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Prognosis of qualitative system behavior by noisy, nonstationary, chaotic time series
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An approach to prognosis of qualitative behavior of an unknown dynamical system (DS) from weakly
nonstationary chaotic time series (TS) containing significant measurement noise is proposed. The approach is
based on construction of a global time-dependent parametrized model of discrete evolution operator (EO) capable
of reproducing nonstationary dynamics of a reconstructed DS. A universal model in the form of artificial neural
network (ANN) with certain prior limitations is used for the approximation of the EO in the reconstructed phase
space. Probabilistic prognosis of the system behavior is performed using Monte Carlo Markov chain (MCMC)
analysis of the posterior Bayesian distribution of the model parameters. The classification of qualitatively different
regimes is supposed to be dictated by the application, i.e., it is assumed that some classifier function is predefined
that maps a point of a model parameter space to a finite set of different behavior types. The ability of the approach
to provide prognosis for times comparable to the observation time interval is demonstrated. Some restrictions as
well as possible advances of the proposed approach are discussed.
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I. INTRODUCTION

The evolution of dynamical characteristics, i.e., nonsta-
tionarity of analyzed processes, is a typical phenomenon that
manifests itself when one attempts to reconstruct a dynamical
system (DS) from data measured in real conditions. Many
available methods of DS reconstruction imply that these
characteristics are constant (stationary), hence they do not
hold for the nonstationary case. In the recent 10–15 years
there appeared many papers in which ways of establishing
nonstationarity as well as determining the character and
measure of nonstationarity of processes of different origin
are discussed. A number of methods were developed based
on analysis of the distribution of time intervals between
neighboring vectors in phase space [1–3], use of the measure of
mutual predictability of dynamics between different sections
of time series (TS) [4], investigation of the time dependence of
probability density of the process and its spectral density [5],
etc.

Although the problem of DS reconstruction is much more
complicated for the nonstationary situation, nonstationary pro-
cesses are the most interesting in terms of possible prognosis
of qualitative behavior of the system because they carry
information about trends of the characteristics that determine
dynamical properties of the system. Such a prognosis is
traditionally based on analysis of first principles models (FPM)
that include a set of equations which, in the opinion of the re-
searcher, correctly describe the observed phenomenon. In other
words, the FPM approach presumes that the reconstructed DS
is known to us. Clearly, qualitative behavior of the system
in the future may be reconstructed only if the structure of
the space of parameters of the model corresponds to that
of the modeled system. However, bifurcations of the system
leading to future changes in characteristics of the observed
dynamics are frequently governed by processes that have not
yet become apparent by the time of FPM construction and
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are thus not taken into account. Consequently, the domain
where the space of FPM parameters is adequate is strongly
bounded and the use of such models for long-term prognosis is
fraught with prognostic error. A typical example of erroneous
prognosis using the FPM method is prediction of the ozone
layer evolution in the mid 1980s [6] when the Antarctic ozone
hole was omitted.

In the current paper we propose an alternative approach to
DS reconstruction that is devoid of the above drawback. The
approach does not presume any knowledge of the underlying
equations of DS evolution and is based on the construction of a
universal model of the system by noisy chaotic nonstationary
TS. Nonstationary chaotic behavior was revealed in a wide
range of real systems in the atmosphere [7] and in the ocean
[8], controlling processes in living organisms [9], describing
tectonic activity [10], and many others. Efficiency of the
proposed approach for prognosis will be demonstrated on an
example modeling the situation, most unfavorable in terms of
FPM verification, when no bifurcations occur in the system
during the observation time, whereas in the future substantial
qualitative changes occur in the DS evolution.

II. FORMULATION OF THE PROBLEM

Let us consider a situation when, first, the characteristic
time scale of nonstationarity is much more than the charac-
teristic time of DS dynamics and TS duration (in what will
follow we will call such nonstationarity weak). Second, we
will assume that this nonstationarity is a consequence of slow
changes (trends) of control parameters of the observed DS, or
in other words, the observed DS is weakly nonautonomous.
Such evolution of control parameters of DS may lead to both
quantitative and qualitative changes in the observed processes.
Of particular interest in this case is the problem of elucidating
possible scenarios of system behavior beyond observation time
or, in other words, prognosis of future evolution of qualitative
behavior of the system.
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A possibility of reconstructing the bifurcation scenario
of unknown DS by several TS generated by the system at
different fixed values of control parameter was demonstrated
in the works [11,12]. Polynomial representation [11] and
approximation on the basis of an artificial neural network [12]
were used in these works as global models of DS evolution
operator.

