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Why the water bridge does not collapse
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In 2007 an interesting phenomenon was discovered [J. Phys. D 40, 6112 (2007)]: a horizontal thread of water,
the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge
stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric
field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that
electrostatic field is not the origin of the tension holding the bridge.
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I. INTRODUCTION

After the water bridge (see Fig. 1) was rediscovered in
2007 [1] (it was first observed in 1893 [2]), it immediately
captured attention [3] and even entered some television shows
because the experiment is easy to reproduce and because it can
be regarded as evidence of some unique properties of water.
What keeps the bridge stable against gravity? The first thing
one can suppose is that the water in the bridge has properties
similar to those of a polymer melt; namely, in the electrostatic
field, water molecules are arranged in quasi polymer chains
that play the role of the bridge load-carrying structure [4].
It has been also supposed that hydrogen bonds induce the
formation of the water bridge [5], but in the computer
simulation of Ref. [5] the bridge consisted of 103 molecules
and could be formed only if the electrostatic field was at least
≈103 times stronger than the ones in real experiments with
macroscopic water bridges [1,6–12]. Some attempts have been
made to reveal a specific structure of the bridge by means of
neutron scattering [6,7] and Raman scattering [11], but still
no exhaustive explanation of the stability has been found. Two
interesting features of the water bridge are the complicated
water flow and the electric current inside it [8,9], but it has
not been proven that this dynamics is related to the stability. It
has even been supposed that the bridge stability in gravity is a
quantum effect [13]. In this context, experiments with the water
bridge in reduced gravity are particularly interesting [14],
but the parabolic flight lasts only a few seconds, which is
hardly sufficient for investigating the equilibrium. A detailed
review of water bridge investigations has already appeared
[15].

However, the best explanations of newly discovered phe-
nomena are often the simplest ones. Indeed, it has been
stated [10,16] that not the specific properties of water but
just its high dielectric permittivity is likely to be the reason
for the phenomenon. Formation of a bridge (dielectric liquid
bridge) by another small-molecule polar liquid [12,15] (e.g.,
methanol or glycerine) proves this. How can the high dielectric
permittivity of a dielectric liquid give rise to the bridge
stability? It is straightforward to assume that the bridge
is kept stable in gravity by tension as a hanging rope,
with the tension being somehow produced by the electric
field [10,12,16]. In this paper, we prove that the electric
field is, however, not the origin of the tension; instead, we
show that it is likely the surface tension that holds the
bridge.

II. ELECTROSTATIC TENSION OF A DIELECTRIC
LIQUID BRIDGE

In a typical experiment the bridge hangs between two
beakers, in which electrodes are immersed (see, e.g., [6,8,10]).
The electric field between the beakers is evidently nonuniform.
However, the beakers’ diameter is 5–10 cm, the electrodes are
immersed at the points farthermost from the bridge, and the
bridge is shorter than 2.5 cm. Therefore, the field around the
bridge can be split into the uniform and the nonuniform parts,
the latter being not dominant. Moreover, such bridges have
also been produced between two large flat metallic plates [12]
(see Fig. 1). The field around the central part of the bridge
is evidently almost uniform in the latter configuration. This
proves that nonuniformities of the field are not the basic reason
for the phenomenon. Hence, it is relevant to consider the bridge
roughly as a dielectric liquid cylinder in a uniform electrostatic
field parallel to its axis. Let us use this approximation to
analyze the bridge tension.

A dielectric liquid cylinder is in a uniform field E parallel
to its axis if, for example, the cylinder bases touch two infinite
conducting planes to which a voltage �ϕ = LE is applied
(see Fig. 2), where L is the cylinder’s length. To simplify
the reasoning, let us imagine that there are two infinitely thin
gaps between the cylinder bases and the planes. It follows
from the electrostatic field boundary conditions [17] that the
field is equal to E everywhere between the planes (inside and
outside the cylinder), except in the gaps, where it is equal
to εE, where ε is the liquid’s dielectric constant; the surface
densities of charges induced on the cylinder bases are ∓σind =
∓E(ε − 1)/(4π ), while the densities on the corresponding
adjacent areas of the planes are ±σ0 + σind = ±εE/(4π ),
and the densities on the corresponding remaining parts of the
planes are ±σ0 (see Fig. 2).

