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Droplet spreading on chemically heterogeneous substrates
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Consider the spreading dynamics of a two-dimensional droplet over chemically heterogeneous substrates.
Assuming small slopes and strong surface tension effects, a long-wave expansion of the Stokes equations yields a
single evolution equation for the droplet thickness. The contact line singularity is removed by assuming slip at the
liquid-solid interface. The chemical nature of the substrate is incorporated by local variations in the microscopic
contact angle, which appear as boundary conditions in the governing equation. By asymptotically matching the
flow in the bulk of the droplet with the flow in the vicinity of the contact lines, we obtain a set of coupled ordinary
differential equations for the locations of the two droplet fronts. We verify the validity of our matching procedure
by comparing the solutions of the ordinary differential equations with solutions of the full governing equation.
The droplet dynamics is examined in detail via a phase-plane analysis. A number of interesting features that are
not present in chemically homogeneous substrates are found, such as the existence of multiple equilibria, the
pinning of the droplet fronts at localized chemical features, and the possibility for the droplet fronts to exhibit a
stick-slip behavior.
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I. INTRODUCTION

Wetting phenomena occur in a wide variety of natural phe-
nomena and technological applications, from the repellency of
rain water droplets by certain plant leafs and insects walking
on water, to oil recovery, inkjet printing, and more recent
applications such as microfluidic devices. As a consequence,
wetting, and particularly its utilization to manipulate droplet
behavior, has been an active topic of both theoretical and
experimental research for several decades [1–4].

One of the most extensively studied topics in wetting
is the spreading of liquid droplets on ideally homogeneous
solid substrates [5–10]. Oftentimes, substrates are not ideally
homogeneous but they are characterized by topographical
defects or variations which can cause substantial changes
to the spreading dynamics; e.g., they can pin the droplet
fronts at localized features, induce stick-slip behavior and
hysteresis, or cause the droplet to move in a preferred
direction. Recent studies of spreading on topographical sub-
strates, either structured or random, both theoretical (e.g.,
[11–14]) and experimental (e.g., [15,16]), demonstrated many
of these effects. Noteworthy is that current technological
advances allow control of topographical features down to
microscopic scales (e.g., [17,18]). The droplet spreading
dynamics is also significantly influenced by the presence
of additional effects and complexities, such as thermocapil-
larity (e.g., [10]), evaporation (e.g., [19]), or electric fields
(e.g., [20]).

Of equal importance are the effects of chemical het-
erogeneities on the spreading dynamics. One of the first
studies that examined droplet equilibria on flat chemically
heterogeneous substrates was that by Cassie [21]. By using
energetic and thermodynamic arguments, he obtained an
effective contact angle θC that accounts for the areas occupied
by different substrate chemistries. For example, when the
substrate consists of only two different materials, he showed
that

cos θC = β cos αs,1 + (1 − β) cos αs,2, (1)

where β is the area fraction of material 1 and αs,1, αs,2 are the
equilibrium contact angles on substrates made of materials
1 and 2, respectively. The general applicability of Eq. (1)
has been recently the subject of a vigorous debate [22–27].
It is generally accepted that this expression holds in an
“averaged sense” [28] and cannot describe quantitatively all
possible cases (after all, it is based on thermodynamics solely
without any fluid dynamics). Indeed, a number of studies
(e.g., [29–32]) with chemically heterogeneous substrates have
demonstrated that the agreement of Eq. (1) with experiments
is only qualitative.

Experimental studies with chemically heterogeneous sub-
strates also observe that the droplet fronts tend to pin on
localized chemical defects—much like the topographical
substrates case mentioned earlier—as shown for instance in
the work of Cubaud and Fermigier [33]. Another commonly
reported feature of chemically heterogeneous substrates is
that of a preferential droplet motion in the presence of
favorable wettability gradients (e.g., [34,35]). If these are
sufficiently strong, they can even move a droplet against
gravity on an inclined plane [34]. More recent experimental
studies examined spreading over striped chemical substrates
(e.g., [36–38]). They reported preferential spreading along
the substrate stripes and they also identified the possibility
of pinning a sufficiently small droplet along a stripe as well as
of stick-slip behavior for strong wettability contrasts between
the heterogeneities.

At the theoretical front, several studies have examined
wetting of chemically heterogeneous substrates. The early
study by Greenspan [39] examined the effects of a wettability
gradient on the motion of a three-dimensional viscous droplet
by imposing a spatial variation on the equilibrium contact
angle. The equation for the droplet motion was obtained from
the long-wave limit of the Stokes regime and a slip model was
utilized to remove the stress singularity associated with a mov-
ing contact line [40]. Greenspan also prescribed an empirical
law that relates the contact line speed with the apparent contact
angle. Other studies resorted to thermodynamic and energetic
arguments and/or postulated equations. For example, the study
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by Joanny and de Gennes [41] considered weak, localized
chemical defects, using force balance equations along the
contact line (but the weak heterogeneity limit precludes the
possibility of contact angle hysteresis). Brochard [42] also
employed force balance and energy arguments to deduce the
wetting characteristics of a two-dimensional droplet in terms of
the spreading coefficient along the substrate [42]. The work of
Moulinet et al. [43] investigated the contact line dynamics on
chemically heterogeneous substrates via postulated equations
and under the assumption that it exhibits similar features with
avalanche dynamics, but their theoretical results failed to agree
with their experiments.

Schwartz and Eley [44] examined the motion of a three-
dimensional droplet on chemically heterogenous substrates
by utilizing the long-wave limit of the Stokes regime and by
taking the equilibrium contact angle to be a prescribed function
of position on the substrate as Greenspan did. However,
instead of slip, a constant-thickness precursor film model
was utilized to remove the stress singularity at the moving
contact lines. The precursor film was obtained from the balance
of the attractive and repulsive intermolecular forces of the
disjoining pressure model these authors adopted. Thiele and
Knobloch [45] used a similar precursor film model and focused
on two-dimensional droplet spreading. The wettability defects
were modeled by introducing variations in the attractive part of
the disjoining pressure. They demonstrated that it is possible
for an advancing front to get pinned at less hydrophilic regions
and for a receding front to get pinned at more hydrophilic ones,
obtaining also the various depinning transitions in the presence
of imposed driving forces, such as body forces or temperature
gradients. Other studies utilized the Lattice-Boltzmann method
to perform simulations of spreading of nanodroplets on specific
wettability configurations. For example, Huang et al. [46]
investigated conditions under which alternating high and
low wettability regions can induce a unidirectional motion
[46], whereas Kusumaataja et al. performed computations
on substrates with stripped regions of different equilibrium
contact lines [47].