We used analogous parametrized models for developing the
method of prognosis of qualitative behavior of an unknown
system by weakly nonstationary noiseless chaotic TS [13]. We
successfully predicted behavior of discrete and flow systems
with slowly varying control parameters. However, this method
based on least squares estimates is inapplicable in the presence
of strong enough measurement noise because it results in
systematic bias of estimates due to statistical inconsistency,
which distorts the prognosis.

The goal of this paper is development of the method for
constructing prognosis of qualitative behavior of a system
by nonstationary noisy chaotic TS that would give unbiased
probability estimates of possible events in the future. In
particular, in this work the prognosis is aimed at identifying
the type of dynamical regime of a system in the future. For
such identification the method should give a set of probabilities
of possible dynamical regimes for each moment of time. The
classification of qualitatively different regimes is dictated by
the application. We assume that there is a predefined classifier
function that maps a regime (or a point in a parameter space
of a model) to a finite set of different behavior types. The
method proposed in this work is based on the Bayesian
approach, which statistically correctly takes into account both
data precision and evolution operator (EO) reconstruction error
(defect of the model).

III. SOLUTION METHOD

Let the observed TS X = {xk = x(tk)}Tk=1 of duration T be
generated by a chaotic dynamical system with time dependent
EO Ft : Rd → Rd . We will consider the parametrized model
Q approximating unknown evolution operator of system Ft

assuming that the observed dynamical variable x may be
described by the following system:

{
xk = uk + ξ k

uk = Q(uk−1,μ,tk) + ηk

, (1)

where ξ is measurement noise, u stands for latent variables
corrupted by measurement noise (true states of the DS), μ

is the vector of model parameters, tk denotes the moment of
recording the value of xk , and η is the defect of the model
(random differences between model and true EO).

Let us pass over to the problem of choosing the EO
model functional form Q(·). For the algorithm to be suitable
for construction of models of different dynamical systems
(high-dimensional systems included) the function Q must
allow approximation of any single-valued function of an
arbitrary number of variables with any preset accuracy. This
universality is inherent in artificial neural networks (ANNs)
[14] that enable one to increase accuracy of approximation by
merely increasing the number of neurons without changing the

form of the function. In the current work we use a three-layer
perceptron [15] specified by the function

fm(y,a,b,c) =
⎧⎨
⎩

m∑
i=1

aki tanh

⎛
⎝ d∑

j=1

bij yj + ci

⎞
⎠

⎫⎬
⎭

d

k=1

, (2)

where d is the dimension of y and m is the number of neurons.
Apparently, in case of nonstationary TS, for correct de-

scription of system dynamics it is necessary to construct a
nonautonomous (explicitly depending on time) EO model. It is
natural to conjecture that slow changes of control parameters of
the system (a trend in the corresponding space of parameters)
must be reflected by a slow dependence of parameters of model
(1) on time. Bearing this slowness in mind, hereinafter we will
use linear expansion of the model in time. It can be readily
shown that in the case of approximation (2), the following
form of the model is universal:

Q(u,μ,t) = fm(u,a1 + ta2,b,c), μ = (a1,a2,b,c) . (3)

Linear approximation of time dependence of the model will
undoubtedly lead to strong discrepancy between prognosis and
reality when the model is extrapolated to sufficiently remote
times, but it can be expected that qualitative behavior of the
model and of the system will be similar in the not too remote
future.

In any case, we believe that trends of parameters are slow to
an extent that the defect of the model η connected with linearity
of their approximation is much smaller than measurement
noise. Thus we will consider the error of such approximation
of nonautonomy to be insignificant within observation time,
and the error due to linear extrapolation of the model to the
future will be taken into account within the framework of the
proposed Bayesian procedure (see the text below). As one can
infinitely expand the class of functions approximated by the
dependence (2) by increasing the number of neurons m, the
latter may always be chosen such that the magnitudes of model
defect η should be much less than the level of measurement
noise ξ . From these considerations we will further suppose
that η = 0 in the second equation of Eq. (1).

Let us construct a probability density (PD) function for
unknown values in system (1) using the Bayesian approach
and known form of the joint probability density function of
noise wξ (ξ ,υ) (υ are distribution parameters that are unknown
in a general case) under the condition of the observed process
(X = {xk}Tk=1,t = {tk}Tk=1). According to the Bayes theorem,
the sought PD function is expressed through the data likelihood
function p(X,t|μ,υ,U):

p(μ,υ,U|X,t) ∝ p(X,t|μ,υ,U)ppr (μ,υ,U), (4)

where U = {uk}, and ppr (μ,υ,U) is prior PD of unobserved
quantities that accounts for additional prior information about
the reconstructed system and the properties of measuring
equipment.