To derive the tension, let us suppose that the planes are
isothermally moved apart by dL at constant �ϕ, and the
cylinder is respectively elongated by dL. The field E between
the planes is then decreased by EdL/L, and the cylinder
becomes thinner. This leads to the change dU of the total
energy 1

8π

∫
εE2d3r of electrostatic field in the system. This

leads also to the redistribution of charges induced on the
planes (i.e., the voltage does the work when carrying charges
from one plane to the other). For the part of the system
external to the cylinder, the difference between the electrostatic
field energy increase and the voltage work is then the work
against the planes’ mutual Coulomb attraction force existing
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FIG. 1. Schematic of water bridge in the setup [12] that produces
a uniform electrostatic field.

independently of the cylinder. For the cylinder part, the field
energy is increased by

dU = E2 [εAdL + (ε − 1)LdA − 2εAdL] /(8π ), (1)

where A is the cylinder’s cross-sectional area. The first term
of Eq. (1) is due to the elongation of the domain occupied by
the dielectric with electrostatic field. The second term is due
to the thinning of the domain occupied by the dielectric. The
last term is due to the decrease of the field in the whole volume
of the cylinder.

The work of the voltage for the cylinder part is:

dW = E [σindLdA − (σ0 + σind) AdL] , (2)

where the first term is due to the change of the area of the
cylinder bases and the second term is due to the decrease of
the field. The field εE in a gap is the field εE/2 of the adjacent
plane plus the field εE/2 external with respect to the plane.
dU − dW is the work against the cylinder tension τ and the
Coulomb force exerted by the external field εE/2 on a plane
circle adjacent to a cylinder base:

dU − dW = [τ + (σ0 + σind) εE/2] AdL. (3)

To first approximation, the liquid is incompressible (i.e.,
LdA + AdL = 0). Therefore, it follows from Eqs. (1)–(3),
that τ = −(ε − 1)2E2/(8π ). The negative tension corresponds
to the stretching of a dielectric liquid drop along uniform
external electrostatic field [18]. In Ref. [16], positive tension
was obtained because the pressures produced by the electro-
static field on the liquid-air interfaces were assumed therein
to be equal to the corresponding Maxwell stresses in the
liquid. Maxwell stresses on both sides of the interface must be
subtracted instead from each other to obtain the pressures [17].

Are the planes pushed apart by the cylinder with pressure
−τ > 0? Let us analyze the Coulomb interaction between the

FIG. 2. Schematic of a dielectric liquid cylinder in a uniform
electrostatic field between two infinite conducting planes. This is a
simple model of a dielectric liquid bridge.

cylinder and, say, the left plane. There are two charges on the
plane. The uniform charge density σ0 produces the uniform
field, which does not exert force on the cylinder since the total
charge of the cylinder is zero. The other charge is the circle with
the density σind induced additionally in front of the cylinder
base. If L � √

A, the fields of the charges of the cylinder
bases cancel outside of the cylinder, because these opposite
charges are very close to each other. Hence, the dielectric
liquid “pancake” does not exert a force on the plane by the
electrostatic field but exerts on it, really, only the pressure
derived above of −τ > 0. But in the case of the bridge with
L � √

A, the right cylinder base is far from the left plane so
the field produced by the charge of the base is zero on the
left plane. Therefore, the attraction between the σind circle on
the left plane and the long cylinder is equal to the attraction
2πσ 2

indA between the circle and the charge opposite to it on the
left cylinder base, which is adjacent. Hence, the bridge attracts
the left (right, as well) plane by an electrostatic field with the
force 2πσ 2

indA, which cancels together with the pressure −τ

that is exerted by the bridge on the plane.
The same cancellation applies to the interaction between