In the present study we perform a detailed and systematic
investigation of two-dimensional droplet spreading over flat
but chemically heterogeneous substrates with the aim to eluci-
date qualitatively the effects of substrate chemistry on wetting.
Like some of the previous studies (e.g., [11,39,48,49]), we
invoke the long-wave expansion of the Stokes equations and
we remove the stress singularity associated with a moving
contact line by using a slip model. Contrary to previous studies
on chemical heterogeneities, we reduce the nonlinear free
boundary value problem to a system of ordinary differential
equations (ODEs) for the two moving fronts, which is a
considerably simpler problem to solve numerically. More
importantly, one of the novel aspects of this methodology is
that it facilitates the extraction of generic equilibrium and
dynamic features via a phase plane analysis which would not
have been possible by a direct numerical treatment of the
long-wave model.

The model and appropriate boundary conditions together
with their nondimensionalization are outlined in Sec. II,
by assuming that the chemical variations of the substrate
occur at length scales that are much longer than the slip
length. In Sec. III, the problem is analyzed via matched

asymptotics which lead to a set of ODEs for the evolution
of the two droplet fronts. The analysis builds on the singular
perturbation methodology developed by Hocking [49] and by
Savva and Kalliadasis [11] for droplet spreading over ideally
homogeneous and topographical substrates, respectively. It is
valid in the limit Ca � 1, where Ca is the capillary number,
defined as

Ca = μU

σ
, (2)

where σ is the surface tension, μ is the liquid viscosity, and
U is the (time dependent) fluid velocity. Not only is this a
realistic assumption as many spreading experiments fall within
the low-capillary-number regime, but it allows us to treat
the droplet motion as a quasistatic one which in turn allows
for analytical progress. Like Greenspan [39], the quasistatic
assumption has also been invoked by Glasner [50], who
obtained three-dimensional droplet profiles via a boundary
integral formulation, but had nevertheless imposed the contact
line velocity as a function of the apparent contact angle.

In Sec. IV A we offer comparisons of the numerical solution
of the full partial differential equation (PDE) and the equations
obtained by asymptotic matching. We also consider in detail
the effects of slip and we demonstrate the possibility of a stick
slip behavior as well as a hysteresis-like effect induced by the
chemical heterogeneities. In Sec. IV B, we present a detailed
investigation of the phase portrait of the two contact lines.
We also determine the conditions under which two localized
heterogeneities can trap a spreading droplet and the effects
of having substrates with alternating regions with different
wetting characteristics. Finally, our results are summarized in
Sec. V.

II. PROBLEM FORMULATION

We consider a two-dimensional droplet that spreads on a
flat, horizontal, and chemically heterogeneous substrate. The
droplet cross section lies on the X-Z plane and has thickness
H (X,T ) at time T . By neglecting gravitational effects and
assuming that the free-surface slope is everywhere small,
a long-wave expansion of the Stokes equations yields the
following equation for the evolution of the droplet thickness:

∂H

∂T
+ σ

3μ

∂

∂X

[
H 2(H + 3�)

∂3H

∂X3

]
= 0, (3)

where μ and σ are the dynamic viscosity and surface tension
of the fluid, respectively. � is the slip length associated with
the Navier slip condition along the substrate,

U |Z=0 = �
∂U

∂Z

∣∣∣∣
Z=0

,

where U (X,T ) is the fluid velocity in the X direction. Even
though there is some debate on the slip lengths reported in
experimental studies, it is generally accepted that the slip
lengths for hydrophilic substrates are typically of the order
of nanometers and tend to be smaller compared to those for
hydrophobic substrates (see, e.g., [51–53]).

Here, we assume that � is constant along the substrate.
Admittedly, the slip length may exhibit local variations due to
the chemical heterogeneities of the substrate, but provided
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that such variations are not strong and do not alter the
order of magnitude of the slip length, they are not expected
to significantly alter the droplet behavior qualitatively, as
we shall also demonstrate with numerical experiments later.
Noteworthy is that keeping � constant is equivalent to keeping
the thickness of the precursor film constant in a precursor
film model (e.g., [54–56]), an assumption that has been
invoked in previous studies on droplet spreading on chemically
heterogeneous substrates with a precursor film model (e.g.,
[44]). In our model the chemical heterogeneities enter the
problem by prescribing a locally varying microscopic contact
angle at the contact points. Equation (3) is subject to contact
angle conditions at the two moving fronts, zero-thickness
conditions there, and the requirement that the droplet area
remain constant at all times. The governing equation is made
nondimensional by introducing the variables

x = X

L
, t = σ tan3 αs

3μL
T,

h = H

L tan αs

, λ = 3L

� tan αs

,

where αs is some reference contact angle and L is the
characteristic length scale associated with the cross-sectional
area of the droplet, A, written as

L =
√

A

2 tan αs

.

For periodically structured substrates, αs is typically taken
to be the average contact angle, whereas for substrates with
localized features it is taken to be the contact angle in a defect-
free region of the substrate. In nondimensional variables,
Eq. (3) becomes

∂h

∂t
+ ∂

∂x

[
h2(h + λ)

∂3h

∂x3

]
= 0. (4)

Assuming that the left and right droplet fronts are located at
x = b(t) and x = a(t), respectively (see Fig. 1), the boundary
conditions outlined above become

h = 0 at x = a(t) and x = b(t), (5a)
∂h

∂x
= −g(a) at x = a(t), (5b)

∂h

∂x
= g(b) at x = b(t), (5c)

together with the area constraint:∫ a

b

h dx = 2. (5d)

Here g(x) is an imposed function of x for the local variations
of the microscopic contact angle, which characterizes a
chemically heterogeneous substrate. In general, there is no
restriction on the form of g(x), apart from requiring that it be
O(1), that its derivatives be continuous, and that its variations
occur at length scales that are much longer than the slip
length, λ. As with related studies employing a slip condition
(see, e.g., [11,49]), we anticipate sharp boundary layers in
the vicinity of the moving fronts, where the slope of the free
surface changes abruptly from the microscopic contact angle

FIG. 1. Two-dimensional droplet spreading on a chemically het-
erogeneous substrate. In nondimensional units, the droplet thickness
is given by h(x,t), with its contact points located at x = a(t) and
x = b(t). The local contact angle variations along the substrate are
prescribed by g(x). The substrate is shaded according to the color bar,
which shows the range of g(x) used throughout the present study.

to an apparent contact angle in the bulk. As a consequence, an
asymptotic analysis may be appropriately employed to deduce
equations for the two moving fronts.