Assuming the noise records ξ k to be uncorrelated at dif-
ferent moments of time, normally distributed (with unknown
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dispersion σ 2
ξ ) and centered, we can write the likelihood

function for the observable series (X,t) as a function of unob-
servable variables μ,σξ ,U. Below we will use the likelihood
function corresponding to modified Bayesian approach [18]:

p(X,t|U,μ,σξ ) ∝ 1

σT d
ξ

exp

(
− 1

2σ 2
ξ

M−1∑
k=0

w∑
j=o

|xk(w+1)+j+1

−Qj (uk(w+1)+1,μ,tk(w+1)+1)|2
)

, (5)

where Qk(ui ,μ,ti) = Q(Qk−1(ui ,μ,ti),μ,ti+k),
Q0(ui ,μ,ti) ≡ ui and M = T/(w + 1). Since this function
takes into account deterministic coupling between latent
variables only within time segments of the duration limited
by w, it is fit for analysis even in the case of chaotic TS of
long enough duration.1 Samples of a chaotic TS separated in
time by more than w are considered a priori independent,
thus PDF (5) accounts for prior information about chaoticity
of a signal. Parameter w is the technical parameter of the
method. The larger w, the more deterministic couplings are
taken into account, and, consequently, more information
about the underlying system is contained in PDF (5). On the
other hand, in the case of a chaotic TS, the number of local
maxima of PDF (5) as a function of latent variables grows
exponentially with w and, at some value w∗, these maxima
become indistinguishable; further increasing of w makes no
sense. It is easy to show (please see [18,19] for more detail)
that the upper bound of w can be estimated by the formula
w∗ = λ−1 ln(σx/σξ ), where σx is the standard deviation of
the observed TS and λ is the largest Lyapunov exponent of
chaotic attractor that in some cases can be estimated directly
from the observed TS [20]. In practice it is not necessary.
As we have shown in [18], too long segments result in
multimodal likelihood. This multimodality leads, first, to
more frequent failures during MCMC (Markov chain Monte
Carlo) sampling, which are easy to diagnose and, second, the
confidence area in a parameter space stops shrinking with an
increase of w. Basically, one can just sequentially increase w

using the parameter estimates from previous iteration until
the results stop improving, i.e., the probabilities of different
regimes no longer get more “contrast.”

One of the problems concerned with Eq. (2) is the
existence of singular directions in its space of parameters.
This degeneration makes numerical study of the function (5)
much more complicated. To avoid this difficulty we will use
the method of setting a prior ensemble for μ that was described
in detail in [21]. Following this method we will introduce prior
PDF Ppr (μ) that enters Eq. (4) in a Gaussian form with zero
means:

P (μ) ∝ exp

⎡
⎣−

m∑
i=1

⎛
⎝ d∑

k=1

a2
ki

2σ 2
a

+
d∑

j=1

b2
ij

2σ 2
b

+ c2
i

2σ 2
c

⎞
⎠

⎤
⎦ . (6)

1Note that there arise difficulties in using the classical (unmodified)
Bayesian approach in the case of chaotic TS (please see [16,17]).

The choice of dispersions σ 2
a , σ 2

b , and σ 2
c of model parameters

μ is determined by a priori ideas about statistical properties
of dynamic processes generated by the system. Let us use
normalization of the observed variable such that 〈x〉t = 0,
〈x2〉t = 1 and normalization of model time t setting the time
interval of observation to be [−1; 1]. It is easy to show
that output layer parameters’ dispersion should be σ 2

a = 1
m

to provide generation by the model of a TS with 〈x2〉t = 1.
The maximum magnitude of the derivatives ∂Qi/∂uj that
determines σb can be estimated as eλτ , where λ is the largest
Lyapunov exponent and τ is a time lag used for model
construction.2 Note that the value of the largest Lyapunov
exponent can be estimated by well-known algorithms (see, for
example, [20]) directly from observed TS. Finally, we have
σ 2

c = dσ 2
b .

Another circumstance complicating analysis of the con-
structed PDF (4) is high dimension of the space of its
arguments stipulated by the dependence of the likelihood
function (5) on latent variables, the number M of which is
proportional to the duration of the studied TS. With allowance
for significant non-Gaussian PDF (4), this factor inhibits the
use of MCMC techniques, even if they were specially designed
for analysis of high-dimensional PDFs. In order to overcome
this difficulty we use the method [19] of substantial reduction
of the number of parameters of the studied distribution by
approximate integration of PDF (5) with respect to latent
variables using the Laplace method.

