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Transient electrohydrodynamics of a liquid drop
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The transient behavior of a leaky dielectric liquid drop under a uniform electric field of small strength is
investigated. It is shown that for small distortion from a spherical shape, the drop deforms to an ellipsoid, and the
deformation time history is represented by D = D∞[1 − exp(−t/τ )], where D∞ is the steady-state deformation
and τ = (aμo/γ )(19μ̃ + 16)(2μ̃ + 3)/(40μ̃ + 40) is the characteristic time, a, γ , μo and μ̃ being the drop radius,
the surface tension, the viscosity of ambient fluid, and ratio of the drop viscosity to that of the ambient fluid,
respectively. The contributions of the net normal and tangential electrical stresses in the degree of deformation
and fluid flow strength are also determined.
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I. INTRODUCTION

When a droplet of a fluid is suspended in another fluid
and is subjected to an electric field, the mismatch between
the dielectric properties of the fluids results in “net” normal
and tangential electrical stresses at the drop surface, which
sets the fluids in motion and leads to deformation and possible
burst of the drop. The theoretical model that describes the
phenomenon fairly well is the so-called “leaky-dielectric
theory,” pioneered by Taylor [1] and extensively used by
Melcher to develop the electrohydrodynamic theory. See, for
example, Refs. [2–5]. The essence of the model is to assume
that fluids have finite electric conductivities and that the time
scale of charge relaxation due to electric conduction from
the bulk to the drop surface to be much shorter than the
convective time scale. The first assumption allows for the
accumulation of free charges at the interface and, therefore,
the possibility of net electrical shear forces at the interface.
The second assumption leads to a substantial simplification
of the mathematical formulation as the electric field equations
will be decoupled from the momentum equation and reduce to
quasi-steady-state laws [2]. Taylor [1] solved the steady-state
electrohydrodynamic equations for the fluid inside and outside
a spherical liquid drop in the creeping flow limit using
axisymmetric spherical coordinates (Fig. 1) and showed that
the relative importance of the ratios of electric conductivities
(R = σi/σo) and permittivities (S = εi/εo) of the fluids is a
key parameter in setting the senses of drop deformation and
fluid circulation. Specifically, he showed that the electric field
establishes a circulatory flow in the drop, consisting of four
vortices of equal strengths that are matched by counterpart
vortices in the ambient fluid. For R < S, the direction of the
ambient flow is from the poles to the equator, while for R > S

the flow direction is the opposite. He also found a characteristic
function

� = R2 + 1 − 2S + 3

5
(R − S)

3μ̃ + 2

μ̃ + 1
, (1)

which he used to predict the sense of the drop deformation.
For � < 0, the drop deforms to an oblate spheroid (i.e., an
ellipsoid with its major axis perpendicular to the direction of
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the electric field), while for � > 0 it deforms to a prolate
spheroid (i.e., an ellipsoid with its major axis parallel to the
direction of the electric field). Here � = 0 represents a zero
deformation state, which is a possibility for leaky dielectric
fluids, where the Coulomb forces and polarization forces can
act in the opposite directions. Vizika and Saville [6] used
Taylor’s solution and found an estimate for the steady-state
deformation of the drop:

D∞ = 9Ca

16

�

(R + 2)2
, (2)

by balancing the normal stresses at the drop surface posteri-
orly. In Eq. (2), the deformation is defined as D = (zmax −
rmax)/(zmax + rmax), where zmax and rmax are the end-to-end
length of the drop in the direction of electric field and
the maximum breadth in the traverse direction, respectively.
Ca = μous/γ is a capillary number, us = εoE

2
∞a/μo is a

velocity scale, and E∞ is the unperturbed strength of the
electric field. This equation suggests that D∞ ∼ E2

∞ at low
electric field strength, a fact that has been verified by various
experimental and numerical studies [7].

While steady-state electrohydrodynamics of a liquid drop
in a uniform electric field is reasonably well understood (see,
for example, Ref. [8] and the references therein), not much is
known about the fluid flow evolution toward the steady state
and the deformation time history of a leaky dielectric drop.
Such an understanding finds relevance in a host of microfluidic
applications such as enhancement of mixing by electric forces
[9], where information about the relative importance of the
pertinent time scales of the phenomena compared to the time
scale of the process of interest, and the manner in which
the flow develops is a key to the optimum design and
performance of the device. In what follows, we refer to a
few studies that have focused on the transient dynamics and
are particularly relevant to our work.

Sozou [10] was the first to investigate the evolution of the
flow field in and around a leaky dielectric drop. He solved the
creeping flow equations analytically, while retaining the local
fluid acceleration term ∂V/∂t . He followed the evolution of the
flow field for a case where R < S; however, he did not present
the streamlines for the actual flow field; rather, he showed the
flow fields due to the net electrical shear and normal stresses
individually. For the shear-stress-driven flow and at an early
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FIG. 1. (Color online) The geometric setup depicting a liquid
drop surrounded by a pool of another liquid of infinite extension.

time, two sets of closed vortices were formed near the surface
of the drop in each quadrant, inside and outside the drop. As
time passed, the centers of the outer vortices gradually moved
outward, pushing the outer fluid toward the drop surface and
as a result, diminishing the inner vortices. This state of affairs
continued until the drop deformation started to decelerate,
whereby the inner vortices started to expand. The flow field
eventually settled to the Taylor’s steady-state result [1]. On
the other hand, the flow driven by normal stresses at an early
time showed only one set of vortices in each quadrant, with the
streamlines that crossed the drop surface. The cores gradually
moved outward, and the flow eventually diminished once the
drop deformation reached a steady state. Since the authors
did not present a closed-form solution, it was not possible to
discern about the details of the evolution of the actual flow
field and the deformation time history of the drop.