III. MATCHED ASYMPTOTICS

To proceed, we restrict our attention to the regime Ca � 1,
which is equivalent to assuming that |ȧ| = |da/dt | � 1 and
|ḃ| = |db/dt | � 1 in dimensionless units. In the bulk of
the droplet, which we call the outer region, the motion is
dominated by capillarity, whereas near the contact lines,
in the inner regions, slip is predominant. By considering
the dynamics in these disparate length scales and matching
asymptotically their corresponding behaviors we shall obtain
expressions for the spreading rates, ȧ and ḃ.

A. Outer region

Away from the contact lines, slip is negligible. Hence, in
the outer region, Eq. (4) simplifies to

∂h

∂t
+ ∂

∂x

[
h3 ∂3h

∂x3

]
= 0. (6)

Since the slope conditions depend on the details of the flow
field in the vicinity of the contact lines, the solution to Eq. (6)
in the outer region is to be determined subject to Eqs. (5a)
and (5d). Treating ȧ and ḃ as the small parameters of the
problem, we introduce a quasistatic expansion of the form

h(x,t) = h0(x,a,b) + ȧh1(x,a,b)

+ ḃh2(x,a,b) + · · · . (7)

Our task is to find the asymptotic behavior of h(x,t), as the
contact points, x = a(t) and x = b(t), are approached. To
O(ȧ0,ḃ0), we obtain the following equation for h0:

∂3h0

∂x3
= 0. (8)
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Using then Eqs. (5a) and (5d) the solution to Eq. (8) is simply
the parabolic profile

h0 = φ

(a − b)
(a − x)(x − b), (9)

where

φ = ∓∂h0/∂x|x=a(t), b(t) = 12/(a − b)2 (10)

is the apparent contact angle, which, like g(x), is O(1), as
required by the chosen scales of our nondimensionalization.
To consider the next-order terms, take ∂h0/∂t = ȧ ∂h0/∂a +
ḃ ∂h0/∂b. From the O(ȧ,ḃ) terms, we obtain

∂3h1

∂x3
= a − b

φ2(a − x)2(x − b)
, (11a)

∂3h2

∂x3
= a − b

φ2(a − x)(b − x)2
, (11b)

for h1 and h2, respectively. Both differential equations are to be
solved subject to homogeneous boundary conditions, namely

h1 = h2 = 0 at x = a(t),b(t), (12a)∫ a

b

h1 dx =
∫ a

b

h2 dx = 0. (12b)

Determining h1 and h2 is trivial; we successively integrate
Eqs. (11a) and (11b), respectively, and apply the corresponding
conditions in Eqs. (12a) and (12b). However, we are interested
in the leading-order behavior of their slopes as x → a and
x → b. Hence, we have that

∂h1

∂x
∼

⎧⎪⎪⎨
⎪⎪⎩

− 1

φ2
ln

(
e2 a − x

a − b

)
, as x → a(t),

1

φ2
, as x → b(t),

(13a)

∂h2

∂x
∼

⎧⎪⎪⎨
⎪⎪⎩

1

φ2
, as x → a(t),

− 1

φ2
ln

(
e2 x − b

a − b

)
, as x → b(t),

(13b)

where e = exp (1). The neglected terms are O(η ln η), where
η = x − b, when x → b(t) or η = a − x, when x → a(t). The
idea is to match the slope of the outer solution with the inner
one. By combining Eq. (9) with Eqs. (13a) and (13b), we
obtain the leading-order slope of the outer solution as the
contact points are approached:

−∂h

∂x
∼ φ + ȧ

φ2
ln

(
e2 a − x

a − b

)
− ḃ

φ2
, as x → a(t),

(14)

∂h

∂x
∼ φ − ḃ

φ2
ln

(
e2 x − b

a − b

)
+ ȧ

φ2
, as x → b(t).

(15)

The above asymptotic expansions will be utilized in the
matching with their corresponding asymptotic expansions
from the inner regions. The matching will be carried out within
some overlap regions such that φ is the dominant term in
Eqs. (14) and (15), and the x-dependent logarithmic terms are
the next-order corrections in their asymptotic expansions.

B. Inner region

As noted earlier, the details of the solution close to the
contact lines cannot be resolved by the outer solution and we
need to look into the dynamics of the inner regions, where the
effect of slip is appreciable. The width of these inner regions is
O(λ). Hence, to examine the dynamics near the right contact
point x = a(t), we introduce the inner variables:

� = h

λ
and ξ = a − x

λ
ga,

where we set ga = g(a). By expressing Eq. (4) in terms of �

and ξ we obtain

ȧ
∂�

∂ξ
+ g3

a

∂

∂ξ

[
�2(� + 1)

∂3�

∂ξ 3

]
= 0 (16)

to O(λ0), where, again, the variations of g(x) are assumed
to occur at length scales that are much longer than λ. By
expressing the boundary conditions to solve Eq. (16) in terms
of the inner variables, we obtain

�|ξ=0 = 0 and
∂�

∂ξ

∣∣∣∣
ξ=0

= 1,

which are supplemented with the requirement that as we move
toward the droplet bulk the linear terms dominate; i.e.,

�/ξ 2 → 0 as ξ → ∞.

Just as when treating the outer region, we also assume that the
dynamics of the inner regions is quasistatic, which allows us
to expand � in Eq. (16) as

� = �0 + ȧ�1 + · · · .
By taking the leading-order solution to be a wedge, i.e., �0 =
ξ , the equation for �1 becomes

∂3�1

∂ξ 3
= − 1

g3
aξ (ξ + 1)

,

to be solved subject to �1|ξ=0 = ∂�1/∂ξ |ξ=0 = 0 and
�1/ξ

2 → 0 as ξ → ∞. With these conditions, the leading-
order slope of �1 as we move away from the contact line is
given by

∂�1

∂ξ
∼ 1 + ln ξ

g3
a

, as ξ → ∞.

Hence, the asymptotic behavior of ∂�/∂ξ as ξ → ∞ becomes

∂�

∂ξ
∼ 1 + ȧ

g3
a

(1 + ln ξ ), as ξ → ∞,

or, in terms of the outer variables,

−∂h

∂x
∼ ga + ȧ

g2
a

ln

(
ega

a − x

λ

)
, as

a − x

λ
→ ∞.

