online) Distribution of the charge density p in space for several moments of time AV = 100 and v = Xp/L = 0.001.
(a) Numerical solution of Egs. (1)—(3). (b) Self-similar solution. (c) The numerical points for v = 0.0005, and several values of AV shrink into

one self-similar volt-current curve (shown by the solid line).
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FIG. 2. (Color online) Solid line: Marginal stability curve at
AV =40 and v = 0.001; triangles are taken from our numerics.
The time-dependent coordinates are inverse Debye length 1/¢ and
wave number «. Each straight line corresponds to a perturbation with
a given wave number k; a point on the line is moving with time toward
the stability curve and eventually crosses it.

will be accompanied with a discussion of the main stages of the
evolution along with a comparison with simplified solutions
[12-14].

III. SELF-SIMILAR STAGE OF EVOLUTION

Adding initial conditions makes the statement (1)—(2) com-
plete. This system is a strongly nonlinear one and a change in
the initial conditions can change the attractor (see, for example,
the famous experimental work by Gollub and Swinney [15]

6 8 10 12 14
t x10°
FIG. 3. (Color online) Wave-number selection for the room dis-
turbances; darker regions correspond to larger amplitudes. Broadband
initial noise is transformed into a sharp band near k ~ 32-34, the
dashed line corresponds to the prediction of stability theory k, = 35,
AV =50,and v = 0.001
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FIG. 4. (Color online) Typical evolution of the (a) average electric
current (j)/jim and (b) current amplitude juax — jmin (dashed line)
from room disturbances, the dashed region specifies the instability
selected length scale for v = 0.001 and AV = 40. The short time
evolution of the (b) electric current and (c) diffusion layer thickness
exhibits three time intervals.

where several attractors, depending on the initial conditions,
were found for flow between two rotating cylinders). Hence
what must be taken are the conditions that are natural from the
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FIG. 5. (Color online) (a) Time dependence of the thickness of
the diffusion layer A in dimensional variables for AV = 2.5V, L = 1
mm, D =5 x 107° m?/sand A, = 1 um [13]. (1) Self-similar solu-
tion, (2) numerical solution, Il is the self-similarity range, and I1l is the
stability loss of the trivial solution and the appearance of electrocon-
vection. (b) The corresponding experimental dependence [7].

experimental viewpoint. From this viewpoint, when the drop of
the potential between the membranes is zero, there are only two
thin, double-ion layers near the membrane surfaces and the ion
distribution is uniform outside these layers. This specifies the
initial conditions. Then, a small-amplitude white-noise spec-
trum should be superimposed on the bulk ion concentrations,
ct=c =1

— 1 = white noise(x),
(3)

nonuniform along the membrane. Because of the ampli-
tude smallness the behavior at initial times can be as-
sumed one-dimensional (1D), as if the right-hand side of
Eq. (3) were zero, and as a consequence of this one-
dimensionality, any convection and nonuniformity along x
can be discarded from consideration at initial times U = 0,
a/dx = 0.

When the potential drop is turned on, an extended space
charge and diffusion regions develop near the bottom mem-
brane. There is an interval of intermediate times 13 /4D «
f K 52/4[), or in dimensionless form, 11?2 « t « }1 when
the problem does not have a static characteristic size: The

t =0: ¢t — 1 = white noise(x), ¢~
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FIG. 6. (Color online) Evolution of the normalized average
electric current (j)/jim (solid line) and current amplitude (jmax —
Jmin)/Jiim (dashed line) for v = 0.001 and « = 0.2 for small super-
criticality (a) AV = 30, and for large supercriticality (b) AV = 50.

double-ion layer is too small and the distance between the
membranes is too large. On dimensional grounds, the only
diffusion length which can give a proper characteristic size
that includes time and is, hence, dynamical, is A/4DFf; and
thus the behavior of the solution has to be self-similar. These
intermediate times vary from milliseconds to seconds (for
details see Refs. [12-14]).

The self-similar rescaling of the variables along with the
1D assumption turns the system of the partial differential
equations (1)—(2) into the system of ordinary differential
equations with a new dimensionless spatial variable n =

$/v4Df and a small parameter & = Ap/v4Di. A new
dimensionless Debye length ¢, electric current J, and drop
of potential A® in self-similar variables are connected with
the corresponding old variables v, j, and AV, by the
relations

v
ety = —=

2/t

J(t) = 2j(OE, AD({E) = AV — %

“
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The two-parameter family of self-similar solutions for
the parameters A® and ¢ is found in Refs. [12-14] and is
now compared with the DNS of Egs. (1)-(3). In Figs. 1(a)
and 1(b) such a comparison for the charge distribution
o(m)= ¢t (n) —c™(n) is presented for different moments of
time where the parameters of the self-similar solutions are
recalculated according to Eq. (4). In Fig. 1(c) universal voltage-
current characteristics J versus AF = ¢ A® are shown by a
solid line while triangles, stars, and circles are gathered for
several fixed drops of the potential between the membranes
AV for intermediate times. The numerical points for all AV
shrink into the universal self-similar volt-current curve. A
rather good correspondence justifies a self-similar behavior
at intermediate times.

