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Amplitude equations for reaction-diffusion systems with cross diffusion
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Using Taylor series expansion, multiscaling, and further expansion in powers of a small parameter, we develop
general amplitude equations for two-variable reaction-diffusion systems with cross-diffusion terms in the cases
of Hopf and Turing instabilities. We apply this analysis to the Oregonator and Brusselator models and find that
inhibitor cross diffusion induced by the activator and activator cross diffusion induced by the inhibitor have
opposite effects in the two models as a result of the different structure of their community matrices. Our analysis
facilitates finding regions of supercritical and subcritical bifurcations, as well as wave and antiwave domains and
domains of turbulent waves in the case of Hopf instability.
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I. INTRODUCTION

The effects of cross diffusion, the phenomenon in which
a gradient in the concentration of one species induces fluxes
of other species, on pattern formation in reaction-diffusion
systems have been discussed in many theoretical papers (for
a review see Ref. [1]). In general, cross diffusion can modify
any type of pattern (stationary, periodic, or chaotic), and can
even induce diffusive instability (Turing or wave) [2,3]. Recent
experiments [4–6] on the Belousov-Zhabotinsky reaction in
a reverse microemulsion (BZ-AOT system [7], where AOT
is aerosol OT, and OT is the trademark for the surfactant
sodium bis(2-ethylhexyl) sulfosuccinate) have revealed that
significant cross diffusion takes place in this system, and model
calculations [5] suggest that cross-diffusion effects should be
large enough to affect BZ-AOT patterns.

Until now, however, there has been no general analysis of
the possible role of cross diffusion in dissipative pattern for-
mation. Such an evaluation can be obtained on the basis of am-
plitude equations, which provide a mathematical description
of reaction-diffusion systems close to the onset of instability
[8–10]. In the case of Hopf instability, responsible for the onset
of homogeneous oscillations, the corresponding amplitude
equation is called the complex Ginzburg-Landau equation
(CGLE) [9–11], while in the case of Turing instability, respon-
sible for the emergence of stationary, spatially periodic pat-
terns, the amplitude equation is simply referred to as the Turing
amplitude equation (TAE) [12]. The TAE bears a strong resem-
blance to the real version of the Ginzburg-Landau equation.

The method [9,13] of derivation of amplitude equations
for reaction-diffusion systems (Kuramoto’s approach) is based
on multiple time and space scales, expansion of the original
nonlinear equations in Taylor series (consisting of linear,
quadratic, cubic,. . . operators), and further expansion of all
these operators in powers of a small control parameter near
the onset of instability, where the small parameter is the ratio
between “small” and “large” time or space scales (as well as
a measure of the deviation from the onset of instability). This
approach has been used for many reaction-diffusion models,
including the Brusselator [9,14], Gray-Scott, Rössler [15],
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FitzHugh-Nagumo [16,17], and Lengyel-Epstein models [18],
as well as a model for CO oxidation on a Pt surface [19].

To date, Kuramoto’s approach has been applied only to
reaction-diffusion systems with diagonal diffusion matrices.
Our goal here is to extend this method to systems with cross
diffusion, where the diffusion matrix has nonzero off-diagonal
elements, and apply our results to two well-known reaction-
diffusion models, the Oregonator [20,21] and the Brusselator
[22], which we supplement with cross-diffusion terms. For the
abstract Brusselator model without cross-diffusion terms, the
CGLE and TAE were deduced previously [9,12,14], whereas
for the two-variable Oregonator model, despite the impor-
tance of this model in describing the well-known Belousov-
Zhabotinsky reaction [23,24], there are no analytical expres-
sions available for the coefficients of the amplitude equations.
Numerical calculations were done for the CGLE coefficients
of the three-variable unnormalized Oregonator model and a
four-variable unnormalized Oregonator-like model [25,26].
The coefficients of the CGLE and TAE obtained in the present
work for the Oregonator model, even without cross-diffusion
coefficients, may have their own value, since they allow us to
link experimental conditions (e.g., the concentrations of the
BZ reactants) to the parameters of the amplitude equations.

The paper is organized as follows. In Sec. II, we develop
the mathematical procedure for the derivation of the amplitude
equations in general vector form, extending Kuramoto’s
approach to the cross-diffusion case. In Sec. III, we specify
this method to a general two-component reaction-diffusion
system with cross-diffusion terms. In Sec. IV, we apply our
general result to the Oregonator model and find the coefficients
of the CGLE and the TAE. In Sec. V, we present analogous
results for the Brusselator model. We conclude in Sec. VI with
a general discussion. The equivalence of the CGLE derivation
to the Kuramoto results is shown in Appendix A. The technical
details of the CGLE coefficient calculation for the Oregonator
model are collected in Appendix B.

II. GENERAL PROCEDURE

We start from a general reaction-diffusion system with
cross-diffusion terms, which is described by the following
equation in vector form:

∂Z/∂t = F(Z) + D(Z)∇2Z + ∇[D(Z)]∇Z, (1)
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where Z is vector of variables (proportional to the concen-
trations of reactive species), F(Z) is a set of reaction rate
functions, and D(Z) is a square diffusion matrix including
cross-diffusion coefficients. Here we take into account that the
diffusion coefficients depend in general on the concentration
variables [1]. The eigenvalues of D must be real and positive
(this follows from the second law of thermodynamics) [1,27].
The gradient ∇ is ∂/∂r for the one-dimensional (1D) case,
where r is the spatial coordinate. If all elements of D are
constants, i.e., concentration independent, then the last term in
Eq. (1) vanishes.

The dynamics of system (1) close to the Hopf instability
can be described by the CGLE [9,10]

∂W/∂t = (1 + ic0)W + (1 + ic1)∇2W − (1 + ic2)|W |2W.

(2)

The constant c0 can be eliminated by the transformation
W → W ′ exp(ic0t), so that Eq. (2) can be rewritten as

∂W ′/∂t = W ′ + (1 + ic1)∇2W ′ − (1 + ic2)|W ′|2W ′. (3)

In Eq. (2), W is the complex amplitude and the real coefficients
c0,c1, and c2 depend on the parameters of the system.

Close to the onset of Turing instability the system behavior
is represented by the TAE

∂W

∂t
= ηW + g|W |2W + DT

∂2W

∂r2
. (4)

Its normalized form with η = DT = 1 and g = −1 can be
considered as a limiting case of the CGLE (3) if the constants
c1 and c2 are equal to zero [11]. The TAE is a valid description
only in one spatial dimension (1D), the case we consider here
for Turing instability. In the two-dimensional (2D) case (which
we do not consider), amplitude equations (AE) of the Newell-
Whitehead-Segel type [28,29] (with more complex spatial
derivatives) are often used. For this case, the number of coupled
AE is equal to the number of crystallographic rotation axes
(e.g., three for hexagons). In the case of hexagons, additional
quadratic terms of the type Wi Wj and new spatial terms of
the form Wi∇Wj emerge, where the upper bar means complex
conjugate, and indices i, j = 1,2,3 correspond to rotation axes
[30]. Application of such AE to reaction-diffusion systems can
be found elsewhere [31,32]. We do not consider here the case
of wave instability.

Consider now how to obtain Eqs. (2) or (4) from Eq. (1).
First we linearize system (1) around the uniform steady state
Z0, which satisfies the equations F(Z0) = 0, introduce the
deviation X = Z − Z0 from Z0, and then express system (1)
in terms of X and expand it in a Taylor series:

∂X/∂t = JX + D0∇2X + MXX + CXXX + · · · , (5)

where the Jacobian matrix J has elements Jij = ∂Fi(Z)/∂Zj

at Z = Z0 and D0 = D(Z0). The sum of the first two terms
can be considered as a linear operator, JX + D0∇2X ≡ LX.
The quadratic term MXX consists of two parts, “chemical”
HXX and “diffusive” QXX:

MXX = HXX + QXX, (6)

where

(HXX)i = 1

2!