(17)

Likewise, to obtain ∂h/∂x as we move away from the contact
point at x = b(t), we follow similar arguments to finally obtain

∂h

∂x
∼ gb − ḃ

g2
b

ln

(
egb

x − b

λ

)
, as

x − b

λ
→ ∞, (18)

where gb = g(b).
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C. Matching

The goal of our analysis is to match Eqs. (14) and (17) in
some overlap region, where both asymptotic expansions are
valid. However, we readily see that the coefficients in front
of the x-dependent logarithmic terms do not match. Hence,
an intermediate region that lies between the inner and outer
regions is required to properly match the two solutions. The
procedure for the intermediate regions may be carried out as
in related studies (see, e.g., [11,49]), which eventually justifies
rigorously why the matching can be carried out for (∂h/∂x)3

instead of ∂h/∂x. The details of this calculation are omitted
here, and we directly consider the cubes of Eqs. (14) and (17),
which upon matching yield

φ3 − g3
a

3
= ȧ ln

(
ga

a − b

eλ

)
+ ḃ. (19)

By similar arguments, we match Eqs. (15) and (18) to obtain

φ3 − g3
b

3
= −ḃ ln

(
gb

a − b

eλ

)
− ȧ. (20)

Equations (19) and (20) constitute a system of linear equations
for ȧ and ḃ, from which we obtain

ȧ = δa ln
(
gb

a−b
eλ

) + δb

ln
(
ga

a−b
eλ

)
ln

(
gb

a−b
eλ

) − 1
, (21a)

ḃ = − δb ln
(
ga

a−b
eλ

) + δa

ln
(
ga

a−b
eλ

)
ln

(
gb

a−b
eλ

) − 1
, (21b)

where

δa = φ3 − g3
a

3
, δb = φ3 − g3

b

3
, (22)

and φ is given by Eq. (10). We readily see from Eqs. (21) that
the droplet reaches equilibrium when both δa and δb vanish,
i.e., when the local contact angles become equal to the apparent
contact angle. Noteworthy is that in the absence of contact
angle hysteresis due to other effects, equilibrium can only be
attained if both angles at the contact points are equal to each
other.

As a result of the asymptotic analysis we employed,
we were able to reduce a nonlinear, fourth-order PDE into
a much simpler system of ODEs, Eqs. (21), which gives
the leading-order speeds of the two moving droplet fronts.
In the following sections, we will examine various aspects of
the solutions obtained by the system of ODEs, where we also
make comparisons to the full PDE. We observe from Eqs. (21)
that the droplet attains equilibria when the apparent contact
angle, φ, equals the microscopic contact angle, g(x), at the
contact points.

It is important to emphasize that a crucial element of the
above procedure is the smallness of λ. If λ is not small, the
asymptotic analysis is expected to fail in describing the droplet
dynamics. This is better illustrated if one considers symmetric
spreading, i.e., spreading when g(x) is an even function of x

and initially we have that a(0) = −b(0). In this case, b(t) =
−a(t), and a(t) is found by solving the ODE

φ3 − g3
a

3
= ȧ ln

(
ga

2a

e2λ

)
. (23)

If φ > g(a), physically we expect to have advancing droplet
fronts; i.e., ȧ > 0. For this to occur, the logarithmic term must
be always positive and this happens for sufficiently small λ. If
λ is not small, Eq. (23) may predict a receding droplet front,
which is clearly nonphysical. Consequently, the full PDE needs
to be considered instead, provided that the inertial effects do
not become important, i.e., for λ up to O(1) (see [57]).

IV. RESULTS

A. Dynamics

1. Comparison with full solution

Before presenting a detailed investigation of the dynamics
of the system in Eqs. (21), we first compare its solution
with that of the full PDE, Eq. (4), obtained numerically.
The numerical solution of the full PDE is based on spectral
differentiation in space and adaptive, semi-implicit time
stepping, following similar ideas from the scheme outlined
in the Appendix of Ref. [11].

For all cases presented here, the slip length is fixed at
λ = 10−5, unless otherwise stated. Initially, the droplet fronts
are at a(0) = −b(0) = 1. In Fig. 2(a), we show the evolution
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FIG. 2. Evolution of droplet fronts when λ = 10−5 and a(0) =
−b(0) = 1 for (a) g(x) = 1 + 0.8 sin 4x and (b) g(x) = 1 +
0.05 sin 4x. Solid curves correspond to the solution of the coupled
system of ODEs, Eqs. (21); dashed curves correspond to the solution
of the PDE, Eq. (4).
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FIG. 3. (a) Evolution of droplet fronts on the substrate g(x)
=1.5 − 0.5 tanh 50(x + 1), λ = 10−5. Solid curves correspond to
the solution of the coupled equations (21a) and (21b) obtained
from matching, dashed curves correspond to the solution of the full
PDE, Eq. (4). (b) Evolution of the droplet free surface; curves A–D
correspond to times t = 0,1,10,1000, respectively.

of the droplet fronts when g(x) = 1 + 0.8 sin 4x, where we
observe an excellent agreement between the solutions to the
PDE and the system of ODEs. Initially, both fronts advance, but
at later times the left contact point recedes before eventually
reaching equilibrium. The minor difference between the two
solutions at the onset may be attributed to the relatively
higher initial front speeds, which lie beyond the regime of
validity of the matched asymptotics. However, it is evident that
Eqs. (21) are able to satisfactorily capture the leading-order
dynamics of Eq. (4). For a weaker heterogeneity profile, e.g.,
for g(x) = 1 + 0.05 sin 4x, there is an improved agreement
between the two solutions shown in Fig. 2(b), as they are nearly
indistinguishable. Now we observe a different behavior: The
left droplet front advances toward equilibrium, whereas front
recession is observed for the right contact point.

In general, a droplet avoids the less hydrophilic regions
and moves toward more hydrophilic ones, in agreement with
the results of previous studies (e.g., [45,50]). This effect
is demonstrated with the heterogeneity profile g(x) = 1.5 −
0.5 tanh 50(x + 1), a(0) = 1.5, and b(0) = −1. Figure 3(a)
shows the evolution curve for the droplet front locations based
on Eqs. (21), which also exhibit excellent agreement with
the solution to the PDE, Eq. (4). Figure 3(b) depicts the
corresponding droplet shapes at different times. It is readily
observed that the left droplet front is nearly pinned where
the substrate wettability changes abruptly, whereas the right
droplet front advances for all times. It should be noted here that
the droplet never reaches equilibrium. The reason is because
in this artificial substrate profile, there is no finite equilibrium,
and the droplet is driven toward +∞. However, the rate at
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FIG. 4. Evolution of droplet fronts on the substrate g(x) =
1 + 0.4 sin 4x, λ = 10−5 with a(0) = −b(0) = 1. (a) Solid curves
correspond to the solution of the ODEs obtained by matching,
Eqs. (21); dashed curves are the solution of the PDE, Eq. (4). A
comparison of the two solutions shows that the left front, b(t), always
advances for the PDE, whereas for the ODEs it exhibits recession
at later times. At equilibrium, both droplet fronts obtained from the
PDE are shifted leftward compared to those obtained from the ODEs
[higher −b(t) and lower a(t)]. (b) The corresponding equilibrium
droplet profiles. The dotted curve shows the initial droplet position.
The substrate is shaded according to the color bar of Fig. 1

which this occurs is exponentially small. Hence, in a more
realistic setting, the droplet may be easily stopped by a tiny
substrate defect, either chemical or topographical.