The obtained posterior PDF,

pps

(
μ,σ 2

ξ

∣∣X,t
) =

∫
pps

(
μ,U,σ 2

ξ

∣∣X,t
)
dU, (7)

contains all the information about the system extracted from
the initial TS. As each vector μ corresponds to the function of
the EO of the system, the ensemble of parameters distributed
in conformity with the function (7) specifies a set of possible
realizations of dynamical variables of the system (outside the
scope of the observations). Random parameter spread specified
by such a distribution reflects the indefiniteness introduced
by measurement noise ξ that is a source of error in EO
reconstruction and, as a consequence, of the forecast of future
evolution of the system. In addition, the ensemble of σ 2

ξ values
corresponding to Eq. (7) allows one to assess measurement
error dispersion that is unknown a priori.

As was mentioned above, the source of another signifi-
cant error of prognosis is the error associated with linear
extrapolation of the trend of model parameters unaccounted
for in Eq. (7). Assuming that the system of interest is weakly
nonautonomous we can assess extrapolation error as an error
of the linear trend of parameters that is quadratic with respect
to time. Estimation of this correction within the framework of
the Bayesian approach must be based on explicit allowance
for the quadratic term in the trend of EO parameters:

Q(u,μ,t) = fm(u,a1 + ta2 + t2γ,b,c), μ= (a1,a2,b,c,γ ).

(8)

2For instance, if a Poincaré section is used for reconstruction of a
map in the form (1), the time lag τ may be taken to be 1.
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Let us interpret γ as a random vector with zero mean.
Then the problem of assessing extrapolation error reduces
to estimation of the covariance matrix Cγ of quantities γ

that may be obtained within the framework of the general
approach described above. Here we will restrict ourselves
to the upper estimate for which we can use an ensemble of
parameters distributed according to Eq. (7). For this we assume
that the rms error 〈δaT (t)δa(t)〉a,t (averaged over the obtained
ensemble and time) in the estimate of the trend a(t) = a1 + ta2

is due only to the quadratic correction or, in other words,
〈δaT (t)δa(t)〉a,t = Cγ 〈t4〉. If the quadratic correction is not
taken into account, this quantity may be estimated to be3

〈(δa1 + tδa2)T (δa1 + tδa2)〉a,t = C1 + C2〈t2〉, (9)

where the matrices Ck = 〈δaT
k δak〉 may be calculated by the

ensemble of parameters generated by the distribution (7). The
resulting estimate of the covariance matrix of extrapolating
parameter a is

Cγ = C1 + C2〈t2〉
〈t4〉 . (10)

Finally, let us enumerate the main steps which we recom-
mend for practical realization of the approach. Let us have TS
{y(tk)} generated by a flow system. We suggest to analyze it
using the following procedure:

(i) Reconstructing phase variables of the system from this
TS. Since the choice of variables must provide embedding
of the attractor underlying the observed behavior, we use
the Takens delay method, i.e., we construct state vector
x(tk) = {y(tk),y(tk+
), . . . y(tk+(d−1)
)}, where 
 is a value of
delay (usually it is the first minimum of mutual information
function of the TS) and d is embedding dimension used for
representation of an attractor.

(ii) Obtaining a series {xi} appropriate for construction
of a discrete model in the form (1). For this we select the
Poincaré section in the reconstructed phase space and register
its intersections with the phase trajectory. Then, we obtain
a sequence of vectors xj ∈ Rd−1, where j is the number of
the intersection. Note that, in a general case, the obtained
TS {xj } includes an additive random component due to both
observation noise and nonzero value of time lag tk+1 − tk in
the observed TS {y(tk)}.

(iii) Obtaining an ensemble of model parameters corre-
sponding to PDF (7) by MCMC sampling. This procedure
consists of two stages. First, the rough maximum of PDF
(4) with likelihood (5) should be found to initiate the
Markov process of the MCMC method. For instance, in the
examples given in the current paper (see the next section) we
use the variable metric (quasi-Newtonian) method [22] for
optimization of the function of multiple arguments. Second,
we apply the method based on the Metropolis-Hasting MCMC
technique that was described in detail in [19]. Following this

3We center the time variable t in the middle of the observed TS,
hence we obtain 〈t〉 = 0.

method, generation of each element (μk,σξ k
) of the sought

ensemble consists of the following:
(a) Laplace integration of PDF (4) over latent variables u

to calculate PDF (7) value (see [19] and the next section for
more detail);

(b) the Metropolis-Hasting step to PDF (7) according to
[23].