∑
j,k

∂2Fi(Z)

∂Zj ∂Zk

∣∣∣∣
Z=Z0

XjXk, j,k = 1,2, . . . ,

(7)

(QXX)i =
∑
j,k

∂Dij (Z)

∂Zk

∣∣∣∣
Z=Z0

[Xk∇2Xj + (∇Xk)(∇Xj )],

j,k = 1,2, . . . . (8)

The form HXX is sometimes referred to as the Hessian [25].
The cubic term CXXX also consists of two parts, “chemical”
NXXX, and “diffusive” SXXX:

CXXX = NXXX + SXXX, (9)

where

(NXXX)i = 1

3!

∑
j,k,l

∂3Fi(Z)

∂Zj ∂Zk ∂Zl

∣∣∣∣
Z=Z0

XjXkXl,

(10)
j,k,l = 1,2, . . . ,

(SXXX)i =
∑
j,k,l

∂2Dij (Z)

∂Zk ∂Zl

∣∣∣∣
Z=Z0

[
1

2
XlXk∇2Xj

+Xl(∇Xk)(∇Xj )

]
, j,k,l = 1,2, . . . . (11)

Next we introduce a small control parameter μ as a normal-
ized deviation from the critical value at which instability starts.
Using this parameter, we introduce a new scaled time τ and
space R as τ = μt and R = μ1/2r (in 1D) and consider them
independently, which modifies the time and space derivatives
as follows:

∂/∂t → ∂/∂t + μ∂/∂τ, (12)

∂/∂r → ∂/∂r + μ1/2∂/∂R. (13)

Another scaled time τ2 = μ1/2t can also be introduced in
general [2,10]. In 2D, the second coordinate, r2, is scaled as
μ1/4 (for stripes) [33]. For the sake of simplicity, we restrict our
consideration to the simplest 1D case (for Turing instability)
and to only one scaled time, τ .

All operators J, H, N, Q, and S in Eq. (5) are expanded
in powers of μ; for example,

J = J0 + μJ1 + μ2 J2 + · · · , (14)

where J0 = J |μ=0. The expansion of X with the lowest powers
of μ is

X = μ1/2X1 + μX2 + μ3/2X3 + · · · . (15)

This form follows from the structure of the spatial Eq. (12)
and temporal Eq. (13) transformations.

Next, we substitute these expansions in Eq. (5) and collect
all terms of the same power of μ, which gives us a set of
equations for the first (μ1/2), second (μ), and third (μ3/2)
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orders as

∂X1/∂t = ( J0 + D0∂
2/∂r2)X1 ≡ L0X1, (16)

(∂/∂t − L0)X2

= 2D0
∂2

∂r ∂R
X1 + H0X1X1

+ Q
[

X1
∂2

∂r2
X1 +

(
∂X1

∂r

)2]
≡ I2, (17)

(∂/∂t − L0)X3 = I3, (18)

where

I3 ≡ − ∂X1/∂τ + J1X1 + D0
∂2

∂R2
X1 + 2D0

∂2

∂r ∂R
X2

+ 2H0X1X2 + N0X1X1X1 + I′ + I′′, (19)

I′ ≡ Q
[

X1
∂2

∂r2
X2 + 2X1

∂2

∂r ∂R
X1 + X2

∂2

∂r2
X1

+ 2
∂X1

∂r

∂X2

∂r
+ 2

∂X1

∂r

∂X1

∂R

]
, (20)

I′′ ≡ 1

2
S
[

X2
1

∂2

∂r2
X1 + 2X1

(
∂X1

∂r

)2]
. (21)

Equation (16) is just the equation for the linear stability
analysis of the homogeneous steady state. For Hopf and Turing
instabilities, respectively, a solution X1 of Eq. (16) can be
found in the following form:

X1 = W (τ,R)U exp(iωct) + c.c., (22)

X1 = W (τ,R)U exp(ikcr) + c.c., (23)

where W (τ,R) is a complex amplitude that we need to
determine, U is the right eigenvector (column vector) of matrix
L0, ωc and kc are the critical frequency and wave number,
which are characteristic for the Hopf and Turing instabilities,
respectively, and c.c. signifies complex conjugate.

A solution of Eq. (17), X2, may be sought in the general
form of a linear combination of the zeroth, first, and second
subharmonics with coefficients Vi:

X2 = V0 + V1 exp(iωct) + V2 exp(2iωct) + c.c., (24)

X2 = V0 + V1 exp(ikcr) + V2 exp(2ikcr) + c.c. (25)

Note that the coefficients Vi depend on the amplitude W (τ,R).
Finally, the amplitude equation is just the solvability

condition (Fredholm alternative) [34] for the third order
Eq. (18) of our expansion:

〈U∗ | I3〉 = 0, (26)

where the vector U∗ is the left eigenvector (row vector) of
matrix L0. The right U and left U∗ eigenvectors are determined
from the eigenvalue problems

L0U = λ0U and U∗L0 = λ0U∗, (27)

as well as from the normalization condition

U∗U = U
∗
U = 1, (28)

where the upper bar denotes the complex conjugate vector, and
from the orthogonality condition

U∗U = U
∗
U = 0. (29)

From Eq. (26), after doing some algebra, one can obtain
the final form of the amplitude equation of type (2) for Hopf
instability or type (4) for Turing instability.

From Eqs. (20) and (21) it can be seen that all terms in I′
and I′′ contain derivatives with respect to r . For the case of
Hopf instability, when the deviations X1 [see Eq. (22)] and
X2 [see Eq. (24)] are independent of the spatial variable r ,
this means that both I′ and I′′ vanish and I3 is determined at
the constant diffusion matrix D0 = D(Z0). Note also that in
expression (19) for I3, the term 2D0(∂2X2/∂r ∂R) vanishes,
because X2 is independent of r , while the term D0(∂2X1/∂R2)
produces the diffusion term in the CGLE [i.e., (1 + ic1)∇2W ].

III. TWO-VARIABLE REACTION-DIFFUSION SYSTEM
WITH CROSS-DIFFUSION TERMS

Now we can specify the procedure for obtaining the am-
plitude equations for a general two-variable reaction-diffusion
system, since all coefficients of the CGLE and TAE can be
found analytically in this case. For simplicity, we restrict our
consideration to constant diffusion coefficients in the matrix
D0. Then the general model (1) assumes the form

∂u/∂t = F1(u,v) + D11∂
2u/∂r2 + D12∂

2v/∂r2, (30)

∂v/∂t = F2(u,v) + D21∂
2u/∂r2 + D22∂

2v/∂r2. (31)

Introducing the deviation X = ( xu

xv
) from the steady state

Z0 = ( u0
v0

), linearizing Eqs. (30) and (31) around Z0, and
assuming that deviation X behaves as exp(λt + ikr), we obtain
the eigenvalues λ of the matrix L = J + D∇2 from the
characteristic equation

λ2 + γ (k)λ + δ(k) = 0, (32)

where γ (k) = −J11 − J22 + D11k
2 + D22k

2 [−γ (k) is the
trace of the matrix J − k2 D] and δ(k) = (D11k

2 − J11)
(D22k

2 − J22) − (D12k
2 − J12)(D21k

2 − J21) (determinant of
J − k2 D). For the onset of Hopf instability, when Re λ = 0
and Im λ 	= 0, at k = 0, we have γ (0) = 0. The conditions for
the onset of Turing instability are