IV. INSTABILITY OF THE SELF-SIMILAR SOLUTION
AND THE LENGTH SCALE SELECTION

The initial stage of evolution is one-dimensional and
self-similar, but room disturbances (3) for a supercritical case
AV > AV, will grow and eventually manifest themselves,
destroying the self-similarity and making the solution a
two-dimensional one. This specifies the next step of evo-
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lution. When the amplitudes of the harmonics are small,
their behavior can be considered independently. Imposing
on the 1D self-similar solution a perturbation of the form
I?(n,t) exp (ioex) and linearizing Egs. (1)—(3) with respect to
R turns this system into a linear partial differential equations
(PDE) system with time-dependent coefficients. By restricting
ourselves to neutral perturbations d/dtr = 0, we transform
this system of partial differential equations into a system
of ordinary differential equations in 1. The solution of the
eigenvalue problem for this system gives the marginal stability
conditions [12].

The parametric dependence of the Debye length and
wave number for the self-similar solution in time completely
changes the interpretation of the marginal stability curves [14].
Let us present the stability curve at a fixed drop of the
potential AV in coordinates of the inverse Debye length
1/e = 24/t/v versus the wave number o = kv/e = 2k+/t.
Both coordinates are referred to the self-similar length ~/4 D7
and, so, are time-dependent, see Fig. 2 (1/¢ is the ratio of
diffusion length and the actual Debye length, so it could
also be termed a dimensionless diffusion length). The solid
line is a marginal stability curve of the self-similar solution
[12,13]. The triangles in the figure are taken from our DNS
for monochromatic perturbations. Each straight line in the
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FIG. 7. (Color online) Snapshots of the charge density p(x,y,t) at different times. Darker regions correspond to larger charge densities (for

parameters, see Fig. 6).
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figure corresponds to a monochromatic wave with a fixed wave
numberk = @L; the larger is k, the steeper is the line. Inside the
marginal stability curve perturbations are growing, but outside
they are decaying. A point on the straight line corresponding
to some initial perturbation is moving with time toward the
marginal stability curve just because of the parametrical time
dependence of the axes. At the same time, the amplitude of
the disturbance at the beginning is always decaying, but after
crossing the marginal curve at some point it starts growing.
The nose critical point with coordinates (1/e,,c,) is the first
to reach the marginal stability curve and, hence, is the first to
lose its stability. There is a rather good quantitative agreement
between the numerical simulations and stability theory for
self-similar solutions.

Room disturbances at the linear stage of evolution can
be considered as a superposition of individual harmonics.
Their evolution always starts in a stable region and filters
broadband initial noise (3) into a sharp band of wave numbers.
It stands to reason that we may assume that the wave-number
selection is determined by the critical points (1/¢&,,o,) with
the characteristic wave number k, = «..&,/v. This principle is
different from the well-known selecting principle of maximum
growth rate and is verified by a comparison of the results of
the DNS with the boundary conditions (3): the comparison for
typical conditions presented in Fig. 3 shows the validity of this
principle.

The relation A(z) = 2/(j(t)) between the diffusion layer
thickness A and the electric current averaged along the
membrane length [, (j) = % fé j(x,t)dx, is accepted. For
the self-similar solution diffusion layer, its thickness should
be proportional to the square root of time A(f) ~ +/t and
(j(®)) ~ 1/4/t. The typical evolution of the electric current
(j) and of the diffusion layer thickness A, presented in Fig. 4
for long and short time intervals, exhibits three characteris-
tic time intervals. In interval II, for times of intermediate
magnitude, A is proportional to /¢ and the behavior is
one-dimensional and self-similar, while for shorter times, in
interval I, as well as for longer times in interval III, this
self-similarity is violated. In region I, the influence of the
initial conditions is important, while in region III, the growth
of A is arrested by instability. The electric current amplitude
Jmax — Jmin Characterizes instability. It is shown by the dashed
line in Fig. 4(b); it becomes significant in the region III.
The amplitude of the first current jump, after the instability
manifests itself, roughly specifies the characteristic length of
the diffusion layer. Calculations show that this length selected
by instability is not changed much by subsequent nonlinear
processes.

