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Relaxation of an unstable state in parametrically excited cold atoms
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We investigate the scaling behavior of the relaxation process for an unstable state near a subcritical Hopf
bifurcation point. When the parametric modulation is applied to a magneto-optical trap, the atomic cloud
becomes unstable and decays to the dynamic bistable states. Near the subcritical Hopf bifurcation point, we
experimentally show that the relaxation process exhibits the scaling behavior; the relaxation time shows a scaling
exponent of −1.002 (±0.024). We also present the passage time distribution for the statistical interpretation of
the escape process associated with the relaxation of the unstable state. We compare the experimental results to
the numerical and analytic results, demonstrating the good agreement between them.
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I. INTRODUCTION

The relaxation process of a macroscopic system that is
initially prepared in an unstable state is an intriguing problem
in nonequilibrium physics [1], as it is related to such areas as
transient-laser radiation [2–5], spinodal decomposition [6,7],
superfluorescence [8–10], and hydrodynamic instabilities [11].
Theoretical research in this area has been performed from
various perspectives [2,12–16].

One of the characteristics of the relaxation process for
an unstable state in those studies is the scaling behavior.
In particular, the relaxation dynamics near the bifurcation
point shows the scaling behavior, and the scaling exponent
depends on the nature of the initial state and the type of
instability involved. There have been many studies of the
relaxation dynamics in various nonlinear systems exhibiting
the bifurcation dynamics, such as the saddle-node bifurcation,
pitchfork bifurcation, and supercritical Hopf bifurcation [17].
However, it has been an experimental challenge to study the
relaxation dynamics near the subcritical Hopf bifurcation point
due to its difficult experimental accessibility [18–20].

In the parametrically modulated magneto-optical trap
(MOT), which is an ideal model system for such a study due to
its intrinsic nonlinear and stochastic nature, phenomena such
as the parametric resonance, Hopf bifurcation [21,22], and a
noise-induced transition between two phase-space attractors
[23] are observed. Moreover, the many-body nature of the
MOT exhibits the time-translational symmetry breaking as
well as the ideal mean-field phase transition [24,25]. In the
parametrically excited atomic system, one can consider two
attractors in the phase space as a dynamic double well, where
the midpoint between the two wells is apparently an unstable
state. This study takes into account the relaxation process
from an unstable state near the subcritical Hopf bifurcation
point in nonlinear dynamics. In this paper, we investigate
the relaxation of an unstable state near the bifurcation point
where the unstable state becomes stable. First, we measured the
relaxation time of the atomic population in the unstable state.
Its relaxation asymptotically shows the exponential behavior.

*whjhe@snu.ac.kr

Over an extended period, this exponential relaxation time was
observed to diverge in a manner inversely proportional to the
distance from the bifurcation point. Second, we measured the
passage time distribution, which provides the complementary
information about the relaxation process, at the boundary
in the phase space midway between the unstable and stable
state [26,27]. The results show that it takes more time to reach
the dynamic stable state as the bifurcation point is approached.
The numerical simulation and analytic calculation are in good
agreement with the experimental results.

The paper is organized as follows: In Sec. II, we demon-
strate the theoretical approach of the dynamics of the unstable
state near the bifurcation point. To this we apply a proper
approximation, leading to the analytic form of the decay in
the center of a cloud. In Sec. III, the experimental results are
presented and compared to the theoretical results. Section IV
summarizes the results.

II. THEORY

The trapped atomic motion inside a MOT is approximately
described by a damped harmonic oscillator with a nonlinear
term, as follows [22]:

z̈ + βż + ω2
0z + A0 ω2

0z
3 = f (t), (1)

Here, β is the damping coefficient, ω0 is the trap frequency,
and A0 is the nonlinear coefficient of the MOT. In addition,
f (t) denotes the random force that originates from the
spontaneous emission, and 〈f (t)f (t ′)〉 = 2Dδ(t − t ′). Here
D = βkBT /m represents the Doppler diffusion, where m is
the mass of atom, kB is the Boltzmann constant, and T is the
temperature of the atom. We experimentally measure the decay
of atomic population at the trap center where the nonlinear
term is negligible, and therefore the stationary distribution
of the atomic cloud near (z,v) = (0,0) in the phase space
approximately has a Gaussian form

ρ0(z,v) = βω0

2πD
exp

[− β
(
ω2

0z
2 + v2

)/
2D

]
. (2)

As ω2
0 is modulated by ω2

0[1 + ε cos(ωF t)], where ε is the
modulation amplitude and ωF is modulation frequency, it gives
rise to parametric excitation where the parametric modulation
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frequency is nearly twice the trap frequency. The atomic
population occupies a bistable state after the departure from
its initial state, as described in Eq. (2). The atomic motion is
described in a rotating frame using the standard procedure of
an averaging method [25,28] with slowly varying variables X
and Y, as follows:

z(t) = C

[
X cos

(
ωF t

2

)
− Y sin

(
ωF t

2

)]
,

(3)