Despite the overall excellent agreement exhibited in Figs. 2
and 3 for the solutions to Eqs. (21) and Eq. (4), it should
be emphasized that there may also exist cases for which
their solutions are markedly different. To understand why this
occurs, one needs to investigate the phase-plane dynamics of
Eqs. (21) in detail, as done in a recent study for topographical
substrates [56], where it was found that solutions to the
governing PDE may deviate significantly from the solutions
to the equations obtained by matched asymptotics, when the
droplet fronts are initially located close to the boundaries
of the basins of attraction of different fixed points. This
is due to the fact that even a small perturbation, that is
inherent in an asymptotic analysis due to our neglecting of
the higher-order terms, may drive the dynamics to an entirely
different equilibrium. To illustrate this effect, we consider in
Fig. 4 the case when g(x) = 1 + 0.4 sin 4x. We readily see that
the droplet fronts obtained by solving the equations resulting
from the matching and those obtained by the PDE evolve in
a different manner, eventually driving the droplet to different
equilibria. We shall resume our discussion of the phase plane
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FIG. 5. Effect of λ: spreading on a substrate with g(x) =
1 + 0.8 sin 4x when λ1 = 2 × 10−5 (solid curves) and λ2 = 2 × 10−3

(dashed curves). (a) The evolution of the droplet fronts when
a(0) = −b(0) = 1. (b) The corresponding velocities of the fronts.

when investigating the nature of the droplet equilibria in the
following sections.

2. Effect of slip

Having established with numerical experiments the validity
of the ODEs obtained by matching, we will now consider the
effect of slip on the dynamics. Slip originates from processes
occurring at molecular length scales, and in our model we have
assumed that it is constant everywhere as discussed in Sec. II.
Even though a space-dependent λ might have been somewhat
more realistic, we chose to keep it constant. This simplifies our
analysis; after all our principal aim is to study the qualitative
characteristics of the dynamics. Besides, slip does not affect
the equilibria and their stability. Moreover, Eqs. (21) indicate
that the speed of the droplet fronts is only logarithmically
dependent on λ and as a consequence the influence of λ on the
approach to equilibrium is generally weak.

To show how precisely the dynamics depend on λ, we
performed simulations using Eqs. (21) for a substrate with
g(x) = 1 + 0.8 sin 4x and two slip lengths differing by a factor
of 100, namely λ1 = 2 × 10−5 and λ2 = 2 × 10−3. In Fig. 5(a)
we show the evolution of the moving fronts when a(0) =
−b(0) = 1 and observe that the overall qualitative behavior
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FIG. 6. Effect of λ: spreading on a substrate with g(x) = 1 +
0.3 sin 8x, when λ1 = 2 × 10−5 (solid curves) and λ2 = 2 × 10−3

(dashed curves). (a) The evolution of the droplet fronts when a(0) =
−b(0) = 1. (b) The corresponding equilibrium droplet profiles; the
dotted curve refers to the initial droplet shape. The substrate is shaded
according to the color bar of Fig. 1.

is not affected by the different slip, despite the significantly
faster front speeds for the longer slip length, λ2 [see Fig. 5(b)].
This qualitative agreement is generally expected, even if the
disparity between the slip lengths is large. However, there
can also exist cases for which different slip lengths yield
significantly different dynamics, for initial conditions located
near the saddle point manifolds, as previously mentioned
when comparing with solutions to the full PDE. To illustrate
such effects, we show in Fig. 6(a) the evolution of a(t) and
b(t) resulting from Eqs. (21) for a substrate with g(x) =
1 + 0.3 sin 8x and the same parameters as in Fig. 5. We
now observe that the change in λ is sufficient to lead the
droplet to a different equilibrium in the long-time limit [see
Fig. 6(b)].

3. Stick-slip and hysteresis-like effects

For the substrate g(x) = 1 + 0.3 sin 100x, a(0) = −b(0) =
1, in which the variations in microscopic contact angle occur
at shorter length scales, we observe from Fig. 7(a) that the
speed of the droplet fronts exhibit fluctuations in time, before
eventually vanishing in the long-time limit. This behavior
is manifested as a brief sticking and slipping of the droplet
fronts, which may also be visualized in the evolution plot of
the ratio of the apparent to microscopic contact angles [see
Fig. 7(b)]. Typically, the sticking and slipping of the droplet
fronts becomes more common when both the wavelength
of the heterogeneities and their amplitude are small, i.e.,
when the number of equilibria accessible to the droplet
increase.
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FIG. 7. Spreading on a substrate g(x) = 1 + 0.3 sin 100x (solid
and dashed curves for the right and left fronts, respectively) compared
to spreading over the ideal substrate, g(x) = 1 (dotted curves). (a)
Time evolution of velocity of contact lines showing stick-slip type
behavior. (b) Evolution of the ratio of contact angles φ/ga,b.

Even though hysteresis in the contact angle was not
assumed in our model (i.e., the existence of both an advancing
and a receding critical angle), it is still possible to observe a
hysteresis-like effect induced by the chemical heterogeneities.
This is due to the presence of multiple equilibria that are
able to pin the droplet to different stable states. This effect
is better demonstrated with a plot of the apparent contact
angle as a function of the contact line speed, as shown in
Fig. 8. Two curves are shown there: The first corresponds to
initially advancing droplet fronts [a(0) = −b(0) = 1] and the
second to initially receding droplet fronts [a(0) = −b(0) = 3].
It is worth emphasizing the disparity in the speeds of the
receding and advancing fronts, which appears to be a common
feature for both chemical heterogeneities and topographical
substrates [11]. In the end, we observe that two distinct
equilibrium angles are attained, differing by �φ ≈ 0.51. As
with the stick-slip behavior, this hysteresis-like effect is more
likely as the possible stable states become more dense. We
shall return to this and related effects in our discussion on the
phase-plane dynamics that follows.