The deformation time history of a drop,D − t , was found by
Haywood et al. [11], who built on a quasi-steady state analysis
developed by Moriya et al. [12] and a heuristic modification
of the results of Ref. [12] by Nishiwaki et al. [13], and showed
thatD − t for a perfectly conducting liquid drop immersed in a
perfect dielectric (PD) liquid is governed by DPD = D∞PD [1 −
exp(−t/τ )], where

D∞PD = 9εoaE2
∞

16γ
(3)

is the steady-state deformation derived by Ref. [14] in the con-
text of the electrostatic theory by determining the drop shape
that minimizes the total energy, and τ = (αμi + βμo)a/γ

is the characteristic time; α = (38μ̃ + 47)/(40μ̃ + 40) and
β = (42μ̃ + 48)/(40μ̃ + 40) are the weighting functions. The
authors reported excellent agreement between their numerical
and analytical D − t for D∞PD � 0.025 and Oh � 20, Oh =
μ/

√
ρaγ being the Ohnesorge number based on the properties

of the outer fluid. Supeene et al. [15] performed numerical
simulations using the commercial software package FEMLAB

(COMSOL) and studied the transient deformation of a perfect
dielectric liquid drop for several perfect dielectric fluid systems
at low to moderate electric field strength. The deformation
time history curves collapsed to a single curve for all the
electric field strengths, once the deformation was scaled by the
steady-state deformation predicted from the linear theory [14]
and time was scaled by the natural frequency of oscillation of

an inviscid drop in an AC electric field [16]. The deformation
showed an oscillatory behavior, with a large initial peak that
was followed by a couple of smaller dips and peaks as it settled
to steady state. Supeene et al. [17] observed a similar behavior
for leaky dielectric systems at low electric field strength.

The goal of this study is to present a simple closed-form
solution for the transient dynamics of a leaky dielectric liquid
drop under a uniform electric field of small strength and to
investigate the contributions of the net normal and tangential
electric stresses in the flow field and drop deformation.
The “leaky dielectric framework” used here gives a realistic
picture of the electrohydrodynamics of a drop (see Ref. [18]
and the references therein), whereas the “perfect dielectric
model” used by the authors of Ref. [11] will not do so in
general. Briefly, the perfect dielectric model is based on the
“electrostatic” theory, and as such it predicts that no fluid flow
exists at steady state and that the drop would always deform
to a prolate ellipsoid. Both of these predictions, however, have
been ruled out by experiments (see, for example, Refs. [1,19]).
The simple closed-form solution presented here makes it
extremely easy to discern about the individual contribution of
the electrical stresses in the various parameters of interest such
as interfacial velocities. This is not the case with the solution
of Sozou [10], while we acknowledge that Sozou’s analysis
was more general. Furthermore, the formalism introduced here
provides a methodological basis for the study of this problem
and the similar ones.

II. GOVERNING EQUATIONS AND THEIR SOLUTIONS

The problem setup is shown in Fig. 1, depicting a spherical
coordinate system (r,θ,ϕ). Here the positive z axis is in the
same direction as the electric potential gradient ∇φ, and since
the problem is axisymmetric, the azimuth angle ϕ does not
come to the picture. As shown by Refs. [2,20], for leaky
dielectric fluids the electric field equation is decoupled from
the momentum equation, however, the momentum equation is
coupled to the electric field equation.

The electric field equation for both fluids is

∇2φ = 0, (4)

where φ is the electric potential. This equation is the same
as the one used by Ref. [1] and is derived from the charge
conservation equation using the scaling arguments, which
suggest that for leaky dielectric liquids, for small dynamic
electrical currents, and in the absence of external magnetic
field, the electric field intensity E is both irrotational, ∇ × E =
0, and divergence free, ∇ · E = 0. The first expression suggests
that E can be written as a gradient of a scalar, E = −∇φ, and
substitution for E in terms of φ in the second expression leads
to Eq. (4).

The Navier-Stokes equation for both fluids is

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇P + μ∇2V, (5)

where we have used the usual notation. To account for the effect
of electric field on the flow, an electric force density Fe [Nm−3]
should be generally added to the right-hand side of Eq. (5) as a
body force. However, for leaky dielectric fluids with constant
dielectric properties Fe is zero in the bulk and the contribution
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of electric stresses appears only at the phase boundary, where
these stresses are not zero (see, for example, Ref. [18]). To
examine the appropriate form of the Navier-Stokes equation,
we cast this equation in a nondimensional form, where we use
us = εE2

∞a/μ as the velocity scale, ls = a as the length scale,
ts = μa/γ as the time scale, and Ps = μus/a as the pressure
scale to nondimensionalize the terms. Here us is constructed
by balancing of the electric force and the viscous shear stress
at the drop surface, and ts is the process time of interest, which
is the time required for relaxation of the drop to an equilibrium
shape. This yields

Re

(
1

Ca

∂V′

∂t ′
+ V′ · ∇′V′

)
= −∇′P ′ + ∇′2V′, (6)

where primed variables are dimensionless, and Re = ρusa/μ

and Ca = μus/γ are the Reynolds and capillary numbers,
respectively. For sufficiently small electric field strength,
Re � 1, and, therefore, the convective term V · ∇V can be
ignored. If we further assume that Re/Ca � 1, the inertia
term ∂V/∂t can also be ignored. Therefore, the Navier-Stokes
equation reduces to −∇P + μ∇2V = 0, which can be cast to
a biharmonic equation for the streamfunction:

D4ψ = 0, (7)

where D4 = D2(D2), and D2 = ∂2/∂r2 + (sin θ/r2){∂/∂θ

[(1/sin θ )∂/∂θ ]} resembles the Laplacian. The veloci-
ties are related to the streamfunction through ur =
[1/(r2 sin θ )](∂ψ/∂θ ) and uθ = −[1/(r sin θ )](∂ψ/∂r).