(iv) Calculating matrix Cγ using Eq. (10) and matrices C1

and C2 estimated from the ensemble {μk} generated at the
previous step. Thus we will get a joint ensemble {μk,γk}.

(v) Iterating model (8) at each parameter vector from
ensemble {μk,γk} at certain time moments in the future
and classifying the obtained dynamic regimes (further, in
the next section we will use periodicity of the solution as
a classification sign of dynamic regime). This results in an
ensemble of qualitatively different regimes of the system
behavior, which can be observed in the future. Having such a
statistical ensemble we calculate the probability to observe
every possible regime at each time moment and this is a
solution to the problem.

IV. RESULTS

We will illustrate the proposed approach on examples of TS
generated by two different dynamical systems with a slowly
varying control parameter. As the first example we will use
the Rössler system that is a third-order system of ordinary
differential equations:

⎧⎪⎨
⎪⎩

ẋ = −y − z

ẏ = x + 0.2y

ż = 0.2 + z(x − c)
. (11)

The scalar TS y(tk) generated by system (11) has duration
T = 7500 [in the time units of system (11)], with the control
parameter c linearly changing from 5.13 to 4.41 on this time
interval. The system (11) exhibits chaotic behavior for all c

from this range.
We used for the reconstruction the TS containing the noise

component arising because of large discretization steps �t =
0.1,�t = 0.2, and �t = 0.5. To extract from such a series
sample data fit for constructing a discrete model of the form
(3) we proceeded as follows. The phase trajectory {y(tk)}Ttk=0,
y ∈ Rd was reconstructed by the scalar TS in the space of
dimension d = 3 by the method of delays (for the series under
study the delays were chosen to be τ = 5, τ = 2.5, and τ =
1). Then, we registered intersections of this trajectory with
the secant specified by the equation y3 = 0. The system was
reconstructed using the sequence of vectors

yi = 1

2

((
y1

(
tki

) + y1
(
tki+1

))(
y2

(
tki

) + y2
(
tki+1

)))
,

y3
(
tki

)
> 0

y3
(
tki+1

)
< 0

(here i is the number of the intersection of phase trajectory and
secant). Clearly, the magnitude of the random component in
the series {yi} depends on the step �t = tk+1 − tk: the larger
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�t , the greater is the error of registering these intersections.
The sequence of the first component of vector y is given by
blue dots in Fig. 1. The red dots in the same figure stand for
the “future” TS.
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FIG. 1. (Color online) Prognosis of Rössler system behavior for
different noise levels: (a) for �t = 0.1, (b) for �t = 0.2, and (c)
for �t = 0.5 each represented by a pair of panels. The upper panel
shows a sequence of y1 variable versus time index. Black dots are the
observed time series; gray dots (green online) are the time series to
be predicted. The lower panel shows time dependencies of calculated
probabilities of observed and predicted dynamic regimes.

For construction of prognosis of system behavior we used
the EO model in the form (3) for the number of neurons
m = 5. Numerical analysis of function (7) constructed for
such a model was done by the Metropolis-Hasting (MH)
MCMC technique [23] within the framework of which a
random sequence of values of μ and σξ converging to the
distribution (7) was constructed. It was found that for the
given TS an optimal (for the considerations presented above)
length of the segment w entering Eq. (5) is 4. In each iteration
of this technique, we found values of latent variables u
corresponding to the maximum of function (5) [and hence
to PDF (4)], calculated a quadratic matrix approximating the
exponent of this function by the Laplace method, calculated
the integral (7), and generated new values of μ and σξ by the
MH method. The first 50 000 iterations of the process were
neglected to exclude the transition regime, and the next 10 000
steps were used to construct an ensemble of parameters μ

of the model. These MCMC simulations were the most time
consuming: four hours on Intel Core2Duo 2.4-Ghz processor.
To initiate the MCMC process we took the values of μ

and σξ obtained as a result of search of the maximum of
function (4) by the quasi-Newtonian method [22] that was
employed also for seeking the maximum of Eq. (5) by u at
each MH iteration. The error of linear extrapolation of the
trend of parameters a was taken into account in accord with
the algorithm described above. Further, by iterating functions
(8) corresponding to the obtained values of μ and by extrap-
olating them outside the observation interval we generated an
ensemble of 10 000 TS. Then ratios of TS with a certain type
of behavior were calculated for each time instant that gives
us estimations of probabilities of corresponding dynamical
regimes.