In Fig. 5, a qualitative comparison with the experiments of
Yossifon and Chang [7] is presented (for details see Ref. [13]).
The time dependence of the thickness of the diffusion layer
A is taken in dimensional variables. Excluding very short
times of establishment, up to 8.9 s of evolution, the solution
in zone II follows the self-similar law of proportionality to Vi
(dash-and-dot line); then the self-similar process is violated
by the loss of stability in zone III. According to the numerical
experiment, the transition to the electroconvection mode takes
place in the range 10-12 s. This corresponds to the value of
8 s observed in physical experiments [7].
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FIG. 8. (Color online) Snapshots of (a) velocity stream-function
and (b) equipotential lines at time station 5 [for the parameters see
Figs. 6(a) and 7(a)]. (c) The anion concentration along y coordinate
in the sections x = x1, X = x,, and x = x5 from (b).

V. NONLINEAR STAGES OF EVOLUTION
AND SECONDARY INSTABILITY

The next stages of evolution are nonlinear processes with
the eventual saturation of the disturbance amplitude. For a
small supercriticality AV — AV,, the nonlinear saturation
leads to steady periodic electroconvective vortices along
the membrane surface. With increasing supercriticality the
attractor can be described as a structure of periodically
oscillating vortices. With a further increase in supercriticality,
the behavior eventually becomes chaotic in time and space.

The evolution of the average electric current and current
amplitude of perturbations (both normalized to jjy) are
presented in Fig. 6. For small supercriticality this evolution
results in steady vortices, Fig. 6(a), for larger supercriticality,
it has chaotic behavior, Fig. 6(b).

Snapshots of the charge density p(x,y,r) for the
above-mentioned conditions at different times are shown in
Fig. 7. The darker regions correspond to larger densities of
space charge. There is a rather sharp boundary between the
extended space charge region and the diffusion region. Point 1
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FIG. 9. (Color online) Two physical mechanisms of the secondary instability. (a) Coalescence of two humps with low charge density with
following coarsening. (b) Instability of a flat region between humps with the following creation of new humps

corresponds to the initial small-amplitude broad-banded white
noise. A linear stability mechanism filters it into practically
periodic disturbances with a wave number k,, point 2. The
boundary between the extended space charge region and
the diffusion region behaves sinusoidally: Its minimum
corresponds to the maximum of the charge density and vice
versa. With increasing time, there is fusion of neighboring
waves with the corresponding reduction of their number. The
sinusoidal profile changes to a spike-like one where regions
of a small charge in the spikes are joined by thin flat regions
of large space charge, moment 5 on Fig. 7(a). Besides fusion
of the spikes there is also their creation so that eventually
some equilibrium of their number is established, moment 5,
(b). Movie visualization for charge density evolution can be
found in Ref. [16] (AV = 50, v = 1073, and ¥ = 0.2, chaotic
behavior).

Snapshots of the streamlines for moment 5 and all other
parameters mentioned in Fig. 7(a) are depicted in Fig. 8(a).
Liquid gushes up from the cusp points of the p distribution and
returns to the lower membrane moving toward the flat regions
of the p distribution and, hence, forming electroconvective
rolls. The distribution of the lines ®(x,y) = const with a step
1.42 shows (b) that the greatest contribution to the drop of
potential AV comes from the thin space charge region. There
is a phase shift of 180° in the space charge and diffusion
regions. The anion concentration (c) along the normal to the
membrane surface coordinate in the sections x = x;, x = x»
and x = x3 shows a thin depletion region near the bottom
membrane with ¢~ about 103, while in the enrichment region
it can be about four times of the initial concentration. The
smallest concentration and its more homogeneous distribution
is observed in the section x = x3 [cusp points of p(x,y)]. The
largest concentration is in the section x = x; [flat regions of
p(x,y)].

Let us consider the physical mechanisms of the secondary
instability. The sharp boundary between the extended space
charge and diffusion regions has small charge densities near

its humps and large charge densities in neighboring regions
around its hollows, either for periodic or spike-like coherent
structures. These regions with larger charge are trying to
expand (charges of the same sign repel) and this can lead to the
disappearance of some of the humps, with eventual coarsening.
Such instability is illustrated in Fig. 9(a). There is also another
physical mechanism which results in the opposite effect. If
a flat region between two humps is long enough, it suffers
from primary Rubinstein and Zaltzman electroconvective
instability, see Fig. 9(b). Points 1, 2, and 3 are nucleation
points of future humps. They grow and eventually form new
humps. This last mechanism is applicable only for spike-like
structures with flat neighboring regions, but not for sinusoidal
waves.

VI. CONCLUSION

The results of the DNS reported in this paper refer
to realistic experimental parameters that may be realized
in laboratory experiments. The following stages of evolu-
tion are identified: (i) a stage in which the initial con-
ditions have considerable influence (milliseconds); (ii) 1D
self-similar evolution (milliseconds—seconds); (iii) a pri-
mary instability of the self-similar solution (seconds); (iv)
a nonlinear stage with secondary instabilities. This work
can be viewed as a further step in the understanding of
the instabilities and pattern formation in microscales and
nanoscales.
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