We note that Re/Ca = Oh−2, where Oh = μ/
√

ρaγ is
the Ohnesorge number and that Re/Ca � 1 implies that the
time scale of momentum diffusion by viscosity τμ = a2/ν

is much smaller than the time scale of surface deformation
τd = μa/γ . In summary, using the properties of the ambient
fluid, Oh = μo/

√
ρoaγ and Ca = εoE

2
∞a/γ are the primary

nondimensional numbers of our problem, while R = σi/σo,
S = εi/εo, and μ̃ = μi/μo provide us with a set of secondary
nondimensional numbers.

There are two main differences between the current mathe-
matical development and that of Ref. [1]; the phase boundary
is assumed to be

ξ (t) = a[1 + (2/3)D(t)(3 cos2 θ − 1)], (8)

at the outset and also some of the interfacial jump conditions
used to solve Eq. (7) will be different. The form of ξ is
suggested by the (anticipated) form of the net normal electrical
stresses. We note that variants of Eq. (8) have been used by
others in a posteriori calculation of drop deformation [6] or
to account for drop deformation a priori (see, for example,
Refs. [10,21,22]). In particular, the authors of Ref. [6] used
the same form of Eq. (8) to find steady state deformation of a
drop (2) using Taylor’s [1] solution. Here we assume that the
drop deformation, D, is very small (i.e., Ca � 1); therefore,
the interfacial jump conditions are imposed at r = a rather
than r = ξ . This assumption implies that the r − θ coordinates
is a tangent-normal coordinate system; i.e., r ≡ n and θ ≡ t .
Application of the boundary conditions at the undeformed
surface has precedent in fluid flow analysis and has been
done, for example, by Refs. [10,21,22], among others. The
justification for doing so and the associated order of the error
is discussed in Appendix A.

Equation (4) is decoupled from Eq. (7). However, Eq. (7)
is coupled to Eq. (4) through the balances of the interfacial
tangential and the normal stresses. Here the solution of Eq. (4)
is the same as that of Ref. [1], and therefore the jump in the
normal electrical stresses[[

τ e
rr

]] = 9εoE
2
∞

2(R + 2)2
[(R2 + 1 − 2S) cos2 θ + S − 1] (9)

and the tangential electrical stresses[[
τ e
rθ

]] = 9εoE
2
∞

2(R + 2)2
(S − R) sin 2θ (10)

remain the same, where the jump in a physical quantity such as
Q across the interface is defined as [[Q]] = Qo − Qi . Note that
in Eqs. (9) and (10) Taylor’s [1] results have been transformed
to the notations used in Ref. [18] and here.

To solve Eq. (7), the following eight boundary conditions
are used: (1) uri

and uθi
should be bounded at r = 0,

(2) uθo
= uθi

at r = a, (3) uro
= uri

= dξ/dt at r = a,
(4) [[τh

rθ ]] + [[τ e
rθ ]] = 0, (5) −[[P ]] + [[τh

rr ]] + [[τ e
rr ]] = γ κ , and

(6) uro
,uθo

∼ 0, as r → ∞. Notice that the boundary condi-
tions 1, 3, and 6 each provides two boundary conditions. In the
above equations, κ is twice the mean curvature of the drop and
[[τh

rθ ]] and [[τh
rr ]] are jump in the tangential and normal stresses,

respectively.
Boundary condition 4 suggests a solution of the form

ψ(r,θ ) = rn sin2 θ cos θ for Eq. (7), where n is a real constant
to be determined. Substitution for ψ using this expression
into Eq. (7) results in an algebraic equation for n, the
solution of which leads to n = 0, −2, 3, and 5. This yields
ψo = (A + Br−2 + Cr3 + Dr5) sin2 θ cos θ and ψi = (E +
Fr−2 + Gr3 + Hr5) sin2 θ cos θ , where A–H are constants
to be determined. Application of boundary conditions 1 and 6
results in E = G = 0, C = D = 0, respectively. Therefore,

ψo = (Br−2 + A)sin2 θ cos θ (11)

and

ψi = (Fr3 + Hr5)sin2 θ cos θ. (12)

Before the application of the rest of the boundary condi-
tions, we need to compute κ , [[P ]], [[τh

rr ]], and [[τh
rθ ]]. Curvature

is calculated from Eq. (B4) (see Appendix B for details),
and to find [[P ]], the velocity fields are computed from the
streamfunctions and are supplied to the momentum equation
∇P = μ∇2V, which is then integrated in terms of the pressure.
This results in

[[P ]] = (2μoAa−3 − 7μiHa2)(3 cos2 θ − 1) + �o − �i,

(13)

where �o and �i are the integration constants. Similarly, the
jump in hydrodynamic stresses are found by computing their
pertinent terms using the velocity fields:[[

τh
rr

]] = [2μo(−2Aa−2 − 4Ba−5) − 2μi(F + 3Ha2)]

× (3 cos2 θ − 1) (14)

and[[
τh
rθ

]] = [μo(−8Ba−5 − 3Aa−3) − μi(−8Ha2 − 3F )]

× sin 2θ. (15)
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Application of boundary conditions 2, 3, 4, and 5, respec-
tively, results in

3Fa + 5Ha3 + 2Ba−4 = 0, (16)

F + Ha2 = 2

3

dD
dt

, (17)

Aa−2 + Ba−4 = 2

3
a
dD
dt

, (18)

−6μoa
−3A − 16μoa

−5B + 16μia
2H + 6μiF

+ 9εoE
2
∞(S − R)

(R + 2)2
= 0, (19)

and

−18μoa
−3A − 24μoa

−5B − 6μiF + 3μia
2H

+ 9εoE
2
∞

2(R + 2)2
(R2 + 1 − 2S) = 8γD

a
. (20)