The time dependence of the probability of different dynam-
ical regimes obtained by the TS described above generated
by model (8) is plotted in Fig. 1. It is seen that the model
correctly detects the observed behavior of the system and the
sequence of behavior changes in the future (t > 2500) for
�t = 0.1 and �t = 0.2 [Figs. 1(a) and 1(b)]. In particular,
bifurcations resulting in the transition from chaos to the
regime of period 2 are predicted with confidence. For stronger
noise corresponding to �t = 0.5 [Fig. 1(c)] the model only
reproduces the behavior within the observation interval and
apparently fails to predict anything. Even at the lowest level of
noise we have sufficiently low probability of the most remote
regime of period 1 [or probability close to zero at higher noise
level; Fig. 1(b)] as well as “false” prognosis of chaotic regime
at t > 4500 and period-2 regime at t > 5100 [Fig. 1(a)]; such
an uncertainty is a consequence of the parameter extrapolation
error (10), which becomes appreciable in this time region. In
the opposite direction (in the “past”), destruction of chaos and
further detection of a period-3 regime have been successfully
predicted [Figs. 1(a) and 1(b)], but we cannot forecast for sure
the following cascade of period doubling resulting in chaos at
t < 800. This failure is caused by impossibility of prognosis
of more complex system behavior (at t < 800) by a fragment
of more simple observed behavior (1300 < t < 2500) due to
lack of information about the system phase space contained in
the observed TS.

As the second example we will use the model of the meso-
spheric photochemical system [24–26]. The model simulates

036215-5



MOLKOV, MUKHIN, LOSKUTOV, TIMUSHEV, AND FEIGIN PHYSICAL REVIEW E 84, 036215 (2011)

-2.0

-1.0

0.0

1.0

2.0
(a)Observed TS

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000 25000

(a)
periodicity:

chaos
3
1
4
2

-2.0

-1.0

0.0

1.0

2.0
(b)Observed TS

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000 25000

(b)
periodicity

chaos
3
1
4
2

-2.0

-1.0

0.0

1.0

2.0
(c)Observed TS

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000 20000 25000

(c)periodicity
chaos

3
1
4
2

FIG. 2. (Color online) Prognosis of the mesospheric photochem-
ical system behavior for three different noise levels: (a) σξ = 0.05,
(b) σξ = 0.1, and (c) σξ = 0.2. The upper panels show the sequence
of y2 variable versus time index. Black dots represent the observed
time series; gray (green online) dots are to be predicted. The lower
panels depict time dependencies of calculated probabilities of the
predicted dynamic regimes on time index.

the behavior of five chemical components: O, H, O3, OH,
and HO2. The concentrations of these constituents are denoted
below as x1, x2, x3, x4, and x5, respectively. The model includes
the following set of differential equations describing dynamics

of the photochemical system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −(a9 + 2a11x1 + a10x3 + a4x4 + a5x5)x1

+ a1x2x5 + a15x
2
4 + a10s(t)x3 + 2a8s(t)

ẋ2 = −[a6 + 2a12x3 + (a1 + a2 + a14)x5]x2

+ a4x1x4 + a7s(t)r

ẋ3 = −[a10x1 + a12x2 + a13x4 + a16s(t)]x3 + a9x1

ẋ4 = −(a4x1 + 2a15x4 + a3x5 + a13x3)x4

+ a5x1x5 + a12x2x3 + 2a14x2x5 + a7s(t)r

ẋ5 = −[a5x1 + a3x4 + (a1 + a2 + a14)x2]x5

+ a6x2 + a13x3x4

. (12)

Here a1–a16 stand for coefficients of the chemical reactions;
r is a control parameter of the model which denotes a mixing
ratio of H2O. The function s(t) parametrizes periodic forcing
of the system resulting from diurnal variations of the photolysis
rate [24]. We took for analysis three scalar TS x2(tk) of duration
T = 1700 days each with different noise levels σξ and linearly
changing r from 4.93 to 4.65.

Two-dimensional phase space was reconstructed for each
TS by delay coordinates, then the Poincaré section was used,
which is defined in time domain by equation t = c (mod 24 h).
Here c is a constant: 0 � c < 24. Resulting TSs consisting of
1700 points each are shown in Figs. 2(a)–2(c) (upper panels).
Red color marks the behavior of the system outside the interval
of observation, which is to be predicted from “blue” TS where
only chaotic bevior was observed.