B. Phase-plane analysis

Capturing the spreading dynamics of the full nonlinear PDE
with a set of two coupled ODEs also allows us to investigate
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2.5
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da/dt

φ

FIG. 8. Plot of apparent contact angle as a function of the velocity
of a moving droplet front for the substrate g(x) = 1 + 0.3 sin 100x.

the dynamics on the phase plane. By doing so, we aim to
extract generic dynamic features, which would otherwise have
been difficult to identify, by, e.g., integrating at random the
governing equations for different initial conditions. Figure 9(a)
depicts the a-b phase plane of Eqs. (21) together with its
direction field, for the substrate g(x) = 1 + 0.8 sin 4x. We
observe three types of equilibria, namely stable and unstable
nodes and saddle points. Due to the assumed periodicity in
the chemical heterogeneities, the equilibria also exhibit a
periodic structure. Taking into account this structure, we can
identify in Fig. 9(a) two equilibria for which there is wetting
enhancement (points q1 and q2), and one for which there is
wetting inhibition (point q3). It is important to emphasize that
assessments on wetting are made with respect to the homo-
geneous substrate, for which we defined the reference angle
and g(x) = 1. Consequently, when we have φ > 1 (φ < 1) at
equilibrium, we refer to these equilibria as wetting inhibiting
(enhancing).

Naturally, these equilibria must correspond to the stationary
points of the total interfacial energy of the system, which in
dimensional form is given by

E =
∫ a

b

[
σ

√
1 +

(
∂H (x)

∂x

)2

+ σls(x) − σsg(x)

]
dx,

where σls(x) and σsg(x) are the spatially varying surface
tensions of liquid-solid and solid-gas interfaces, respectively.
By making use of the expression for the local contact angle
predicted by Young’s equation, σ cos α(x) = σsg(x) − σls(x),
the long-wave form of E , E, becomes

E =
∫ a

b

[ (
∂h0(x)

∂x

)2

+ g2(x)

]
dx,

in nondimensional units, where h0(x) is the leading-order outer
solution, Eq. (9).

For a given g(x), E is a function of the position of droplet
fronts, a and b. As an example, we show in Fig. 9(b) a plot
of the interfacial energy, E(a,b), corresponding to g(x) =
1 + 0.8 sin 4x, together with some representative contours pro-
jected on the E = 0 plane. The plot, as well as our calculation,
shows that, indeed, the stationary points of E correspond to
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FIG. 9. (a) The a-b phase plane for g(x) = 1 + 0.8 sin 4x. Solid
and open circles represent the stable and unstable nodes, respectively,
and the crossed circles represent the saddle points. Solid and dashed
lines refer to the stable and unstable manifolds for the saddle nodes,
respectively, whereas the dotted line shows the line of equilibria
when g(x) = 1. (b) Plot of interfacial energy as a function of position
of the droplet fronts for g(x) = 1 + 0.8 sin 4x, along with some
representative contours projected on the E = 0 plane (gray curves).
The stationary points of E correspond to the fixed points of the phase
plane in (a).

the fixed points of Eqs. (21) shown on the a-b phase plane of
Fig. 9(a). It is clear, however, that energy considerations alone
cannot predict the dynamic droplet behavior, which is highly
dependent on the initial conditions. On the contrary, a phase
plane analysis facilitates such assessments and the extraction
of generic dynamic features.

In order to investigate whether other types of equilibria can
exist apart from the ones observed in Fig. 9(a) (e.g., spiral
fixed points or centers), we need to consider a linearization of
the system (21) about its equilibria. From Eqs. (21) we find

a∞ = b∞ + 2
√

3/
√

φ∞, (24)

where a∞ and b∞ correspond to the equilibrium positions
of the contact lines and φ∞ is the equilibrium contact
angle, which satisfies φ∞ = g(a∞) = g(b∞). For chemically
homogeneous substrates, Eq. (24) predicts a continuum of
stable equilibria, shown as dotted lines in the phase-plane

plots [see, e.g., Fig. 9(a)]. Naturally, these equilibria are
translationally invariant, but this invariance is broken with the
introduction of a chemical structure, for which we can have at
most countably infinite equilibria.

Next, consider the linearized system (21) about a fixed point
to obtain

(
ȧ

ḃ

)
= J

(
a − a∞
b − b∞

)
,

where J corresponds to the Jacobian matrix evaluated at the
fixed point (a∞,b∞). In order to have either spiral fixed points
or centers, the Jacobian matrix must have complex eigenvalues.
For this to happen, the discriminant of the characteristic
polynomial of J, D, must be negative. After some algebra,
D evaluated at (a∞,b∞) is written as

D = φ4
∞

3A2(A − 2)2

{
3A(A − 2)[g′(a∞) + g′(b∞)]2

+ [
2φ3/2

∞ A +
√

3[g′(a∞) − g′(b∞)]
]2}

,

where A = ln(2
√

3φ∞/λ). Since the second term in the curly
brackets is always positive, it is clear that the only way for D

to become negative is that 0 < A < 2. This, however, can only
occur for unrealistically large λ, in a regime where our matched
asymptotics are expected to fail, as we have already pointed out
in Sec. III C. Consequently, at least for realistically small λ, no
matter how g(x) is chosen, it is impossible to excite any type of
oscillatory behavior. Exploratory numerical experiments with
the full PDE Eq. (4) suggest that this behavior persists for
larger λ as well.

1. Localized defects

Chemical heterogeneities may be utilized as a means to
control droplet behavior, by, e.g., trapping the droplet between
two localized defects. For the sake of illustration, consider a
chemical profile of the form

g(x) = 1 + ε[sech 20(x + s/2) + sech 20(x − s/2)],

which consists of two sufficiently isolated “bumps” separated
by a distance s. Here we take s � 1 so that the effects of one
bump do not affect the other and g(±s/2) ≈ 1 + ε. We are
interested in determining under what conditions the localized
defects are able to trap a droplet that is initially located
somewhere between them. In a more general setting, one
could have allowed for different amplitudes in the two bumps,
but this simpler problem allows us to capture the essential
qualitative features as we change the “strength” of the isolated
chemical defects, ε. The case of a single defect appears to
be less interesting, as the velocities toward equilibrium are
exponentially small; for a profile with a chemical “bump”
the droplet moves toward infinity, whereas for a chemical
“dimple” the droplet has a single stable equilibrium centered
about the defect. The effects of a single defect on a far away
droplet are extremely small and the droplet motion is virtually
unaffected by it.

For our analysis we fix s = 3. Instead of considering the
typical a-b phase plane, we consider the �-d phase plane,

036305-9



VELLINGIRI, SAVVA, AND KALLIADASIS PHYSICAL REVIEW E 84, 036305 (2011)

where � is defined as the location of the droplet midpoint
along the x axis and d is the droplet “radius”:

� = (a + b)/2 and d = (a − b)/2.