δ(k) = 0 ⇒ 2λ = −γ (k) +
√

γ (k)2 − 4δ(k) = 0 (33)

and

dδ(k)/dk = 0 ⇒ d Re λ/dk2 = 0, (34)

which gives the critical wave number

kcT = (det J/ det D)1/4. (35)

Consider first the case of Turing instability arising as a
control parameter μ is varied. The right eigenvector of the
matrix L0 = L|μ=0 is

U =
(

Uu

Uv

)
=

(
1

α

)
exp(ikcTr), (36)
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where

α = −J 0
11 − k2

cTD11

J 0
12 − k2

cTD12
= −J 0

21 − k2
cTD21

J 0
22 − k2

cTD22
, (37)

with J 0
ij being the ij element of the Jacobian J0 = J |μ=0. The

left eigenvector is

U∗ = (U ∗
u ,U ∗

v ) = (1 + αβ)−1(1,β) exp(ikcTr), (38)

where

β = −J 0
11 − k2

cTD11

J 0
21 − k2

cTD21
= −J 0

12 − k2
cTD12

J 0
22 − k2

cTD22
. (39)

The vector X can be expanded as [see Eq. (15)](
xu

xv

)
= μ1/2

(
xu1

xv1

)
+ μ

(
xu2

xv2

)
+ · · · . (40)

The first and second terms of Eq. (40) have the forms [see
Eqs. (23) and (25)]

(
xu1

xv1

)
=

(
1

α

)
W (τ,R) exp(ikcTr) + c.c., (41)

(
xu2

xv2

)
=

(
a0

b0

)
+

(
a1

b1

)
exp(ikcTr)

+
(

a2

b2

)
exp(2ikcTr) + c.c. (42)

Here ai and bi , i = 0,1,2, are the components of the vectors
Vi in Eq. (25). We can find them from the μ-order term of
the expansion. The coefficients a0 and b0 in Eq. (42) are
determined as

a0 = − 2

det J0

(
G1J

0
22 − G2J

0
12

)|W |2, (43)

b0 = − 2

det J0

(
G2J

0
11 − G1J

0
21

)|W |2, (44)

where

Gi = 1

2
Huu

i + αHuv
i + α2

2
Hvv

i . (45)

Here the subscript denotes the component (i = 1,2), whereas
the superscripts denote derivatives with respect to the corre-
sponding variables, so, for example,

Huv
i = ∂2Fi(u,v)

∂u ∂v

∣∣∣∣
u0,v0;μ=0

, Nuuv
i = ∂3Fi(u,v)

∂u2 ∂v

∣∣∣∣
u0,v0;μ=0

.

(46)

The exp(ikcTr) term yields the combination of coefficients a1

and b1 as

αa1 − b1 = 2ikcT
D11 + αD12

J 0
12 − k2

cTD12

∂W

∂R

= 2ikcT
D21 + αD22

J 0
22 − k2

cTD22

∂W

∂R
. (47)

From Eqs. (47) and (39) it follows that D11 + αD12 + βD21 +
αβD22 = 0 so that the term D0(∂2X1/∂R2) in Eq. (19)
vanishes after applying the Fredholm alternative. The last
coefficients, a2 and b2, appear in the exp(2ikcTr) term and
read

a2 = 1

det ϕ
(G1ϕ22 − G2ϕ12)W 2, (48)

b2 = 1

det ϕ
(G2ϕ11 − G1ϕ21)W 2, (49)

where ϕij = −J 0
ij + 4k2

cTDij .
Finally, using the Fredholm alternative (26) rewritten in the

two-component form U ∗
u I+

3u + U ∗
v I+

3v = 0 with I3 expressed as

I3 =
(

I3u

I3v

)
=

(
I+

3u

I+
3v

)
exp (ikcTr) +

(
I−

3u

I−
3v

)
exp(−ikcTr)

+ terms of other orders of r, (50)

where the deviations (40)–(42) are inserted in Eq. (19), we
obtain the amplitude equation in the form of Eq. (4) with the
derivatives now with respect to τ and R instead of t and r,
where

η = ηT = 1

1 + αβ

(
J 1

11 + αJ 1
12 + βJ 1

21 + αβJ 1
22

)
, (51)

DT = 4k2
cT

D21 + αD22

1 + αβ

D12 + βD22

J 0
22 − k2

cTD22
, (52)

g = ĝ/(1 + αβ),

ĝ = (
Huu

1 + βHuu
2 + αHuv

1 + αβHuv
2

)[− 2

det J0

(
G1J

0
22 − G2J

0
12

) + 1

det ϕ
(G1ϕ22 − G2ϕ12)

]

+ (
Huv

1 + βHuv
2 + αHvv

1 + αβHvv
2

)[− 2

det J0

(
G2J

0
11 − G1J

0
21

) + 1

det ϕ
(G2ϕ11 − G1ϕ21)

]

+ 1

2

[(
Nuuu

1 + βNuuu
2

) + 3α
(
Nuuv

1 + βNuuv
2

) + 3α2
(
Nuvv

1 + βNuvv
2

) + α3
(
Nvvv

1 + βNvvv
2

)]
, (53)
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and

J 1
ij = dJij

dμ

∣∣∣∣
μ=0

(54)

for the elements of the matrix J1.
In general, the TAE (4) can be rescaled if we perform

the transformations: μ∂/∂τ → ∂/∂t , μ1/2∂/∂R → ∂/∂r , and
μW → W [12,14]. From Eqs. (51)–(53), we can see that the
effect of cross diffusion appears in all coefficients ηT , DT , and
g of the TAE, since α and β (which determine the right and
left eigenvectors) depend on D12 and/or D21.

Now let us consider Hopf instability. The same result for the
amplitude equations in the Hopf case may be obtained using
Kuramoto’s procedure [5,9]. The equivalence of our manipu-
lations to Kuramoto’s formulation is shown in Appendix A.
Therefore, we use his method to calculate the coefficient of
the cubic term in the CGLE, because only the coefficient c1 of
the CGLE (2) depends on cross diffusion, while c0 and c2 are
the same as in the case of no diffusion. To find c1, we must
calculate the eigenvectors U∗ and U of J0, which has a pure
imaginary eigenvalue iω0 in the case of the Hopf instability.
Due to the specific properties of J0 for the Hopf case, we
have two relationships between its elements Jij (here we have
dropped the 0 superscript in J 0

ij for simplicity):

J11 = −J22 (55)

and

ω2
0 = −J 2

11 − J12J21. (56)

Now we can obtain the eigenvectors U∗ and U:

U∗ = 1

2

(
−i

J11

ω0
,
J11

J21
+ i

J 2
11

J21ω0

)
, U =

(
1 + iω0/J11

J21/J11

)
.

(57)

We can then calculate U∗ DU = d ′ + id ′′, which gives c1 in
general form as

c1 = d ′′/d ′ = 1

ω0

J11(D22 − D11) − J21D12 − J12D21

D11 + D22
. (58)

We see here that the contribution of the cross-diffusion terms,
D12 and D21, to c1 depends on the sign (and absolute value)
of the elements J21 and J12, respectively.

In the next two sections we apply the general equations
deduced here to the Oregonator and Brusselator models.