For the approximation (3) of the obtained two-dimensional
(d = 2) return map on Poincaré section we used m = 3
neurons. For the analysis of the posterior PDF (5) the same
approach was used as in the first example. To address different
noise levels three different time series were generated for
σξ = 0.05, σξ = 0.1, and σξ = 0.2. The optimal segment
lengths were chosen w = 7, w = 6, and w = 5, respectively.

From Fig. 2 one can see that “correct” regimes are predicted
with the probability close to unity for certain values of time
up to 18 000 for noise level σξ = 0.05 [Fig. 2(a)] and up to
16 000 for noise level σξ = 0.1 [Fig. 2(b)]. Correspondingly,
the sequence of those regimes is also predicted with very high
confidence. At the same time we failed to predict the remotest
bifuraction when the regime of period 3 is replaced by the
regime of period 1 occurring in the original system at t ≈
22 500 since for such a remote futurity the probability of the
latter does not exceed any significant level.

At higher noise level σξ = 0.2 the model confidently repro-
duces the behavior of the system (chaos) within observation
interval only except the regime of period 2 in the interval of
6000 � t � 9000 [Fig. 2(c)] accepting the probability 0.5 as a
confidence level. This failure is concerned with sharp growth
of extrapolation error.

V. CONCLUSION

Let us make a few comments concerning the problem of
prognosis of DS behavior by observable dynamics. A “too
great” difference between dimension d of the used model and
topological dimension of the chaotic attractor determining
the evolution of the DS during observation may narrow
substantially regions of “likeness” of the model and the
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system in the corresponding spaces of parameters and thus
limit possible prognosis of system behavior. This situation
is typical for reconstruction of DS by scalar TS. Indeed, as
follows from the Takens theorem, when an attractor of a DS
is reconstructed by a scalar series, the dimension of the phase
space ensuring embedding may achieve (2D + 1), where D

is the dimension of the system underlying the dynamics.
Therefore the dimension of the model of EO needed for
reconstruction may, generally speaking, be more than twice
higher than the attractor dimension. Apparently, the larger this
difference, the less coarse is the model in terms of extrapolation
of the system behavior beyond the initial TS. This is because
the reconstructed initially “low-dimensional” phase trajectory
becomes less and less informative for the multidimensional
phase space of the model. In other words, the probability
of constructing in the model parameter space of a trend
corresponding to the system behavior decreases. Besides, for
a “too high-dimensional” model, there may appear the effect
described in the work [27], according to which nonstationarity
of the TS generated by a relatively low-dimensional system
manifests itself in natural (autonomous) dynamics of the
model, which leads to unpredicted model behavior outside the
observation interval. Detailed investigation of the dependence
of prognosis quality (and horizon) on the relationship between
embedding dimension and topological dimension of the
attractor will be considered elsewhere.

Another interesting feature of the proposed approach
concerns the case of catastrophic bifurcation in a future system
behavior, that is, hard birth of a new dynamic regime. Since
in this situation the phase trajectory leaves the region of phase
space that was used for model construction, we will be able to
predict the time moment of such bifurcation, but, in the general
case, we will say nothing about further behavior of the system.
Thus prediction of catastrophes could be one of the important
applications of the approach.

Note that the results presented above were obtained neglect-
ing in the reconstruction procedure qualitative prior restric-
tions on the “strength” of nonautonomy of the reconstructed
system. At the same time, it may be expected that inclusion into
the Bayesian approach of prior information about the measure
of process nonstationarity retrieved from the TS, for example,
by the methods described in [1–5] will improve accuracy of
prognosis. Development of the technique of effective model
extrapolation, including allowance for information about the
measure of nonstationarity of the studied process will be
considered elsewhere.

ACKNOWLEDGMENT

This work was supported by Federal Target Program
“Scientific and research and educational staff of innovative
Russia.”

[1] M. B. Kennel, Phys. Rev. E 56, 316 (1997).
[2] J. B. Gao, Phys. Rev. Lett. 83, 3178 (1999).
[3] C. Rieke, K. Sternickel, R. G. Andrzejak, C. E. Elger, P. David,

and K. Lehnertz, Phys. Rev. Lett. 88, 244102 (2002).
[4] T. Schreiber, Phys. Rev. Lett. 78, 843 (1997).
[5] A. Witt, J. Kurths, and A. Pikovsky, Phys. Rev. E 58, 1800

(1998).
[6] P. Yang, G. Brasseur, and J. Gille, Physica D 76, 331 (1994).
[7] I. Li, P. Biswas, and S. Islam, Atmos. Environ. 28, 1707

(1994).
[8] B. Wang, A. Barcilon, and Z. Fang, J. Atmos. Sci. 56, 5 (1999).
[9] G. Frank, T. Lookman, and M. Nerenberg, Physica D 46, 427

(1990).
[10] H. Srivastava, S. Bhattacharya, and K. Sinha Ray, Geophys. Res.