Notice that since the jump conditions should be valid at any
point at the drop surface, only the coefficients of cos2 θ terms
in the normal stress balance are retained. Equations (16)–(20)
constitute five equations for the unknowns A, B, F , H , and D.
Evaluation of A, B, F , and H in terms of D from Eqs. (16)–
(19) and substitution in Eq. (20) results in

τ
dD
dt

+ D − D∞ = 0, (21)

where

τ = aμo

γ

(19μ̃ + 16)(2μ̃ + 3)

40(μ̃ + 1)
, (22)

τ is the time scale that governs the dynamics,D∞ is the steady-
state deformation defined earlier (2), Ca = μous/γ , and us =
εoE

2
∞a/μo. Solution of Eq. (21) results in the deformation

time history

D = D∞[1 − exp(−t/τ )], (23)

which suggests that the drop deformation settles monotoni-
cally to its steady-state value. Having found D, the rest of
unknowns are readily determined:

A = −Umaxa
2 + 3

2

[
usa

2

(R + 2)2

][
1

2μ̃ + 3

]
×� exp(−t/τ ), (24)

B = Umaxa
4 − 9

2

[
usa

4

(R + 2)2

][
3μ̃ + 2

(19μ̃ + 16)(2μ̃ + 3)

]
×� exp(−t/τ ), (25)

F = Umax

a
+ 3

2

[
us

(R + 2)2a

][
16μ̃ + 19

(19μ̃ + 16)(2μ̃ + 3)

]
×� exp(−t/τ ), (26)

and

H = −Umax

a3
− 9

2

[
us

(R + 2)2a3

][
1

19μ̃ + 16

]
� exp(−t/τ ),

(27)

where

Umax = 9us(S − R)

10(μ̃ + 1)(R + 2)2
(28)

is the maximum surface velocity.

A few comments about this solution are in order. In the
limit of t → ∞, the solution is the same as that of Ref. [1].
The deformation depends on the capillary number and to the
lesser extent the viscosity ratio. The characteristic time τ is the
same as the one derived by Ref. [11] for a perfectly conducting
drop immersed in a perfect dielectric liquid and is also the same
as the relaxation time of a liquid drop in a general linear flow
(see, for example, Refs. [23,24]). This is because the restoring
forces in all of these problem are all the same, regardless of the
driving forces that are different. For a relatively inviscid drop
(μ̃ � 1), τ is controlled by the viscosity of the external flow
μo. On the other hand, for a drop that is much more viscous
than the ambient (μ̃ 
 1), τ is controlled by the viscosity
of the drop μi . Here τ is independent of the electric field
strength as E∞ is assumed to be sufficiently small. We note
that our solution will converge to that of Ref. [11] if we set
R = S (i.e., perfect dielectric model) and evaluate the terms
in Eqs. (24)–(27) when S → ∞ (i.e., a perfectly conducting
drop). Setting R = S results in Umax = 0, which implies that
no fluid flow will exist at steady state, and taking the limit of
D∞ (2) when S → ∞ will lead to D∞PD (3). This suggests that
the drop will always deform to a prolate, as D∞PD is always
positive.

In passing, we point out that the decomposition used by
Ref. [11] (i.e., values of α and β used in their formulation
for τ ) is quite arbitrary. To see this, one can rewrite their τ =
(αμi + βμo)a/γ in a slightly different form by substitution
for μ̃ = μi/μo. This yields

τ = [μi(38μi + 47μo) + μo(42μi + 48μo)]a

40γ (μi + μo)
,

where the term in the bracket can be simplified to Q =
38μ2

i + 89μiμo + 48μ2
o. The characteristic time τ can be

decomposed in many different ways according to the de-
composition of Q. For instance, if Q = μi(38μi + 32μo) +
μo(57μi + 48μo), then α = (38μ̃ + 32)/(40μ̃ + 40) and β =
(57μ̃ + 48)/(40μ̃ + 40), which is different than the weighting
functions that they used.

Detailed understanding of the individual contribution of the
net normal and tangential electric stresses ([[τ e

rr ]] and [[τ e
rθ ]],

respectively) in the dynamic is very insightful, since these
stresses are the driving forces behind the fluid flow and the drop
deformation. To evaluate the individual contribution of [[τ e

rθ ]],
we set [[τ e

rr ]] = 0 in boundary condition 5 and solve Eq. (7) with
the rest of the boundary conditions intact. To do so, we consider
a solution of the form ψot

= (Btr
−2 + At )sin2 θ cos θ and

ψit = (Ftr
3 + Htr

5)sin2 θ cos θ , where subscript t refers to
the fact the flow is solely driven by the net tangential electrical
stresses. Setting [[τ e

rr ]] = 0 is tantamount to setting E∞ = 0 in
the last term of Eq. (20) as this term is the θ -dependent part of
[[τ e

rr ]] according to Eq. (9). We then solve Eqs. (16)–(19) along
with the modified Eq. (20), and unknowns A, B, F , H , and D
replaced by At , Bt , Ft , Ht , and Dt , respectively. This yields

Dt = D∞t
[1 − exp(−t/τ )], (29)

D∞t
= 9Ca

16

�t

(R + 2)2
, (30)
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TABLE I. Physical properties of the fluids used. Here γ = 5.5 × 10−3 [Nm−1] and ε0 = 8.854 × 10−12 [Fm−1]. Systems A and B correspond,
respectively, to a silicon oil drop surrounded by oxidized castor oil and the phase-reversed system. System A corresponds to system (17) of
Ref. [22].