This transformation is introduced to facilitate the visualization
of the different regimes we observe as ε varies. For sufficiently
small ε, there are no stable fixed points, and the droplet
eventually escapes from the defects. For initial conditions
that are initially located symmetrically about the origin, i.e.,
when �(0) = 0, the droplet eventually attains an equilibrium
radius that roughly corresponds to the equilibrium radius on
the reference substrate; i.e., d(∞) ≈ √

3 > 3/2. In Fig. 10(a)
we show a snapshot of the phase plane when ε = 0.2, which
illustrates this behavior.

The absence of stable equilibria persists until we reach
a critical ε, εc, beyond which a stable node appears, which
lies symmetrically about � = 0. When s = 3, we readily
observe that εc ≈ 1/3. In Fig. 10(b), we show a snapshot of
the phase plane for ε = 0.4 > εc, where we clearly see the
newly emerged equilibria. To get a measure of the admissible
initial conditions that may be used to trap the droplet between
the chemical defects, we record the locations of the basin
boundaries when d(0) = 1, which also allows us to determine
the width of the basin of attraction, �� [see Fig. 10(b)]. As
ε is increased further, the basin of attraction of the fixed
point enlarges, which in turn implies that given d(0) = 1, the
range of �(0) that eventually traps the droplet becomes larger,
too. This is conveniently depicted on the regime diagram of
Fig. 10(c), where we plot �(0) as a function of ε, with the
shaded region corresponding to initial conditions for trapped
droplets. This regime diagram is to be taken as an estimate
of the actual diagram for the full PDE, since as we have
noted earlier, in the vicinity of the boundaries of the basins
of attraction our theory may potentially fail. It should also be
noted that the actual “basin of attraction” of the full PDE is
infinite-dimensional, but nevertheless the information we can
infer from Fig. 10(c) is sufficient to describe the trapping of a
droplet between two defects, at least in qualitative terms.

At the critical ε, one eigenvalue of the Jacobian of the
linearized system vanishes. At this fixed point, the droplet
fronts are located at the maxima of g(x), x ≈ ±s/2. Using
Eq. (24), we find the radius at equilibrium, d∞ = √

3/(1 + εc),
from which we approximately deduce that

εc ≈ 12

s2
− 1 (25)

with exponentially small corrections. As a consequence, for
s < 2

√
3 and when ε > εc > 0 a stable node appears that can

potentially trap a droplet with advancing fronts, whereas for
s > 2

√
3 and when ε < εc < 0, the stable node can potentially

trap a droplet with receding fronts. This result is consistent
with the observation by Thiele and Knobloch, where the less
hydrophilic regions can trap advancing fronts and the more
hydrophilic ones can trap receding fronts [45].

2. Patterned substrates

Chemically patterned substrates are specially treated sub-
strates that are composed of periodically alternating regions of
different wettability. As in the preceding section, we employ

FIG. 10. (a),(b): The �-d phase plane for the localized substrate
g(x) = 1.0 + ε[sech 20(x + 1.5) + sech 20(x − 1.5)] for (a) ε = 0.2
and (b) ε = 0.4. For the different lines and symbols refer to Fig. 9.
(c) Regime diagram showing the initial droplet locations for which
we have trapped droplet fronts as a function of ε.

a phase-plane analysis to extract qualitative features of the
hysteresis-like effect induced by the varying substrate chem-
istry. We chose to model such substrates using a heterogeneity
function of the form

g(x) = 1 + ε tanh(m cos kx), (26)

which consists of a periodic array of plateau regions that have
different wettability characteristics (see Fig. 11). Here ε is a
measure of the wettability contrast between the two regions and
k is the wave number of the profile. The parameter m controls

036305-10



DROPLET SPREADING ON CHEMICALLY HETEROGENEOUS . . . PHYSICAL REVIEW E 84, 036305 (2011)

0.6

1

1.4

g
(x

)

(a)

0.6

1

1.4

g
(x

)

(b)

−2 −1 0 1 2
0.6

1

1.4

x

g
(x

)

(c)

FIG. 11. Plots of the heterogeneity function g(x) = 1.0 +
ε tanh(3 cos kx). (a) ε = 0.05,k = 20; (b) ε = 0.2,k = 20; and
(c) ε = 0.2,k = 8.

how abruptly the transition between the two regions occurs;
as m increases, g(x) approaches a square wave form and as it
decreases, it approaches a pure harmonic. We have fixed m = 3
so that we have relatively sharper transitions than having a pure
harmonic and, at the same time, the phase-plane snapshots are
sufficiently smooth for the clarity of presentation. Since our
principal aim is to assess the chemically induced hysteresis,
we consider the phase plane for a different set of variables, the
apparent contact angle, φ, and the displacement of the droplet
midpoint, �.

We first take a substrate with ε = 0.05 and k = 20, a
snapshot of which is shown in Fig. 11(a). Accounting for the
substrate periodicity, we only observe three distinct equilibria:
one saddle point and two stable nodes lying above and
below φ = 1, the reference contact angle [see Fig. 12(a)].
More importantly, we observe that these stable equilibria are
readily accessible for both initially advancing and initially
receding fronts. For example, when we have �(0) = 0 and
φ(0) = 3 at the onset, the equilibrium attained at the end is
wetting enhancing, whereas the equilibrium corresponding to
�(0) = −0.2 and φ(0) = 3 is wetting inhibiting. Nevertheless,
the difference between the two equilibrium angles is small
because the wettability contrast is fairly low.

As the wettability contrast increases, e.g., for ε = 0.2 and
k = 20 [see Fig. 11(b)], the phase plane becomes richer
due to emergence of new stable and unstable states. In this
particular example, we now have 8 distinct equilibria, only 3
of which correspond to stable states [see nodes p1, p2, and
p3 in Fig. 12(b)]. Since in a typical spreading experiment we
initially have that φ(0) > 1 + ε, we readily see that the only
equilibrium that is accessible to advancing fronts is p1. On the
other hand, initially receding fronts, for which φ(0) < 1 − ε,
have access to the stable nodes p2 and p3 only. Given that the
notion of wetting enhancement and inhibition is introduced
with respect to advancing fronts, we may infer from the
phase-plane plot of Fig. 12(b) that the substrate is wetting
inhibiting with respect to the reference angle. However, it is
important to emphasize that we now have two possible values
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FIG. 12. The �-φ phase plane for g(x) = 1.0 + ε tanh(3 cos kx).
(a) ε = 0.05, k = 20; (b) ε = 0.2, k = 20; and (c) ε = 0.2, k = 8.
For the different lines and symbols refer to Fig. 9.

for contact angle hysteresis between advancing and receding
fronts, with the difference in the contact angle between the
fixed points p1 and p3 being more appreciable compared to
that of points p1 and p2. As generally expected, a further
increase in the wettability contrast would amplify the observed
hysteresis effect. On the other hand, the wettability contrast
is not the only factor that influences wetting, but also the
wave length or wave number of the chemical heterogeneities.
For example, if we keep the wettability contrast at ε = 0.2
and, at the same time, reduce the wave number to k = 8 [see
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Fig. 11(c)], we now have a single stable configuration, which
enhances wetting relative to the reference angle, φ = 1 [see
Fig. 12(c)].