IV. OREGONATOR MODEL

For the two-variable Oregonator model, the functions
F1(u,v) and F2(u,v) in Eqs. (30) and (31) are specified as
F1(u,v) = [u − u2 − f v(u − q)/(u + q)]/ε and F2(u,v) =
u − v [20,21]; the parameters f,q,ε,Dij are positive constants,
D22 can be chosen to be 1 for the normalized case, but we
keep the notation D22 for generality. The steady-state solution,
(u0,v0), satisfies F1(u0,v0) = F2(u0,v0) = 0 and reads

u0 = v0 = (1/2)[1 − q − f +
√

(1 − q − f )2 + 4q(1 + f )].
(59)

The elements of the Jacobian matrix J are

J11 = ∂F1(u,v)/∂u = [1 − 2u0 − 2qf v0/(u0 + q)2]/ε,

J12 = ∂F1(u,v)/∂v = −(f/ε)(u0 − q)/(u0 + q),

J21 = ∂F2(u,v)/∂u = 1, J22 = ∂F2(u,v)/∂v = −1,

calculated at u = u0 and v = v0.
For the onset of Hopf instability, the critical value εcH of the

parameter ε can be expressed as a function of q and f [using
the general equation (55)]:

εcH = 1 − 2u0 − 2qf v0

(u0 + q)2
. (60)

At the onset of Hopf instability, Im(λ0) = ω0, the frequency
ω0 can be found from Eqs. (56) and (60) as

ω2
0 = (1 − u0)/εcH − 1. (61)

We consider the situation when, as we decrease ε, the Hopf
instability occurs before the Turing instability. The conditions
for the onset of Turing instability yield the critical value εcT at
the critical wave number kcT [given by Eq. (35)] as

εcT = [−b +
√

b2 − 4ac]2/(4a2), (62)

where a = D11 + D12, b = √−4(j11 + j12) det D, and c =
j12D21 − j11D22,

√
εcT > 0 and

j12 ≡ εJ12 = f (q − u0)/(q + u0), (63)

j11 ≡ εJ11 = 1 − 2u0 − 2qf v0/(q + u0)2. (64)

When the Hopf instability occurs before the Turing instability,

εcH > εcT. (65)

CGLE for the Oregonator model. First we introduce a small
control parameter μ:

μ = (ε − εcH)/εcH. (66)

Then we calculate J0 and J1:

J0 =
(

1 −1 − ω2
0

1 −1

)
, (67)

J1 = d J
dε

dε

dμ

∣∣∣∣
ε=εcH

=
(

−1 1−u0
εcH

0 0

)
, (68)

and find the left and right eigenvectors of J0 [using Eq. (57)]:

U∗ = 1

2

(
− i

ω0
,1 + i

ω0

)
, U =

(
1 + iω0

1

)
. (69)

Using Eqs. (68) and (69), we compute the combination
U∗ J1U = λ1 ≡ σ 1 + iω1 = −(1/2)(1 + iω0) and then find
the coefficient c0 in the CGLE (2) as [9]

c0 ≡ ω1/σ1 = ω0. (70)

Next we determine the coefficient c1 from Eq. (58):

c1 = 1

ω0

D22 − D11 − D12 + D21
(
1 + ω2

0

)
D11 + D22

. (71)

Finally, we find c2 = g′′/g′ following Kuramoto’s procedure,
which is rather cumbersome and is detailed in Appendix B.
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FIG. 1. Parameter planes for the Oregonator model. (a) Depen-
dence of fc (bold line) and fAW (two dashed lines) on q. Dashed lines
(fAW) mark the boundary between normal wave (W) and antiwave
(AW) domains at D11 = 1, and D12 = D21 = 0. (b) Domains of
Benjamin-Feir (BF) instability, waves, and antiwaves in the D12 − f

plane at q = 0.001, D21 = 0, D11 = 1 (bold lines), and 1.5 (thinner
lines). At larger D11 all curves (dashed and bold) shift to the left. The
leftmost point of the boundary between the AW and W domains is at
D12

∼= −0.22 for D11 = 1 and at D12 = −0.8 for D11 = 1.5, while
the BF domain ends at D12

∼= 0.01 for D11 = 1 and at D12 = −0.5
for D11 = 1.5. (c) Domains of BF, W, and AW in the D12−D21 plane
at f = 1.1, q = 0.01, D11 = 1, and c2 = 0.1917; hyperbolic curves
correspond to the condition det D = 0. (d) Domains of BF, W, and
AW in the D21−f plane at q = 0.01, D12 = 0, and D11 = 1. Numerical
integration of Eqs. (30) and (31) was performed at the marked points
in Fig. 1(b). Triangles correspond to D11 = 1, squares to D11 = 1.5;
black symbols show antiwaves and white symbols show waves.
D22 = 1 for all cases.

The CGLE is valid only at g′ > 0, when the Hopf
bifurcation is supercritical. The dependence of the critical
value fc [fc is the value of f at which g′ changes sign from
negative (at f < fc) to positive (at f > fc)] on q is shown
in Fig. 1(a). Note that this dependence does not coincide with
the dependence f ′

c = 1 − q used in Ref. [17] as the boundary
between super- and subcritical Hopf bifurcation.

Using the coefficients c1 and c2, we identify regions with
specific dynamical behaviors of the reaction-diffusion system,
such as the domain of Benjamin-Feir instability (chemical tur-
bulence), where 1 + c1c2 < 0 [9], and domains of waves and
antiwaves (phase waves propagating away from and toward a
source of perturbation, respectively) [35,36]. The transition
from wave (W) to antiwave (AW) behavior occurs when
c1 + c2 = 0 [16,17,37]. However, some works [16,17,37] use a
different sign for ic2 in the term (1 + ic2)|W |2W of the CGLE,
which may lead to confusion, with the transition criterion
then being c1 − c2 = 0 instead of c1 + c2 = 0. Therefore, we
carefully checked both criteria by direct numerical calculations
with the original Oregonator reaction-diffusion model and
conclude that the criterion c1 + c2 > (<)0 corresponds to the

AW (W) domain. In Fig. 1(a), these two domains, W and
AW, are plotted in the q − f parameter plane. Note that the
necessary conditions for the validity of the CGLE, such as
1 − u0 > εcH > εcT, are always fulfilled [see Eqs. (61) and
(65)].

To illustrate the effect of cross-diffusion terms on the
dynamic behavior of the system, the Cd − f parameter plane
can be selected, where Cd ≡ D21(1 + ω2

0) − D12 [see Eq. (71)]
is the cross-diffusion contribution to c1. First, we consider the
case of D21 = 0 (in which case Cd = −D12). In Fig. 1(b)
we exhibit three domains: W, AW, and BF (Benjamin-Feir
turbulence), which are plotted at two different values of D11.
As is seen in Fig. 1(b), the transition between the W and AW
domains can be induced by changing D12 in a rather broad
range of f. In a relatively narrow range of f close to fc, an
increase in D12 can lead to transitions from AW to W and
further to the BF domain. The interplay of both cross-diffusion
coefficients can easily be seen by inserting c1 from Eq. (71)
into the criterion for BF instability, 1 + c1c2 < 0,

D21 <
1

1 + ω2
0

[
D11 + D12 − D22 − ω0

c2
(D11 + D22)

]
(72)

and into the criterion for AW, c1 + c2 > 0,

D21 >
1

1 + ω2
0

[D11 + D12 − D22 − c2ω0(D11 + D22)]. (73)

Here we recall that c2 is independent of the diffusion coef-
ficients. Therefore, the BF and AW regions in the (D12,D21)
plane are bounded by parallel straight lines which correspond
to the equalities in Eqs. (72) and (73). Note that if c2 = ±1, the
two lines coincide. At −1 < c2 < 0 or c2 > 1, there is no W
domain, since this domain then overlaps with the BF domain,
and the resulting waves are turbulent. The three domains, W,
AW, and BF, are shown in Fig. 1(c) for 0 < c2 < 1.