Fluid σ [Sm−1] ε [Fm−1] μ [kg m−1 s−1] ρ [kg m−3]

Silicon oil 3.33 × 10−11 2.77 ε0 12 980
Oxidized castor oil 1.11 × 10−12 6.3 ε0 6.5 980

At = −Umaxa
2 + 3

2

[
usa

2

(R + 2)2

][
1

2μ̃ + 3

]
�t exp(−t/τ ),

(31)

Bt = Umaxa
4 − 9

2

[
usa

4

(R + 2)2

][
3μ̃ + 2

(19μ̃ + 16)(2μ̃ + 3)

]
×�t exp(−t/τ ), (32)

Ft = Umax

a
+ 3

2

[
us

(R + 2)2a

][
16μ̃ + 19

(19μ̃ + 16)(2μ̃ + 3)

]
×�t exp(−t/τ ), (33)

and

Ht = −Umax

a3
− 9

2

[
us

(R + 2)2a3

][
1

19μ̃ + 16

]
�t exp(−t/τ ),

(34)

where

�t = R − S. (35)

To determine the contribution of [[τ e
rr ]], we consider

Dn = D∞n
[1 − exp(−t/τ )], (36)

ψon
= (Bnr

−2 + An)sin2 θ cos θ , and ψin = (Fnr
3 + Hnr

5)
sin2 θ cos θ . However, since the problem is linear, Dn, An,
Bn, Fn, and Hn can be readily determined by subtracting Dt ,
At , Bt , Ft , and Ht from D, A, B, F , and H , respectively. This
yields

D∞n
= 9Ca

16

�n

(R + 2)2
, (37)

An = 3

2

[
usa

2

(R + 2)2

][
1

2μ̃ + 3

]
�n exp(−t/τ ), (38)

Bn = −9

2

[
usa

4

(R + 2)2

][
3μ̃ + 2

(19μ̃ + 16)(2μ̃ + 3)

]
�n exp(−t/τ ),

(39)

Fn = 3

2

[
us

(R + 2)2a

][
16μ̃ + 19

(19μ̃ + 16)(2μ̃ + 3)

]
�n exp(−t/τ ),

(40)

and

Hn = −9

2

[
us

(R + 2)2a3

][
1

19μ̃ + 16

]
�n exp(−t/τ ), (41)

where

�n = R2 + 1 − R − S + 3

5
(R − S)

3μ̃ + 2

μ̃ + 1
. (42)

III. RESULTS AND DISCUSSION

To investigate the transient electrohydrodynamics of leaky
dielectric drops, we consider two fluid systems, a system where
the drop fluid is less conductive than the surrounding fluid (i.e.,
R < 1 and R < S), and a phase-reversed system (i.e., R > 1
and R > S). The first system consists of a silicon oil drop
of radius a = 10 [mm], surrounded by an oxidized castor oil,
and exposed to an electric field of strength E∞ = 10 [kV/m].
The fluid properties in this fluid system correspond to those
of system (17) of Ref. [22] and are listed in Table I. Here
the resulting nondimensional numbers are Oh = 51.69, Ca =
0.0187, R = 0.033, S = 2.27, ρ̃ = 1, and μ̃ = 0.542. Figure 2
shows a few equispaced streamlines contours at an early time
(t/τ = 0.001), an intermediate time (t/τ = 2), and a steady
state (t/τ = 5). At the early time, the flow consists of four open
vortices in each quadrant, and the direction of the flow is from
the poles to the equator. The streamlines cross the interface,
reflecting the fact that the drop surface is deforming (frame 1).
As time passes, the flow retreats outside and the streamlines
open up, leaving behind four vortices inside the drop (frame 2).
The drop surface is still deforming as is evidenced from a set of
streamlines that cross the interface. The inner vortices become
stronger as the time passes, and at steady state they occupy the
inner space (frame 3). The coordinates of the cores of the inner
vortices can be determined by finding the points where both ur

and uθ are zero. This results in θc = ±0.9553, ±2.5261 and
rc = √−3F/5H , which suggests that the angular positions of
the vortices are fixed, but their radial positions change with the
time. Note that rc is only acceptable if it is real and 0 < rc � a.
The cores initially appear at rc ∼ 0.34a and gradually shift to
rc ∼ 0.77a.

To explore the contribution of the electrical stresses in the
structure of the flow field, in Fig. 3 we compare the flow due
to [[τ e

rθ ]] (left frame) and [[τ e
rr ]] (right frame), corresponding

to the middle frame of Fig. 2. This figure clearly shows that
the net electrical shear stresses are solely responsible for the
formation of the inner vortices. Notice that the flow strengths
cannot be discerned from the figure as the information about
the level contours are not given. While the general features of
the flow as depicted here are similar to that of Ref. [10], the
evolution of the two flows is not exactly the same. Here the
flow is established impulsively since we assume τμ = a2/ν �
τd = μa/γ . This is not the case for Ref. [10], which considers
τμ and τd to be of the same order.

To examine the contribution of [[τ e
rr ]] and [[τ e

rθ ]] to the
degree of deformation and the strength of the flow field, in
Fig. 4 we plot D, urmax = ur (a,0), and uθmax = uθ (a,π/4) as a
function of time. For this fluid system, � = −6.6951 < 0 and
therefore, D < 0, which implies that the drop becomes oblate.
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FIG. 2. (Color online) Evolution of velocity streamlines for a
silicon oil drop in an oxidized castor oil. The nondimensional numbers
are Oh = 51.69, Ca = 0.0187, R = 0.033, S = 2.27, ρ̃ = 1, and μ̃ =
0.542. The times are t̃ = 0.001, 2, and 5, respectively, and proceed
from the top to the bottom. Here the fluid inside is less conductive
than the fluid outside (i.e., R < 1, R < S), and the ambient fluid flows
from the poles to the equator.