To further investigate the effect of k, we consider the
droplet equilibria for a wetting profile of the form prescribed
by Eq. (26), which must satisfy cos(ka∞) = cos(kb∞). From
this relation, we can easily extract two different possibilities,
namely �∞ = πn/k and φ∞ = 3k2/(n2π2), where n is an
integer. Hence, the distinct droplet equilibria can either be
located at �∞ = 0,�∞ = π/k or the corresponding �∞ for
which

φ∞ = 3k2/(n2π2). (27)

For Eq. (27), k must lie between nπ
√

(1 − ε)/3 and
nπ

√
(1 + ε)/3 so that 1 − ε < φ∞ < 1 + ε. To get a better

picture for the variation of φ∞ and its stability as k varies,
numerical continuation techniques were used to trace the
bifurcation curves of all droplet equilibria when �∞ = 0 and
�∞ = π/k. The results of this calculation are depicted in
Fig. 13, where φ∞ is plotted as a function of k. They reveal
intricate bifurcation events during which new equilibria appear
or change stability characteristics due to coalescence with
nearby equilibria. From such a plot one can identify all possible
values of φ∞, as for example in Fig. 13(b) where we clearly
mark the stable equilibria corresponding to k = 20 [see also
Fig. 12(b)].

From the above discussion, we may conclude that making
quantitative statements as to how the contact angle is affected
by heterogeneities in this geometry is a formidable task, apart
from the observation that as the wave number increases, it is
more likely for the equilibrium contact angle for a spreading
droplet to be close to the maximum, φ∞ = 1 + ε. To demon-
strate the inability of Eq. (1) to describe the configurations
we just outlined, we consider a substrate composed of two
different materials with equilibrium contact angles, 1 + ε and
1 − ε. These angles correspond roughly to the maximum
and minimum microscopic contact angles for g(x), Eq. (26).
Assuming equal area fractions, Eq. (1) becomes

φC =
√

1 + ε2, (28)

which, in the limit ε � 1, predicts wetting inhibition with
hysteresis of O(ε2) with respect to the reference angle. Clearly,
Eq. (28) is independent of k, and as a result completely fails to
capture any of the observations that were made above. Thus,
it is not surprising that none of the test cases presented in
Fig. 12 agree with the prediction of Eq. (28). Even when
we take ε = 0.2 and k = 20 [Fig. 12(b)] for which there is
indeed wetting inhibition, the observed effect is O(ε), which is
higher compared to the prediction of Eq. (28). Such significant
deviations could be due to the anisotropy of the chemical
features [28].

V. CONCLUSION

We have considered the surface-tension-dominated mo-
tion of a two-dimensional, partially wetting droplet on a
chemically heterogeneous substrate. We utilized a single
evolution equation for the droplet thickness obtained from
a long-wave expansion of the Stokes equations. The stress
singularity at the contact line was alleviated with the Navier
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FIG. 13. (a) Evolution of equilibrium contact angles along with
their stability, φ∞, as k varies for g(x) = 1 + 0.2 tanh(3 cos kx). Solid
lines correspond to stable nodes, dashed lines to saddle points,
and the dotted lines to unstable nodes. The dashed-dotted line
demarcates the cases when k = 8 and k = 20, whose phase planes
appear in Figs. 12(b) and 12(c), respectively. The gray dashed curves
which are nearly diagonal and linear correspond to the curves of
Eq. (27) for different n. The black and gray curves correspond to
the bifurcation curves for the equilibria located at �∞ = π/k and
�∞ = 0, respectively. As k increases, these curves become sheared
toward the right, thus allowing for more equilibria for any given k.
(b) Detail of (a) near k = 20 marking the equilibria that correspond
to those exhibited in Fig. 12(b).

slip condition, wherein the slip length was taken to be
constant along the heterogeneous substrate due to its generally
weak influence on the dynamics. We thus introduced the
chemical heterogeneities by assuming spatial variations in
the microscopic contact angle, which naturally enter the
problem as boundary conditions. In the limit of small capillary
numbers, the droplet motion can be treated quasistatically,
with the time dependence entering the problem through the
contact line locations. These modeling assumptions allowed
us to analyze the dynamics using singular perturbation theory,
by considering separately the free surface in the vicinity
of the contact lines and the fluid bulk. By asymptotically
matching the solutions in the contact line regions and bulk, we
obtained a set of coupled ODEs for the velocity of the moving
fronts.
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The solution to the set of ODEs obtained from matching
was verified by direct comparisons with the governing PDE.
In general, there is excellent agreement between the two.
However, we found that it is possible for the two solutions
to exhibit discordant evolution characteristics whenever the
initial location of the two droplet fronts is sufficiently close to
saddle point manifolds. These cases are commonly manifested
as evolutions to different stable equilibria. The existence of
multiple equilibria suggested that there can exist a hysteresis-
like effect induced by the chemical heterogeneities, which was
demonstrated by our simulations. This subsequently prompted
our investigation of the phase plane of the two droplet fronts,
which facilitated the extraction of more general spreading
characteristics. In particular, we investigated the effect of
localized defects and found that a droplet can be trapped
between them, depending on the initial location of the droplet
fronts and provided that the strength of the heterogeneities
exceeds some threshold. Finally, we have considered the
effects of substrates composed of periodic regions that have
different wetting characteristics and we demonstrated that the
Cassie relation cannot explain the observed behaviors.

The lack of experimental studies for the two-dimensional
geometry we considered precludes any direct comparisons
of our theory with experiments. We have demonstrated,
however, that the two-dimensional problem is nontrivial and
our study can be viewed as a first step in the consideration
of additional effects and complexities, e.g., random chem-
ically heterogeneous substrates (by appropriately extending
the stochastic methodologies developed in Refs. [12–14]
for random topographical substrates) and three-dimensional
effects. Nevertheless, we believe that the present model is
able to capture many of the qualitative effects of chemical
heterogeneities for a three-dimensional geometry. We also
hope that it can motivate careful experiments to investigate
contact line motion in a direction normal to two-dimensional
chemical heterogeneities as is the case here.
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