In Fig. 1(d) we show the various behavioral domains in
the D21−f plane at D11 = D22 = 1 and D12 = 0 [in which
case Cd = D21(1 + ω2

0)]. We see that in addition to a region
of BF instability close to f ∼= 1, which exists at vanishing D21

and D12, a new region of BF instability at large f (≈2 and
larger) emerges, which cannot be obtained at D21 = D12 = 0.
Note also that the analogous BF region exists for the case of
D21 = 0 [Fig. 1(b)], but only at much larger positive values of
D12 (>2). Figures 1(b) and 1(d) should be mirror symmetric
with a “magnification factor” 1 + ω2

0, since in the first case
Cd =−D12, while in the second case Cd = D21(1 + ω2

0).
Examples of waves and antiwaves in the 1D case are shown

in Fig. 2. In these computer experiments, a small portion at the
left of the 1D segment was perturbed initially, starting from
the homogeneous steady state (SS). In both W and AW, a wave
packet propagates slowly to the right with the group velocity.
In the case of AW (left column of Fig. 2), after sufficient time,
bulk oscillations start in the right portion of the system. In
the case of W (right column of Fig. 2) the right (unperturbed)
portion of the 1D segment remains in the SS. In both cases,
the boundary between the wave packet and either the bulk
oscillations or the quiescent region moves slowly to the right.
The bottom sections of Fig. 2 show the wave amplitudes.

Since the CGLE is applicable to both the 1D and 2D cases,
waves (antiwaves) found in 1D should correspond to circular
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FIG. 2. Examples of antiwaves (left column) and waves (right column) in 1D Oregonator model induced by cross-diffusion coefficient D12.
Parameters: f = 1.2, q = 10−3, ε = 0.78 (εcH = 0.78 723), D11 = D22 = 1, D21 = 0, D12 = (left column) −0.5, (right column) 1, c1 + c2 =
(left column) 0.337 45, (right column) −1.1418; c1 − c2 = (left column) 0.648 72, (right column) −0.830 53. Total time for both space-time
plots is equal to 25. Numbers 1–4 for the profiles of the variable u correspond to relative times 5, 7, 9, and 11, respectively (starting from an
arbitrary time long after the initial perturbation). Zero-flux boundary conditions.

waves (antiwaves) in 2D. To demonstrate this, in Fig. 3 we
show examples of circular waves and antiwaves in 2D.

TAE for the Oregonator model. To analyze the Turing
bifurcation, we introduce a new small control parameter μ

FIG. 3. Examples of circular antiwaves (left column) and waves
(right column) in 2D Oregonator model induced by cross-diffusion
coefficient D12. Parameters as in Fig. 2: f = 1.2, q = 10−3, ε = 0.78,
D11 = D22 = 1, D21 = 0, D12 = (left column) −0.5, (right column)
1. Size of (a) and (c) is 900 × 900. White color corresponds to
the minimum of activator u and black to the maximum. Numbers
1–8 in (b) and (d) correspond to the spatial points at the distances
0, R/16, 2R/16, 3R/16, 4R/16, 5R/16, 6R/16, and 7R/16 from
the center, respectively (starting from an arbitrary time long after
the initial perturbation made in the center). Zero-flux boundary
conditions.

as we did in Eq. (66), replacing εcH by εcT. The eigenvectors
U [given by Eq. (36)] and U∗ [given by Eq. (38)] are now
specified by

α = k2
cTD11 − j11/εcT

j12/εcT − k2
cTD12

, (74)

β = j12/εcT − k2
cTD12

1 + k2
cTD22

= −j11/εcT − k2
cTD11

1 − k2
cTD21

, (75)

where j11 and j12 are given by Eqs. (64) and (63), respectively.
Note that Eq. (75) can be solved for εcT as

εcT = j11/k2
cT + j12/k2

cT + j11D22 − j12D21

D11 + D12 + k2
cT det D

. (76)

If we know kcT from Eq. (35), then we can find εcT using
Eq. (76) instead of Eq. (62). Applying the general equations
(51)–(54) for the Oregonator model, we obtain the following
coefficients for the final form of the TAE (4):

η = ηT = − 1

εcT

j11 + αj12

1 + αβ
, (77)

DT = −4k2
cT

D21 + αD22

1 + αβ

D12 + βD22

1 + k2
cTD22

, (78)

g = ĝ/(1 + αβ),

ĝ = Huu
1

(
Huu

1 + 2αHuv
1

)[ 1

2(ϕ1 − χϕ2)
− εcT

j11 + j12

]

+Huv
1

(
Huu

1 + 2αHuv
1

)[ 1

2(ϕ1 − χϕ2)
(α + χ )

− εcT

j11 + j12
(1 + α)

]
+ (

Nuuu
1 + 3αNuuv

1

)
/2, (79)
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where

ϕ1 = −j11/εcT + 4k2
cTD11, (80)

ϕ2 = j12/εcT − 4k2
cTD12, (81)

χ = 1 − 4k2
cTD21

1 + 4k2
cTD22

, (82)

and the Hessian elements Huu
1 and Huv

1 and the elements Nuuu
1

and Nuuv
1 are given in Appendix B [Eqs. (B3) and (B6)] for

the CGLE with the provision that εcH must be replaced by εcT.
In Fig. 4, we display several parameter planes, showing

regions of Turing instability as calculated from the TAE for the
Oregonator. The sign of g in a region determines whether the
instability is supercritical (g < 0) or subcritical (g > 0). From
Figs. 4(c) and 4(d) we observe that to obtain Turing instability
when D11 = D22 = 1, D21 should be positive (repulsion
of inhibitor from areas of concentrated activator) and D12

negative (attraction of activator to regions of concentrated
inhibitor). In all parameter planes there is a line close to
f = 1 separating regions of super- and subcritical Turing
instability. A second such boundary can be seen at larger f in
Figs. 4(a)–4(c), the position of which strongly depends on the
diffusion coefficients.

FIG. 4. Parameter planes for the Oregonator model showing
regions of super- and subcritical Turing instability obtained by
determining the sign of g in Eq. (4). Black rhombs and white triangles
correspond to super- and subcritical Turing patterns, respectively,
obtained in numerical simulations. In panel (c), regions in which
Hopf bifurcation occurs first are subdivided into regions with super-
and subcritical Hopf bifurcation, and the supercritical Hopf region
is further divided into regions of waves (W) and antiwaves (AW) on
the basis of the CGLE. Parameters: D22 = 1, D11 = (a) 0.1, [(c),
(d)] 1, D12 = [(a)–(c)] 0, D21 = [(a), (b), (d)] 0, q = [(b)–(d)] 0.001;
ε = εcH [see Eq. (60)] for the region in which Hopf bifurcation starts
first, ε = εcT [see Eq. (62)] for the region in which Turing bifurcation
starts first. TAE is valid only in areas shaded in gray.

V. BRUSSELATOR MODEL

For the Brusselator model [22] with cross-diffusion terms
described by Eqs. (30) and (31), the functions F1 and
F2 are F1(u,v) = A − (B + 1)u + u2v and F2(u,v) = Bu −
u2v. The critical value of the control parameter B at the Hopf
instability is BcH = 1 + A2. The critical wave number kc for
the onset of Turing instability is determined from Eq. (35) as

k2
c = A/

√
det D, (83)

while the critical parameter BcT is found from Eq. (33) using
Eq. (83) and is given by

BcT = [A2(D11 + D21) + 2A
√

det D + D22]/(D12 + D22).