Here |Dn| > |Dt |, but |Dn| and |Dt | are of the same order,
which suggests that the contributions of [[τ e

rr ]] and [[τ e
rθ ]] in the

interface deformation are of the same order. This is because the
main difference between Dt and Dn, as given by Eqs. (37) and
(30), lies in the difference between �t and �n. For this fluid
system, however, �t = −2.2370 and �n = −4.4581, which
are of the same order. Inspection of Eqs. (31)–(34) shows
that the contribution of [[τ e

rθ ]] in the fluid flow is through the
hydrodynamic shear stresses (the first term that is proportional

0 2.5 5
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5

0 2.5 5
0

2.5

5

FIG. 3. (Color online) Streamline contours for the flow driven
by [[τ e

rθ ]] (left frame) and [[τ e
rr ]] (right frame), corresponding to the

middle frame of Fig. 2.

to Umax) as well as the instantaneous motion of the interface
(the unsteady term). This can be clearly seen from Fig. 4,
which shows that as the interface deformation stops at steady
state, urt

, which is due to the interface deformation, settle to
zero, however, uθt

, which originates from the hydrodynamic
shear stresses, settles to a nonzero value. On the other hand,
inspection of Eqs. (38)–(41) shows that the contribution of
[[τ e

rr ]] in the fluid flow is solely through the instantaneous
motion of the interface (the unsteady term). This can be clearly
seen from Fig. 4, where both urn

and uθn
settle to zero at steady

state as the interface ceases to move.
Figure 5 shows a few equispaced streamlines contours

for the phase-reversed system (i.e., oxidized castor oil in
corn oil) at an early time (t/τ = 0.001), an intermediate
time (t/τ = 4.5), and a steady state (t/τ = 10). Note that
the drop radius and the electric field strength remain the
same as before. Here, the nondimensional numbers are Oh =
28, Ca = 0.0101, R = 30, S = 0.44, ρ̃ = 1, and μ̃ = 1.846.
Compared to the first system, the overall shape of the
streamline contours is very much similar; however, the flow
directions are opposite; i.e., whereas the outer flow in Fig. 2
was from the poles to the equator, here the direction is reversed.
Similarly, the directions of the corresponding inner vortices
of the two figures are opposite. Figure 6 shows D, urmax ,
and uθmax versus time. Here as opposed to the first system,
� = 947.096 and therefore, D > 0, which implies that the
interface becomes prolate. Furthermore, the contribution of
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FIG. 4. (Color online) Deformation time history of the drop (top
frame) and the evolutions of the radial (middle frame) and tangential
(bottom frame) interfacial velocities. The frames correspond to the
fluid system of Fig. 2.

[[τ e
rθ ]] in the deformation is negligible as �t = 29.56 is much

smaller than �n = 917.536. Similar to the first system, |urn
| is

larger than |urt
|; however, now the difference between the two

velocities (during the transient) are much larger because of the
much larger difference between Dn and Dt . Interestingly, |uθn

|
is much larger than |uθt

| during the transient, which is due
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FIG. 5. (Color online) Evolution of velocity streamlines for
an oxidized castor oil drop in a silicon oil. The nondimensional
numbers are Oh = 28, Ca = 0.0101, R = 30, S = 0.44, ρ̃ = 1, and
μ̃ = 1.846. The times are t̃ = 0.001, 4.5, and 10, respectively, and
proceed from the top to the bottom. Here the fluid inside is more
conducting than the fluid outside (i.e., R > 1, R > S), and the
ambient fluid flows from the equator to the poles.

to the large difference in �n and �t . However, as before, uθn

settles to zero at steady state as the drop deformation stops.
In the two case that was just described, the directions of the

streamlines in the ambient fluid implies that the fluid tends to
deform the drop to an oblate ellipsoid in the first system while
it tends to deform it to a prolate one in the second system.
While this is exactly what happened, this observation should
not be treated as a general rule. The tendency of the fluid flow to
deform the drop in a certain direction is not the only factor that
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FIG. 6. (Color online) Deformation time history of the drop (top
frame) and the evolutions of the radial (middle frame) and tangential
(bottom frame) interfacial velocities. The frames correspond to the
fluid system of Fig. 5.

determines the sense of deformation, rather, it is the balance
of the normal stresses that does so. To characterize the effect
of fluid flow on the sense of drop deformation in general, we
construct a circulation-deformation map in S − R coordinates
following Refs. [18,22,25]. From Eqs. (1), (2), and (28) it is
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FIG. 7. (Color online) Circulation-deformation map. In region I,
R < S and � < 0, the drop deforms to an oblate, and the flow is
from the poles to the equator. In region II, R < S and � > 0, the
drop deforms to a prolate, and the flow is still from the poles to the
equator. In region III, R > S and � > 0 the drop deforms to a prolate,
and the flow is from the equator to the poles.

seen that the senses of flow circulation and deformation are
determined by the signs of S − R and �, respectively. Thus,
we plot the � = 0 curve and R = S line together in S − R

coordinates. Notice that since � is a weak function of μ̃, � = 0
is plotted only for μ̃ = 1. The R = S line and � = 0 curve
divide the parameter space into three regions (Fig. 7). In region
I, R < S and � < 0; therefore, the drop will be deformed to
an oblate, and the flow will be from the poles to the equator.
In region II, R < S and � > 0; therefore, the drop will be
deformed to a prolate and the flow will be still from the poles
to the equator. In region III, R > S and � > 0; therefore, the
drop will be deformed to a prolate, and the flow will be from the
equator to the poles. This suggests that for fluid systems where
R � S, the drop would always deform to a prolate, while for
fluid systems where R < S, the drop would either deform to a
prolate or an oblate. For the two fluid systems considered here,
the signs of �n and �t were the same, which implied that the
net normal and tangential electric stresses tended to deform
the drop in the same direction. This is not true in general as
we can easily envision a case where �n and �t have opposite
signs. Indeed, if the curve �n = 0 is added to Fig. 7 and the
line R = S is treated as �t = 0 line, the parameter space will
be divided into five regions according to the signs of �n, �t ,
and � (Fig. 8). In region I, �t < 0, �n < 0, and � < 0; in
region II, �t < 0, �n > 0, and � < 0; in region III, �t < 0,
�n > 0, and � > 0; in region IV, �t > 0, �n > 0, and � > 0;
and in region V, �t < 0, �n > 0, and � > 0. Note that region
II is the narrow region enclosed by � = 0 and �n = 0 curves
and is identified by the diamond symbols. As is evident, in
regions II, III, and V the senses of the deformation induced by
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FIG. 8. (Color online) Deformation map according to the com-
ponents of the electrical stresses. In region I, �t < 0, �n < 0, and
� < 0; in region II, �t < 0, �n > 0, and � < 0; in region III,
�t < 0, �n > 0, and � > 0; in region IV, �t > 0, �n > 0, and
� > 0; and in region V, �t < 0, �n > 0, and � > 0. Region II is the
narrow region enclosed by � = 0 and �n = 0 curves and is identified
by the diamond symbols.