two adjacent parts of the bridge. (They have to attract each
other if the bridge is supported by its tension as a hanging rope.)
A dielectric cylinder in a uniform electrostatic field parallel to
its axis is a stack of identical and equally oriented one-dipolar-
molecule-thick double electrostatic layers. Neighboring layers
penetrate each other: the area of their overlap is neutral since
the positive charge of one layer and the negative charge of
the other are intermixed there. Thus, each point inside the
cylinder is neutral. The positive charge of the last layer at one
cylinder base and the negative charge of the last layer at the
other base are not neutralized. The surface densities of these
charges are the charges induced on the bases: σind and −σind.
This means that each of the double layers is composed of
±σind charges. Probably, the anisotropy of the water bridge
detected by means of neutron scattering [6] is related to this
ordering of molecules along the electrostatic field. The left
and the right parts of the long cylinder, each consisting of an
integer number of double layers, interact as follows: (Dividing
the cylinder by a plane into two nonoverlapping parts would
make no sense because dipole molecules of one layer would
be cut into pieces belonging to different parts). The rightmost
layer Ml/Pl of the left part (schematically presented in Fig.
2 as a dotted rectangle with white pluses and minuses inside)
and the leftmost layer Mr/Pr (dashed rectangle with black
pluses and minuses) of the right part overlap. (Ml , Pl , and
Mr , Pr symbolize the negative and positive charges of the two
layers, respectively.) The left part taken without the Ml/Pl

layer has the uncompensated charge density σind on its right
base, which attracts the right part with the force 2πσ 2

indA,
like the left plane attracts the whole cylinder. At the same
time, the overlapping double layers Ml/Pl and Mr/Pr repel
each other with the same force because Ml repels Mr and Pl

repels Pr with the force 2πσ 2
indA, Ml attracts Pr with the same

force, and there is no interaction parallel to the cylinder axis
between Pl and Mr since they overlap. By the way, the same
forces expulse from the cylinder its last layers at the bases,
which is the origin of the pressure −τ exerted by the cylinder
bases on the planes. Regarding the interaction of the Ml/Pl
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layer with the right part taken without the Mr/Pr layer, it is
negligibly weak. So, the total tension of a dielectric liquid
bridge produced by the electrostatic field is zero. It should
be noted also that the electrostatic field hypothesis of the
bridge tension (τ ∼ E2, [10,12,16]) is not really consistent
with experiments, because it allows the existence of bridges
longer than 4 cm in stronger fields, which seems to be not
the case.

III. THE REASON FOR THE BRIDGE STABILITY

What tension holds the bridge then? Let us just estimate the
tension of the bridge produced by surface tension. If a liquid
cylinder is elongated by dL without changing its volume, the
cylinder’s lateral surface area is increased by ldL/2, where
l is the bridge cross-section perimeter. Hence, if the surface
tension coefficient of the liquid is γ , the total tension of the
bridge produced by surface tension is lγ /2. In a hanging
bridge, horizontal projection of the tension at an end is equal to
the tension in the center, while the doubled vertical projection
of the tension at an end is the weight of the bridge. Hence,
the tension in the center is �ρgAL/(2tg
), where ρ is the
density of the liquid and 
 is the angle between an end of
the bridge and the horizontal (see Fig. 1). (It is supposed here
when calculating the weight that the bridge is straight and its
cross section is uniform). Therefore, surface tension can hold
the bridge if

ρg cot(
)LA/l � γ. (4)

One can find evidence that Eq. (4) is approximately valid by
analyzing the photos of dielectric liquid bridges presented in
Refs. [6,8,10,12]. Enlarged photos from the electronic versions
of the papers should be used. For example, let us consider
the central part of Fig. 7 in Ref. [12], which presents a
glycerine (ρ = 1250 kg/m3 [12]) bridge, in the setup with
the configuration producing a uniform electrostatic field. Let
us suppose that the cross section of the bridge is roughly a
circle of radius r . (In fact, horizontal and vertical projections
of water bridges presented in one of the figures of Ref. [12]
show that the heights of the bridges are about 1.5 times larger
than their widths.) Then A/l = r/2 and, having measured
cot 
 � 1.6, r � 1.1 mm, and L � 7.6 mm, we obtain from
Eq. (4) γ � 82 mN/m, which is close to the actual value of
64 mN/m [12] for glycerine. For example, such an analysis of
the schematic of the water bridge in Fig. 1 gives cot 
 � 1.6,
r � 0.63 mm, and L � 21 mm, which with ρ = 980 kg/m3

gives γ � 102 mN/m. The real value for water is γ =
72 mN/m [12] (i.e., the bridge in the illustration should be, say,
thinner). The accuracy of such “measurements” is very low of
course. The precisely determined shape of a bridge must be
analyzed to prove exhaustively that the bridge is supported
by surface tension. Collapse of a water bridge caused by the
addition of surfactant reported in Ref. [1] also corroborates the
surface tension origin of the bridge stability.