Lett. 23, 3519 (1996).
[11] E. Bagarinao, K. Pakdaman, T. Nomura, and S. Sato, Phys. Rev.

E 60, 1073 (1999).
[12] E. Bagarinao, K. Pakdaman, T. Nomura, and S. Sato, Physica D

130, 211 (1999).
[13] A. Feigin, Y. Molkov, D. Mukhin, and E. Loskutov, Radiophys.

Quantum Electron. 44, 348 (2001).
[14] K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2,

359 (1989).

[15] The Handbook of Brain Theory and Neural Networks, edited by
M. A. Arbib (MIT, Cambridge, MA, 1995).

[16] K. Judd, Phys. Rev. E 67, 026212 (2003).
[17] R. Meyer and N. Christensen, Phys. Rev. E 62, 3535 (2000).
[18] D. N. Mukhin, A. M. Feigin, E. M. Loskutov, and Y. I. Molkov,

Phys. Rev. E 73, 036211 (2006).
[19] E. M. Loskutov, Y. Molkov, D. N. Mukhin, and A. M. Feigin,

Phys. Rev. E 77, 066214 (2008).
[20] R. Hegger, H. Kantz, and T. Schreiber, Chaos 9, 413 (1999).
[21] R. M. Neal, Technical Report No. CRG-TR-93-1, Department

of Computer Science, University of Toronto, 1993.
[22] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,

Numerical Recipes in C (Cambridge University Press, Cam-
bridge, England, 1992).

[23] W. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain
Monte Carlo in Practice (Chapman and Hall, London, 1996).

[24] A. Feigin, I. Konovalov, and Y. Molkov, J. Geophys. Res. 103,
25447 (1998).

[25] G. Sonnemann, A. Feigin, and Y. Molkov, J. Geophys. Res. 104,
30591 (1999).

[26] G. Sonnemann and A. M. Feigin, Phys. Rev. E 59, 1719 (1999).
[27] R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Phys. Rev.

Lett. 84, 4092 (2000).

036215-7

http://dx.doi.org/10.1103/PhysRevE.56.316
http://dx.doi.org/10.1103/PhysRevLett.83.3178
http://dx.doi.org/10.1103/PhysRevLett.88.244102
http://dx.doi.org/10.1103/PhysRevLett.78.843
http://dx.doi.org/10.1103/PhysRevE.58.1800
http://dx.doi.org/10.1103/PhysRevE.58.1800
http://dx.doi.org/10.1016/0167-2789(94)90042-6
http://dx.doi.org/10.1016/1352-2310(94)90316-6
http://dx.doi.org/10.1016/1352-2310(94)90316-6
http://dx.doi.org/10.1175/1520-0469(1999)056<0005:SDOENO>2.0.CO;2
http://dx.doi.org/10.1016/0167-2789(90)90103-V
http://dx.doi.org/10.1016/0167-2789(90)90103-V
http://dx.doi.org/10.1029/96GL03232
http://dx.doi.org/10.1029/96GL03232
http://dx.doi.org/10.1103/PhysRevE.60.1073
http://dx.doi.org/10.1103/PhysRevE.60.1073
http://dx.doi.org/10.1016/S0167-2789(99)00017-2
http://dx.doi.org/10.1016/S0167-2789(99)00017-2
http://dx.doi.org/10.1023/A:1017988912081
http://dx.doi.org/10.1023/A:1017988912081
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1103/PhysRevE.67.026212
http://dx.doi.org/10.1103/PhysRevE.62.3535
http://dx.doi.org/10.1103/PhysRevE.73.036211
http://dx.doi.org/10.1103/PhysRevE.77.066214
http://dx.doi.org/10.1063/1.166424
http://dx.doi.org/10.1029/98JD01569
http://dx.doi.org/10.1029/98JD01569
http://dx.doi.org/10.1029/1999JD900785
http://dx.doi.org/10.1029/1999JD900785
http://dx.doi.org/10.1103/PhysRevE.59.1719
http://dx.doi.org/10.1103/PhysRevLett.84.4092
http://dx.doi.org/10.1103/PhysRevLett.84.4092