the net normal and tangential electrical stresses are opposite,
while they are the same for regions I and IV.

We note that the sense of drop deformation is determined
not only by the local direction (i.e., inward versus outward) of
the sum of the net normal electric and hydrodynamic stresses,
[[τ e

rr ]] + [[τh
rr ]], but also by the variations of these stresses at

the drop surface. For instance, for perfect dielectric fluids
(R = S) the hydrodynamic stresses vanish at steady state (i.e.,
[[τh

rr ]] = [[τh
rθ ]] = 0), as the net tangential electrical stresses

are zero according to Eq. (10). As a result, the deformation
of these systems are solely determined by the net normal
electric stresses. Furthermore, for these fluid systems it is
known that the net normal electric stresses are directed from the
fluid of higher electric permittivity toward the one with lower
permittivity, i.e., [[τ e

rr ]] > 0 for S > 1 and [[τ e
rr ]] < 0 for S < 1.

However, for both S > 1 and S < 1 cases the drop deforms
always to a prolate [18]. As an example, consider two perfect
dielectric systems (i.e., R = S) with S = 2 and S = 0.5. The
terms in the bracket in Eq. (9), which represent the distribution
of [[τ e

rr ]], are [1 + cos2 θ ] and [−0.5 + 0.25 cos2 θ ] for the first
and the second systems, respectively. For the first system, the
net stresses point outward with their maxima at the poles and
minima at the equator, while for the second system the net
stresses are inward with their minima at the poles and maxima
at the equator. However, it can be easily envisioned that the net
results in both cases is the deformation of the drop to a prolate
ellipsoid.

The analysis so far was based on the premise that the viscous
time scale tμ = a2/ν is vanishingly small. As a result, the flow
started impulsively and the evolution of the flow from the

quiescent state could not be captured here. Furthermore, the
drop deformation and the velocity developed monotonically
toward the steady state. The fluid inertia can be of importance
in a class of problems where τμ = a2/ν is still less than τd =
μa/γ but it cannot be ignored. For this class of problems, we
conjecture that the phenomenon will be governed by two time
scales, i.e., τμ and τd . Here the velocity field (characterized,
for example, by the average kinetic energy of the fluids) would
evolve from the quiescent state to a local peak in a time interval
that is of the order of tμ and then gradually would settle to
a steady state. For the small deformation considered here,
the drop deformation would still monotonically settle to its
steady-state value in a time interval of the order of τd . For larger
deformations, the dynamics becomes more complex, and both
the deformation and the velocity field might settle to their
steady-state values in a nonmonotonic way. The numerical
simulations of Ref. [26] lend some support to these arguments.

IV. CONCLUSIONS

The transient dynamics of a liquid drop surrounded by
another liquid and driven by a uniform electric field was
investigated analytically. It was shown that for small distortion
from a spherical shape and for large Ohnesorge number,
the deformation time history is D = D∞[1 − exp(−t/τ )],
where τ = (aμo/γ )(19μ̃ + 16)(2μ̃ + 3)/(40μ̃ + 40) is the
characteristic time scale. The contributions of the net normal
and tangential electric stresses in the degree of deformation
and fluid flow strength and structure were determined, and it
was shown that the former contributes to the fluid flow through
the instantaneous motion of the phase boundary while the latter
contributes through that effect as well as creation of the net
hydrodynamic shear stresses. It was shown that the net normal
and tangential electrical stresses may tend to deform the drop
in the same direction or in the opposite directions according
to the deformation map that was introduced, comprised of the
line of �t = 0 and curves of �n = 0 and �n = 0 drawn in
S − R coordinates.

APPENDIX A : THE ORDER OF ACCURACY OF THE
SOLUTION

In seeking analytical solution to multifluid flow problems,
one is generally faced with the difficulty of satisfying in-
terfacial boundary conditions at an interface that does not
coincide with the coordinate surfaces. For small interface
deformation, this problem can be addressed by the domain
perturbation theory, a regular perturbation expansion method
that its formalism was introduced by Joseph [27]; however, it
was around long before that (see the comments in page 283
of Ref. [28]). The essence of the method is to define a small
perturbation parameter ε and to seek a solution of the form

�(r) = �0(r) + ε�1(r) + O(ε2) (A1)

for the dependent variables � (velocity, electric potential, etc.)
and to replace the exact boundary condition at the interface
with an approximate boundary condition at a coordinate
surface that is asymptotically equivalent for ε � 1 using
the Taylor series expansion. Here �0 and �1 are called the
solutions at the zeroth and the first order of the perturbation
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parameter ε, respectively, and r represents the position vector
of a point. In the language of domain perturbation theory, our
solution for the field variables is of the zeroth order, while that
for the deformation is of the first order.