Why is a dielectric liquid bridge not possible without an
electric field? The reason is that surface tension plays, actually,
an ambivalent role. On the one hand, it does not allow gravity to
tear the bridge. But, on the other hand, as has been mentioned
in Refs. [12,15], it “wants” a sufficiently long and thin bridge

to turn into separate round drops, because then the surface
energy would decrease (i.e., the bridge would be in a labile
equilibrium without the outer longitudinal electric field). The
latter provides stable equilibrium: it does not allow distortion
of the bridge shape to start, because the field energy is the
lowest if the shape is nonperturbed. This phenomenon has been
extensively studied long ago [19–22]. To complete the basic
explanation of the bridge stability let us report briefly the main
relevant conclusions of Refs. [20–22] without repeating the
derivations presented therein. In Ref. [20], the energy change
caused by small sinusoidal distortions of an infinite cylindrical
jet of dielectric liquid (an infinitely long dielectric liquid bridge
in zero gravity, in other words) was analyzed. It was proven
that the longitudinal electrostatic field Ecr necessary for the
stability is ∼√

γ , and it is lower for larger A or ε. In Ref.
[21], the equilibrium shape of a bridge of one dielectric liquid
surrounded by another one of the same density was studied.
(It should be noted that the system considered in the present
paper and the system described in Ref. [21] are, of course, not
the same since the gravity effect is canceled out in the latter
one.) The possibility of an equilibrium shape very close to
the cylindrical one was used as the instability criterion, and
the same results were obtained: Ecr ∼ √

γiL/
√

A, where γi

is the surface tension coefficient of the interface between the
two liquids; and Ecr is lower the larger is the ratio of the two
dielectric constants of the liquids. This explains why it is hard
to make a long dielectric liquid bridge: the bridge must be thin
to withstand gravity [see Eq. (4)], but a thinner and longer
bridge needs a much stronger field to keep the shape. The
consideration of Ref. [21] was generalized in Ref. [22] for the
case when the bridge is vertical, and there is a small difference
in the two liquid densities. It was shown that even the small
effect of axial gravity strongly destabilizes the equilibrium.
This explains the lower stability of vertical water bridges as
compared to horizontal ones [11].

IV. CONCLUSIONS

Our reasoning describes the basic roles of surface tension
and electric field in providing the dielectric liquid bridge
stability. It does not explain why the increase of voltage leads
to the thickening of the horizontal water bridge between the
beakers [11] and to the deformation of the horizontal glycerine
bridge [12] in the setup producing uniform electrostatic
field. The bridges are thicker and slacker or thinner and
straighter, which somehow depends on the voltage. However,
our approximate Eq. (4) is valid for all cases. How does
the bridge shape depend on the parameters? We believe that
this is a secondary question, the answer to which would
only supplement the basic explanation proposed by us of the
bridge stability. To determine the equilibrium shape one has
to minimize the energy of the system, taking into account
the electrostatic field energy, the surface energy, and the
potential energy in gravity. In other words, the liquid surface
must be found, along which the equilibrium is kept between
the pressures produced by the electrostatic field [17], the
surface tension, and the liquid head. This seems to be a
very complicated problem. Probably, it cannot be solved if
the electrostatic field nonuniformities are neglected. Probably,
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free charges are present in the bridge and are also to be taken
into account.

Lastly, let us propose three small hints for experiment.
(1) It has been reported that a water bridge is possible in
an oscillating electric field [11]. At the same time it is
known that the water must be deionized, evidently because
free charges relocate, thus screening the field. But if the
field oscillates frequently enough, the ions do not have
time to relocate [21]. Therefore, one might avoid deionizing
the water if a high-frequency oscillating voltage is used. It
would also be possible then to measure the nonelectrostatic
tension of the dielectric bridge separately from the Coulomb
attraction of the electrodes. (The mutual attraction of the
beakers between which water bridge hangs has already
been measured [8]). (2) It would be interesting to make a
bridge from a liquid with a dielectric permittivity higher
than that of water. A longer bridge might then be possible.
The dielectric constant of N-methylformamide is around 200
[23,24]. The challenge is to make sure that the liquid is free

of ion-producing contaminants—the first of which is water.
Otherwise, the conductivity would be too high [24]. (3) If one
uses electrodes covered with glass, one can probably make a
dielectric liquid bridge without electric current and liquid flow
inside, which would prove that the dynamics of the bridge is
not related to its stability.
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