ż(t) = −C
ωF

2

[
X sin

(
ωF t

2

)
+ Y cos

(
ωF t

2

)]
,

where C = (2ε/3A0)1/2. Then the atomic motion of Eq. (1) in
this frame is

dX

dτ
= − 1

ζ
X + Y [1 + μ − (X2 + Y 2)] + ξ1(τ ),

(4)
dY

dτ
= − 1

ζ
Y + X[1 − μ + (X2 + Y 2)] + ξ2(τ ),

where ξ1(τ ) and ξ2(τ ) are independent random forces [28]. The
dimensionless time τ and dimensionless parameters ζ and μ

are given by

τ = εω2
0

2ωF

t, ζ = εω2
0

ωF β
, μ = ω2

F − 2ωF ω0

2εω2
0

. (5)

In this paper, we focus on the relaxation process from the
unstable equilibrium point (Xeq,Yeq) = (0,0). Near the sub-
critical bifurcation point μ ≈ μB =

√
1 − 1/ζ 2, one direction

of the motion of the system becomes slower than the other
direction. Using the center manifold theorem [29], we can
separate the fast variableP and slow variable Q by applying an
additional coordinate transform, as follows [28]:

P = X cos ϕ − Y sin ϕ, Q = X sin ϕ + Y cos ϕ, (6)

where ϕ = 1
2 arcsin(1/ζ ). In this frame, Eq. (4) has the form

dP

dτ
= −2ζ−1P + Q[μB + μ − (P 2 + Q2)] + ξP (τ ),

(7)
dQ

dτ
= P [μB − μ + (P 2 + Q2)] + ξQ(τ ).

The fast variable P reaches its quasistationary value P ≈
ζμBQ with the dimensionless relaxation time ζ/2. On the
other hand, the slow variable Q has a relaxation time which
goes to infinity. Therefore, the fast variable P follows adiabat-
ically the slow variable Q, and we can neglect the noise term
in the equation of P . This finally gives the one-dimensional
(1D) equation of motion for the slow variable Q, as follows:

Q̇ = ζμBηQ + ζ 3μBQ3 + ξ (τ ), (8)

where η = μB − μ, and ξ (τ ) is the noise with properly
scaled intensity D0. We consider that for the near subcritical
bifurcation point, the parameter η satisfies 0 < η � 1.

We can calculate the many stochastic trajectories of Eq. (7)
numerically as shown in Fig. 1. From the numerical calculation
data, we extract the passage time distribution (PTD). The
overall behaviors are very similar to the experimental one
as shown in Fig. 4(a). We will explain this in more detail in
Sec III.

FIG. 1. (Color online) Typical stochastic trajectories obtained
from a numerical simulation with the initial condition of Q(0) = 0
for different values of μ. We adopt D0 = 0.5 and ζ = 1.275. The
larger μ indicates the closer distance from the bifurcation point μB

where the characteristic slowing down become manifest.

The time evolution of the system is one-dimensional, and
we can easily describe the time evolution of the density
distribution of the atomic cloud using the Fokker-Planck
equation and directly compare it to the experimental data.
The corresponding Fokker-Planck equation of Eq. (8) is

∂ρ

∂τ
= − ∂

∂Q
[(ζμBηQ + ζ 3μBQ3)ρ] + D0

∂2ρ

∂Q2
. (9)

The initial condition is the distribution of Eq. (2), and
transforming this initial distribution into the new frame gives

ρ(Q,τ = 0) = (2πζD0)−1/2 exp(−Q2/2ζD0). (10)

The above equation is easily solved in the restricted region,
where Q2 � ηζ−2, implying that the nonlinear term is
negligible. In this regime, we can obtain the solution of Eq. (9)
with Eq. (10), as follows:

ρ(Q,τ ) =
√

λ

2πD0σ (τ )
exp[−λQ2/2D0σ (τ )], (11)

Here, λ = ζμBη and σ (τ ) = (1 + λζ )e2λτ − 1.
The time evolution of the distribution at the trap center,

ρ(Q = 0,τ ), is initially in a nonexponential form; however,
at a dimensionless time that satisfies exp(2λτ ) � 1, it shows
exponential decay behavior, as follows:

ρ(Q = 0,τ ) ≈
√

λ

2πD0(1 + ζλ)
exp(−λτ ). (12)

The asymptotic relaxation time τr demonstrates scaling be-
havior, which is inversely proportional to the distance from
the bifurcation point.

τr = 1/λ ∝ (μB − μ)−1. (13)

The scaling exponent is −1.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The unstable state forms at the trap center by parametrically
driving the trapped atomic cloud at the proper modulation
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frequency and amplitude. Our experimental setup is the
typical six-beam MOT of 85Rb where one pair of trapping
lasers counterpropagating along the anti-Helmholtz coil axis
is intensity-modulated, resulting in parametric resonance as
shown in Fig. 2 [22–24]. The sinusoidal signal generated by the
function generator is fed into acousto-optic modulator, which
modulates the trap laser beam. The magnetic field gradient b

is 0.11 T/m, the modulation amplitude of the trap laser ε is
0.8, and the saturation parameter s0 and detuning δ are 0.2 and
−2.55 �, respectively. � is the decay rate of the excited state
(=2π × 6.07 MHz).