(84)

To calculate the coefficients of the CGLE and TAE, below we
employ these expressions for k2

c and BcT.
CGLE for the Brusselator model. The CGLE for the

Brusselator model without cross-diffusion terms has been
derived elsewhere [9,14], and we present here only the main
results relevant to the case of cross diffusion. First, we choose
the critical small parameter μ:

μ = B − BcH

BcH
. (85)

Then we find the operator J0:

J0 =
(

A2 A2

−(1 + A2) −A2

)
, (86)

and calculate the coefficient c1 from Eq. (58):

c1 = ω0
D22 − D11 − D21 + D12

(
1 + 1

/
ω2

0

)
D11 + D22

. (87)

For the Brusselator model, we have ω0 = A. The coefficient
c2 = g′′/g′ is independent of the diffusion coefficients and is
given in Ref. [9]:

c2 = 4 − 7A2 + 4A4

3A(2 + A2)
. (88)

Note that g′ = (2 + A2)/(2A2) is always positive, and
hence the Hopf bifurcation in the Brusselator model is always
supercritical, so that we can write the CGLE for any value of
A. The coefficient c0 is derived from U∗ J1U = λ1 ≡ σ1 + iω1

as c0 = ω1/σ1 = 0, where J1 = (1 + A2)(1 0
−1 0) and σ1 =

(1 + A2)/2, ω1 = 0.
We plot the W, AW, and BF domains in two parametric

planes: (A − D11) at D12 = D21 = 0 [Fig. 5(a)] and (A − Cd)
[−Cd ≡ D21−D12(1 + 1/ω0

2) and −Cd = D21 at D12 = 0]
[Figs. 5(b) and 5(d)]. As can be seen in Fig. 5(d), at large
enough −Cd (or large D21 at D12 = 0), BF instability occurs,
while at small enough −Cd (< −1), there is an AW domain.
The domain of waves (W) is squeezed between the AW and
BF domains and exists only in a rather narrow range of the
parameter A (approximately between 0.4 and 2). The minimum
of the curve separating the W and AW domains and the
maximum of the curve separating the W and BF domains
correspond to A = 1. From Fig. 5(b) we can also conclude
that if D11 is small enough (<1), only AW may be found in
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FIG. 5. Domains of Benjamin-Feir (BF) instability, waves (W),
and antiwaves (AW) for Brusselator model in (a) the A − D11 plane
at D12 = D21 = 0 and (b) the A − D21 plane at D12 = 0 [−Cd =
D21−D12(1 + 1/ω0

2)]. In (b), dotted (boundary between wave and
antiwave domains) and bold [boundary between regular and chaotic
(BF) waves] curves from top to bottom are obtained at D11 = 0.5,
1, 1.5, and 2. The BF instability develops in the area above the bold
curves. Plot (d) is an enlargement of plot (b). (c) Three domains (BF,
W, and AW) in the D11 − D21 plane at A = 1 and D12 = 0. W-domain
in (a) is limited by two vertical lines corresponding to two roots
of the equation A4 − 13A2 + 4 = 0 (Aleft ≈ 0.56 and Aright ≈ 3.56).

BF domain in (a) exists only at A >
√

5 + √
33/2 ≈ 1.64 (a root

of equation 2A4 − 5A2 − 1 = 0). Symbols mark points at which the
model was numerically integrated at D11 = 2 (gray dot, BF instability;
white triangle, waves; black rhombs for antiwaves). D22 = 1 for all
panels.

the Brusselator model at D21 = D12 = 0. Examples of BF
turbulence and AW in the Brusselator model are shown in
Fig. 6.

TAE for the Brusselator model. The TAE for the Brusselator
model without cross-diffusion terms was obtained earlier
[12,14]. Here we present the TAE for the Brusselator model
with cross diffusion. The control parameter μ is introduced as

μ = B − BcT

BcT
. (89)

The TAE (4) has the following coefficients:

η = ηB = (A/�1)(D12 + D22)2(B − BcT), (90)

g = (A/�1)(D12 + D22)(�2 + �3), (91)

DT = DB = 4(A/�1)(D12 + D22) det D, (92)

where

�1 = A(D12 + D22)(A
√

det D + D22)

− (A
√

det D − D12)[A(D11 + D21) +
√

det D], (93)

FIG. 6. (Color) Patterns in the Brusselator model. (a) Example of
BF turbulence at A = 3, B = 10.05, D11 = 2, D22 = 1, and D12 =
D21 = 0, 1 + c1c2 = −1.6767; size = 450 × 450. (b) Example of
AW at A = 0.5, B = 1.35, D11 = 2, D22 = 1, D12 = 0, and D21 = 0.5,
c1 + c2 = 0.490741 (c1 − c2 = −0.99074). Two snapshots (with
dimensions 450 × 900) in (b) are separated in time by �t = 2 (the two
circular waves in the middle shrink). Zero-flux boundary conditions.

�2 = − 2

9A3
√

det D
[D22 − A2(D11 + D21)]

× [4A2(D11 + D21) + 15A
√

det D − 4D22], (94)

�3 = − 3

A
[A(D11 + D21) +

√
det D]. (95)

If D12 = D21 = 0 (no cross diffusion), we recover from
Eqs. (90)–(95) the amplitude equation obtained by De Wit
and Walgraef [12,14].

If g is positive, the Turing instability is subcritical. In Fig. 7
we show the regions of super- and subcritical Turing instability.
The condition g = 0 is determined by the equation �2 + �3 =
0 [see Eq. (91)]. This expression can be rewritten as

2[D22 − A2(D11 + D21)][4A2(D11 + D21) + 15A
√

det D

− 4D22] + 27A2
√

det D[A(D11 + D21) +
√

det D] = 0.

(96)

FIG. 7. Areas of super- (g < 0) and subcritical (g > 0) Turing
instability in the Brusselator model. Parameters: D11 = D22 = 1.
Bold lines in (a) and (b): D21 = 0 and D12 = 0, respectively.
Dotted lines in (a) (with closed loop): D21 = 0.1; dashed line in
(a): D21 = −0.2. Dashed lines in (b): D12 = −0.2. CoD2 signifies
a codimension two bifurcation, where Turing and Hopf instabilities
start simultaneously.
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If D21 = 0, then det D = D11D22 and Eq. (96) is independent
of D12, i.e., the super/subcritical areas are separated in the
(A − D21) plane by the straight (bold horizontal) lines in
Fig. 7(a). When D11 = D22 = 1 and D21 = 0, we can find
from Eq. (96) two values, A = (21 ± √

313)/16 (∼=2.418 and
0.207), that correspond to the two horizontal straight lines in
Fig. 7(a).

If D12 = 0, then we can find from Eq. (96) an expression
for D21 at which g = 0:

D21 = −D11 + 1

16A2
[16D22 − 3A

√
D11D22

± 3
√

A
√

D11D22(96D22 + 97A
√

D11D22)]. (97)

Equation (97) gives the two branches of the boundary between
the sub- and supercritical Turing domains [shown in Fig. 7(b)].
These lines tend to infinity if D21 approaches −D11.

VI. DISCUSSION AND CONCLUSION

We can now summarize the effects of constant cross-
diffusion coefficients on the system behavior close to the onset
of Hopf or Turing instability. For the CGLE (Hopf instability),
cross diffusion affects only the linear coefficient c1, whereas
the cubic coefficient c2 is independent of diffusion terms.