To put our solution in perspective, in the following we
outline the major steps that are involved in finding a first-order
solution for the electric field potential φ. Here we need to solve
Eq. (4) in the domains depicted in Fig. 1 and subject to the
following jump conditions:

φi(r,θ )|r=ξ = φo(r,θ )|r=ξ (A2)

and

σi

∂φi

∂n
(r,θ )

∣∣∣
r=ξ

= σo

∂φo

∂n
(r,θ )

∣∣∣
r=ξ

(A3)

at a phase boundary that is represented by Eq. (8). Note that
the subscripts i and o denote inside and outside, respectively,
and that ∂/∂n denotes derivative in the direction normal to the
interface. To proceed, we pick the deformation parameter as
our perturbation parameter (i.e., ε ≡ D) and rewrite Eq. (8) in
the following form:

ξ = a + εf (θ ), (A4)

where f (θ ) = (2/3)a(3 cos2 θ − 1). We now seek a solution
of the form

φ = φ0(r,θ ) + εφ1(r,θ ) + O(ε2) (A5)

for φ. Substitution of Eq. (A5) in Eq. (4) and grouping the
terms that have the same coefficient in terms of the exponents
of ε yield the electric field equations at the zeroth order

∇2φ0 = 0 (A6)

and at the first order

∇2φ1 = 0. (A7)

To find an appropriate form of boundary condition (A2)
that is applicable at the coordinate surface, we use the Taylor
series expansion of φ in the neighborhood of r = a:

φ|r=ξ = φ

∣∣∣
r=a

+ εf (θ )
∂φ

∂r

∣∣∣
r=a

(A8)

and substitute for φ from Eq. (A5) in Eq. (A8). This yields

φ|r=ξ = φ0|r=a + ε

(
φ1

∣∣∣
r=a

+f (θ )
∂φ0

∂r

∣∣
r=a

)
+ O(ε2). (A9)

Substitution for φi |r=ξ and φo|r=ξ in boundary condition (A2)
in terms of the expression in the right-hand side of Eq. (A9)
and equating the terms that are of equal order of the exponents
of ε in the left-hand side and the right-hand side of the resulting
expression lead to the following expressions for boundary
condition (A2) at the zeroth order

φ0
i (a,θ ) = φ0

o(a,θ ) (A10)

and at the first order

φ1
i

∣∣∣∣
r=a

+ f (θ )
∂φ0

i

∂r

∣∣∣∣
r=a

= φ1
o

∣∣∣∣
r=a

+ f (θ )
∂φ0

o

∂r

∣∣∣∣
r=a

. (A11)

To find the appropriate form of boundary condition (A3),
we need to express the normal derivative in terms of the

coordinate derivatives. Considering that ∂φ/∂n = ∇φ · n,
∇φ = (∂φ/∂r)er + (1/r)(∂φ/∂θ )eθ , and n = er − (ε/r)f ′eθ

it is seen that

∂φ

∂n
= ∂φ

∂r
− ε

f ′

r

∂φ

∂θ
, (A12)

where f ′ = df/dθ . We then expand the terms on the right-
hand side of Eq. (A12) in the neighborhood of a using the
Taylor series and substitute for φ from Eq. (A5) in the resulting
expression. This leads to

∂φ

∂n

∣∣∣
r=ξ

=
[
∂φ0

∂r
+ ε

(
f ∂2φ0

∂r2
+ ∂φ1

∂r
− f ′

a

∂φ0

∂θ

)] ∣∣∣
r=a

.

(A13)

Substitution for ∂φi/∂n|r=ξ and ∂φo/∂n|r=ξ in Eq. (A3) in
terms of the expression in the right-hand side of Eq. (A13) and
equating the terms of the same order of exponents of ε results
in the following expressions for the boundary condition (A3)
at the zeroth order

σi

∂φ0
i

∂r

∣∣∣∣
r=a

= σo

∂φ0
o

∂r

∣∣∣∣
r=a

(A14)

and at the first order

σi

(
f

∂2φ0
i

∂r2
− f ′

a

∂φ0
i

∂θ
+ ∂φ1

i

∂r

) ∣∣∣∣∣
r=a

= σo

(
f

∂2φ0
o

∂r2
− f ′

a

∂φ0
o

∂θ
+ ∂φ1

o

∂r

) ∣∣∣∣∣
r=a

. (A15)

In summary we have two sets of equations and boundary
conditions that need to be solved sequentially; namely,
Eq. (A6) with boundary conditions (A10) and (A14), and
Eq. (A7) with boundary conditions (A11) and (A15). In this

study, we are only concerned with the results of a zeroth order

solution for φ (see Ref. [1] and appendix of Ref. [18]), so we
solved only for φ0.

APPENDIX B : CALCULATION OF THE CURVATURE

The local curvature κ that is needed in the normal stress
balance is the sum of the principal curvatures κ1 and κ2. While
κ1 and κ2 can be found separately, an easier approach would
be to calculate κ directly using

κ = ∇ · n, (B1)

where n is the (outward) unit normal at the drop surface. For
a general surface of the form F (r,θ,ϕ) = 0, n can be found
using

n = ∇F

|∇F | , (B2)

where ∇ is the gradient operator in the spherical coordinates.
Obviously, here the derivatives of F with respect to ϕ are all
nil. We can further simplify the matter by taking advantage
of the fact that the degree of deformation D is very small.
Equation (8), therefore, can be written as r = a + f (θ ), where
r ≡ ξ (t) and f (θ ) = (2/3)aD(3 cos2 θ − 1) � a. Carrying

036308-10



TRANSIENT ELECTROHYDRODYNAMICS OF A LIQUID DROP PHYSICAL REVIEW E 84, 036308 (2011)

out the calculation and ignoring the terms of order D2 and
higher results in

κ = 2

r
− 1

r2 sin θ

d

dθ

(
sin θ

df

dθ

)
. (B3)

Substitution for r and f (θ ) in Eq. (B3) and using the Taylor
series expansion in terms of D results in

κ = 2

a
+ 8D(3 cos2 θ − 1)

3a
. (B4)
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