In our system, we observed the limit cycles (i.e., phase-
space orbit attractors) and supercritical and subcritical Hopf
bifurcation varying modulation frequency ωF [22]. Below the
subcritical bifurcation point, the unstable state is placed at
the trap center, and stable states are located at the point where
the two clouds are fully apart. To observe the escape of the

FIG. 2. (Color online) Typical procedure to measure the temporal
change of atomic population. (a) The time sequence of the relaxation
of the unstable state (central atomic cloud) is shown after the
modulation is turned on. The 2D images of atomic population are
obtained by charge-coupled device (CCD) detection at a time interval
of 0.02s. The oscillatory atomic motion is periodically observed to be
specifically timed, in which two outermost clouds are fully apart. (b)
The typical decay of the atomic population for the unstable cloud is
shown from the experimental results. The critical slowing down effect
is manifest as the bifurcation point is approached from the blue to the
red line in sequence; the slope in the inset (semi-log plot) represents
the decay rate λ and the more bifurcation point is close, the more
slope is gentle.

FIG. 3. (Color online) Scaling behavior of the relaxation process
from the unstable state. The relaxation time increases exponentially
as it approaches the bifurcation point, and the scaling exponent is
−1.002 (±0.024) (log-log plot). The error bars show the standard
deviation for the fitting error.

atomic population from the unstable state, we started by putting
atoms at the trap center without modulation of the intensity,
after which we suddenly turned on the intensity modulation.
In such a situation, the trap center becomes unstable and atoms
begin to wash away from the center as time passes, as seen
in Fig. 2(a). Figure 2(b) experimentally displays the typical
decay of the normalized atomic population at the center of
the atomic cloud at a different distance from the bifurcation
point. We can obtain the relaxation time from its asymptotic
exponential curve.

Figure 3 displays the relaxation time of the atomic pop-
ulation in an unstable state versus the normalized driving
frequency rescaled by (ωB − ωF )/ωB experimentally. ωB −
ωF is proportional to μB − μ, and approaching the measured
bifurcation point, ωB(=113.5 Hz), it shows the power-law
behavior of the relaxation time, as expected from Eq. (13). The
measured scaling exponent is −1.002 (±0.024). Physically,
this means that the system stays longer in an unstable state as
the modulation frequency ωF moves closer to the bifurcation
point ωB . In Fig. 1, the trajectories obtained from a numerical
simulation clearly show this feature. Such a slowing down
effect of relaxation can also be rephrased in terms of the
passage time distribution as follows.

As shown in Fig. 4, in addition to the relaxation time
from the unstable state, we also considered the passage time
distribution (PTD) experimentally (a) and theoretically (b).
The PTD is defined by probability distribution P (t) that a
particle arrives at an arbitrary given boundary in the phase
space (or real space) at time t after starting from its unstable
state.

PTD can be directly obtained by measuring the atomic
population at a given coordinate value with time. The chosen
coordinate for the measurement should be located where
the process has clearly escaped from the unstable state.
Here, we chose a value between the unstable and stable
state [white dashed line in Fig. 2(a)]. Figure 4 shows the
probability P (τ ) that the particle reaches the coordinate at
the dimensionless time τ . It is clear that the PTD has a
longer tail due to the late departure of the particle from an
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FIG. 4. (Color online) Passage time distribution of the system: (a)
experiment, (b) numerical simulation. The scaled noise intensity D0

is 0.5 and ζ is 1.275 in (a) and (b). Blue, green, and red lines denote
μ = 0.2μB , 0.7μB , and 0.9μB , respectively. The slope in the inset
(semi-log plot) clearly shows that the closer the bifurcation point is,
the later particles in the unstable state arrive at the boundary.

unstable state as the bifurcation point becomes approached
closer. The experimental results are qualitatively in good

agreement with the simulation results. However, there is
quantitative disagreement where the time distribution value
P (τ ) in Fig. 4(a) is larger than that in Fig. 4(b). The reason
is because the tail of the Gaussian-distributed atomic cloud
in a stable state experimentally remains at the boundary, after
which the value of the time distribution increases. Moreover,
the time distribution of atoms that move from the stable state
to the unstable state due to a noise-induced transition, which
is not considered in the simulation, enhances the value of
the time distribution. As another cause, the coefficients in
Eq. (1) derived from the one-dimensional MOT equation are
different from those observed experimentally, as reported in an
earlier study [30]. This would also bring about the quantitative
difference.

IV. CONCLUSION

We have discussed the relaxation process from an unstable
state near the subcritical Hopf bifurcation point generated
by a parametrically excited MOT. The relaxation time at the
unstable point was observed to diverge due to the slowing down
of the escape process as the bifurcation point was approached.
The relaxation time showed a power-law dependence on the
distance from the bifurcation point with a the scaling exponent
of −1.002 (±0.024), which is in good agreement with theo-
retical results. We also discussed the complementary passage
time distribution and provided a qualitative explanation of the
statistical characteristics for the escape process. The present
study may deepen our understanding of the general relaxation
process of the unstable state in a nonequilibrium nonlinear
dynamical system and its scaling behaviors.
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