One can see that the cross-diffusion coefficients D12 and
D21 contribute to c1 asymmetrically both in the Oregonator
and Brusselator models. For the Oregonator model, increasing
D21 increases c1, while raising D12 decreases c1. The opposite
effect of D12 and D21 on c1 occurs in the Brusselator model.
This behavior can be understood from Eq. (58), which shows
that the effect of D12 and D21 on c1 is proportional to the
Jacobian matrix elements J21 and J12, respectively. Although
the instability in both models is of the “direct autocatalysis”
type as defined by Tyson [38], examination of Eqs. (67) and
(86) shows that the community matrix, which consists of the
signs of the elements of J0 at the critical point, is (+ −

+ −) for

the Oregonator and (+ +
− −) for the Brusselator.

Varying the coefficient c1 shifts the boundary between the
wave and antiwave domains and can lead to the emergence of
new behavior, such as BF instability, both in the Oregonator
and Brusselator models. For the Oregonator model, however,
in the region of BF instability (at f ≈ 1), our simulations
produced chaotic waves only at some parameters, while at
other parameters in the same domain no such behavior was
found. It is possible that proximity of a subcritical Hopf
region may be responsible for this anomalous behavior. It has
also been suggested [26] that, because the Oregonator model
contains quite different characteristic time scales, it may be
badly described by the CGLE even in the vicinity of the Hopf
bifurcation.

In the case of the Belousov-Zhabotinsky reaction, the link
between the parameters of the reaction-diffusion system and
the constants of the Oregonator CGLE may allow us to identify
conditions under which unusual dynamic behavior may occur.
For example, if c1 = c2 = 0, both the group and phase
velocities of waves are zero [16]. If we perturb the SS locally,
then a pseudo-oscillon can emerge, i.e., a localized spot that
oscillates for many periods while the remainder of the system is

quiescent. We refer to this phenomenon as a “pseudo-oscillon,”
because this oscillon is not stable like a true oscillon [39], but
rather spreads very slowly. For the Oregonator model, one such
set of parameters is f = 1.693, q = 0.001, ε = 0.438, D11 =
0.5, D22 = 1, D12 = 0.0481, and D21 = −0.2. The presence
of cross-diffusion coefficients helps to find this special point
by tuning D12 or D21. At D11 = D22 = 1 and D12 = D21 =
0 such a point always exists, since c1 = 0 at D11 = D22 and
the function c2(f,q) has roots at some f and q, for example, at
f ∼= 1.722 and q = 0.01, provided that ε is given by Eq. (60).

In the case of Turing instability the cross-diffusion coef-
ficients contribute to all the coefficients, η,DT, and g, of the
amplitude equation, but we have focused here on the effect
of Dij on g, i.e., on the boundary between supercritical and
subcritical Turing instability. From Figs. 4 and 7, we observe
that D12 in the Oregonator and D21 in the Brusselator model
strongly affect the position of this boundary, while the other
cross-diffusion coefficients have relatively little effect.

Note also that for nonzero cross-diffusion coefficients, it is
possible, in general, for det D to approach zero. In this case,
kcT becomes very large [see Eq. (35)], and consequently the
characteristic wavelength of Turing patterns, 2π/kcT, can be
vanishingly small. We also note that Turing instability can
occur even with D11 = D22, if we have cross diffusion (see
Figs. 4 and 7).

The results obtained here for the Oregonator should be
of use in guiding the design of future experiments on the
BZ-AOT system, where several cross-diffusion coefficients
have already been measured [4,5] and an Oregonator-based
model [7] has been developed. Implementation of this ap-
proach will, however, require its extension to models with
more than two concentration variables.
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APPENDIX A: EQUIVALENCE OF THE CGLE
DERIVATION TO KURAMOTO’S FORMULATION

IN THE CASE OF HOPF INSTABILITY

Here we consider in detail the method of derivation of
the AE in the Hopf case to show that it is equivalent to
Kuramoto’s procedure [5,9]. Using the eigenvector U in the
form of Eq. (57), the deviations are chosen as

X1 = UWeiω0t + U We−iω0t =
(

xu1

xv1

)

=
(

α1

α2

)
Weiω0t +

(
ᾱ1

ᾱ2

)
W̄e−iω0t , (A1)

X2 = V0 + V2e
2iω0t + V̄2e

−2iω0t =
(

xu2

xv2

)

=
(

a0

b0

)
+

[(
a2

b2

)
e2iω0t + c.c.

]
. (A2)
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Here W = W (τ,R), V0,2 = V0,2(W,W̄ ). The first harmon-
ics in the second deviation (A2) vanish because there are only
the zeroth and second harmonics in I2 in Eq. (17) for the Hopf
case

(∂/∂t − J0)X2 = H0X1X1 ≡ I2, (A3)

with

H0X1X1 = (H0UU)W 2e2iω0t + 2(H0UU)|W |2
+(H0U U)W

2
e−2iω0t , (A4)

or in the coordinate form

(H0X1X1)j

= [
Huu

j α1ᾱ1 + Huv
j (α1ᾱ2 + α2ᾱ1) + Hvv

j α2ᾱ2
]|W |2

+ [
1
2

(
Huu

j α2
1 + 2Huv

j α1α2 + Hvv
j α2

2

)
W 2e2iω0t + c.c.

]
≡ 2G0

j |W |2 + (G+
j W 2e2iω0t + c.c.), j = 1,2. (A5)

This fact was pointed out by Kuramoto [9,13]. Then, the
application of the above procedure for the second order yields
for the zeroth harmonic terms the following equations:

−J 0
11a0 − J 0

12b0 = 2G0
1|W |2, (A6)

−J 0
21a0 − J 0

22b0 = 2G0
2|W |2, (A7)

from which the coefficients a0,b0 are found as in Eqs. (43) and
(44) with only one replacement, Gj → G0

j . In vector form we
can write these two equations as

−J0V0 = 2

(
G0

1

G0
2

)
|W |2 = 2(H0UU)|W |2. (A8)

Hence

V0 = −2 J−1
0 (H0UU)|W |2. (A9)

The same procedure for the second harmonics yields
Eqs. (48) and (49) for a2,b2 with the following replacements:
Gj → G+

j and

ϕmn = −J 0
mn + 2iω0δmn,

δmn =
{

1,m = n,

0,m 	= n,
m,n = 1,2, (A10)

so that the equation for a2, b2 can be written in vector form as

ϕV2 = −( J0 − 2iω0)V2 =
(

G+
1

G+
2

)
W 2 = (H0UU)W 2,

(A11)

i.e.,

V2 = −( J0 − 2iω0)−1(H0UU)W 2. (A12)

For the third order of expansion with

I3 = −∂X1

∂τ
+ J1X1 + D0

∂2X1

∂R2

+ 2H0X1X2 + N0X1X1X1, (A13)

the quadratic term

(H0X1X2)j

= 1
2

[
Huu

j xu1xu2 + Huv
j (xu1xv2 + xv1xu2) + Hvv

j xv1xv2
]

(A14)

has contributions proportional to eiω0t :

xu1xu2 = (α1Wa0 + ᾱ1W̄a2)eiω0t + · · · ,
xu1xv2 = (α1Wb0 + ᾱ1W̄b2)eiω0t + · · · ,

(A15)
xv1xu2 = (α2Wa0 + ᾱ2W̄a2)eiω0t + · · · ,
xv1xv2 = (α2Wb0 + ᾱ2W̄b2)eiω0t + · · · ,

or in vector form

H0X1X2 = (H0UV0)Weiω0t + (H0UV2)W̄eiω0t + · · · .
(A16)

The same manipulation with the cubic term

(N0X1X1X1)j

= 1
6

[
Nuuu

j x3
u1 + 3Nuuv

j x2
u1xv1 + 3Nuvv

j xu1x
2
v1 + Nvvv

j x3
v1

]
(A17)

results in contributions such as

x3
u1 = 3α2

1 ᾱ1|W |2Weiω0t + · · · , (A18)

or in vector form

N0X1X1X1 = 3(N0UUU)|W |2Weiω0t + · · · . (A19)

Taking into account Eqs. (A9) and (A12), we put V0 =
Ṽ0|W |2 and V2 = V+W 2 and recover Kuramoto’s result [9,13]

I+
3 =−∂UW

∂τ
+ J1UW + D0

∂2UW

∂R2
+ 2(H0UV0 + H0UV+)

× |W |2W + 3(N0UUU)|W |2W, (A20)

where the tilde over V0 has been omitted.

APPENDIX B: CALCULATION OF THE c2 COEFFICIENT
IN THE CGLE FOR THE OREGONATOR MODEL

The calculation follows Kuramoto’s approach for deriving
the CGLE [9]. To find c2 = g′′/g′ in the CGLE we calculate
the vectors HXX and NXXX. For HXX, we have

(HXX)i

= 1

2

[
∂2Fi(u,v)

∂u2

∣∣∣∣
u0,v0

UuUu + 2
∂2Fi(u,v)

∂u ∂v

∣∣∣∣
u0,v0

UuUv

]
,

(B1)

where the two components of eigenvector U, Uu and Uv , are
used for the deviation X. Here we have taken into account that
Hv v

1 = [∂2F1(u,v)/∂v2] = 0 for the Oregonator model, and
since F2(u,v) is a linear function, all its second derivatives
are zero, which causes the second component (HXX)2 of
the vector HXX to vanish. With μ = 0 (or ε = εcH) the first
component (H0XX)1 [see Eq. (B1)] is given by

(H0XX)1 = (
1−ω2

0

)
Huu

1

/
2+Huv

1 +iω0
(
Huu

1 +Huv
1

)
, (B2)

(H0XX)1 = (
1 + ω2

0

)
Huu

1

/
2 + Huv

1 , (B3)
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where

Huu
1 = ∂2F1(u,v)

∂u2

∣∣∣∣
u0,v0;μ=0

= − 2

εcH

[
1 − 2qf v0

(q + u0)3

]
,

Huv
1 = ∂2F1(u,v)

∂u ∂v

∣∣∣∣
u0,v0;μ=0

= ∂2F1(u,v)

∂v ∂u

∣∣∣∣
u0,v0;μ=0

= − 2

εcH

qf

(q + u0)2
,

UuUu = 1 + 2iω0 − ω2
0, UuUu = 1 + ω2

0,

UuUv = 1 − iω0, and UuUv = 1 + iω0.

Now we calculate the vectors NXXX and NXXX. The
nonzero terms of the first component are

(NXXX)1

= 1

6

[
∂3F1(u,v)

∂u3

∣∣∣∣
u0,v0

UuUuUu+3
∂3F1(u,v)

∂u2 ∂v

∣∣∣∣
u0,v0

UuUuUv

]
,

(B4)

(NXXX)1 = 1

6

[
∂3F1(u,v)

∂u3

∣∣∣∣
u0,v0

UuUuUu

+ ∂3F1(u,v)

∂u2 ∂v

∣∣∣∣
u0,v0

(2UuUvUu + UuUuUv)

]
.

(B5)

The second component (NXXX)2 = 0 for the Oregonator.
With μ = 0 (or ε = εcH) the first component (N0XXX)1 reads

(N0XXX)1

= (1/6)
[
Nuuu

1 (1 + iω0)
(
1 + ω2

0

) + Nuuv
1

(
3 + 2iω0 + ω2

0

)]
,

(B6)

where Nuuu
1 = ∂3F1(u,v)/∂u3|u0,v0 = −(1/εcH)[12qf v0/

(q + u0)4], Nuuv
1 = ∂3F1(u,v)/∂u2 ∂v|u0,v0 = (1/εcH)[4qf /

(q + u0)3], UuUuUu = (1 + iω0)2(1 − iω0), UuUvUu =
1 + ω2

0, and UuUuUv = 1 + 2iω0 − ω2
0.

To complete the calculation of c2, we first compute a few in-
termediate expressions (see Ref. [9]) such as 3(U ∗

u N0XXX)1,
J0

−1, ( J0 − 2iω0)−1, V0 ≡ −2 J0
−1 H0XX, and V+ ≡

− ( J0 − 2iω0)−1 H0XX. Next we derive

3(U ∗
u N0XXX)1 = [

Nuuu
1

(
1 + ω2

0

) + 2Nuuv
1

]/
4 − (i/ω0)

× [
Nuuu

1

(
1 + ω2

0

) + Nuuv
1

(
3 + ω2

0

)]/
4,

(B7)

J−1
0 = 1

ω2
0

(−1 1 + ω2
0−1 1

)
, (B8)

( J0 − 2iω0)−1 = − 1

3ω2
0

(−1 − 2iω0 1 + ω2
0

−1 1 − 2iω0

)
, (B9)

V0 = −2 J−1
0 H0XX =

(
1 + ω2

0

ω2
0

Huu
1 + 2

ω2
0

Huv
1

)(
1

1

)
,

(B10)

V+ = −( J0 − 2iω0)−1 H0XX = − 1

3ω2
0

[
1 − ω2

0

2
Huu

1 + Huv
1

+ iω0
(
Huu

1 + Huv
1

)] (
1 + 2iω0

1

)
, (B11)

(H0UV0)1 = [
Huu

1 UuV0u + Huv
1 (UuV0v + UvV0u)

]
/2,

(B12)

and (H0UV0)2 = 0, where V0u and V0v are the first and the
second components of V0, respectively.

Next, we determine (following Kuramoto [9]) the complex
function g as

g ≡ g′ + ig = −U∗ · (2H0UV0 + 2H0UV+ + 3N0XXX).

(B13)

The first term of the right-hand side of Eq. (B13) gives

−2U∗ H0UV0 = 1

2

(
1 + ω2

0

ω2
0

Huu
1 + 2

ω2
0

Huv
1

)

×
[
−(

Huu
1 + Huv

1

) + i

ω0

(
Huu

1 + 2Huv
1

)]
.

(B14)

The second term of the right-hand side of Eq. (B13), defined
by (H0UV+)1 = [Huu

1 UuV+u + Huv
1 (UuV+v + UvV+u)]/2

and (H0UV+)2 = 0, reads

−2U∗ H0UV+

= 1

2ω2
0

(
Huu

1 + Huv
1

)(1 + ω2
0

2
Huu

1 + Huv
1

)

− i

6ω3
0

[(
1 − ω2

0

2
Huu

1 + Huv
1

)

× [(
1 + 2ω2

0

)
Huu

1 + 2Huv
1

] − ω2
0

(
Huu

1 + Huv
1

)2]
.

(B15)

The last term in this expression is given by Eq. (B7).
Collecting all terms, we obtain the following expressions for
g′ and g′′:

g′ = − 1

2ω2
0

(
Huu

1 + Huv
1

)(1 + ω2
0

2
Huu

1 + Huv
1

)

− 1

2

(
1 + ω2

0

2
Nuuu

1 + Nuuv
1

)
, (B16)

g′′ = − g′

ω0
+ 1

6ω3
0

[
2
(
1 + ω2

0

)
Huu

1 + 7Huv
1

]

×
(

1 + ω2
0

2
Huu

1 + Huv
1

)2

+ 1

6ω0

(
Huv

1

)2

+ 1

2ω0

1 + ω2
0

2
Nuuv

1 . (B17)
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