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Species mobility induces synchronization in chaotic population dynamics
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A prototype population dynamics model with cyclic domination of four species and empty sites is proposed for
studying transition to synchronization. At the mean-field level the dynamics shows quasiperiodicity and chaos
depending on the parameter values. The realization of the model on a square lattice shows that spatial restrictions
and intrinsic stochasticity change the whole picture. The mean-field dynamics qualitatively remains only under
global reactions, while local reactions drive the lattice to poisoning, where only some of the species survive.
Nontrivial oscillatory steady states are developed if long-distance exchange is introduced due to gradual mixing
with a certain probability. The mixing probability is shown to control the transition to synchronization which
emerges abruptly following a phase slip scenario. Near the transition a typical intermittency crisis takes place,
with phase slips becoming more infrequent as the transition is approached.
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I. INTRODUCTION

Synchronization of locally reacting elements, in the onset
of rhythmic behavior of individuals and bulk oscillations,
constitutes one of the most interesting and widespread
phenomena in complex systems [1,2]. In biological and
ecological systems, synchronization is also a frequent feature.
Oscillations in prey-predator systems [3] or in populations of
coupled stochastic discrete-state units [4,5], rhythmic disease
spreading in epidemiological models [6,7], the appearance of
limit cycles [8], and domain synchronization [9] in a cyclic
Lotka Volterra model are only some examples of the diverse
disciplines where the signature of synchronization is intense.
Successful models like Kuramoto phase oscillators [10] and
Vicsek self-propelled particles [11] have also been introduced
in studies of collective motion inducing synchronization in
large sets of biological populations.

A common principle of such systems is the spatial distribu-
tion of a finite number of individuals which interact locally
within their neighborhood. The local interactions induce
spatial correlations and designate the failure of mean-field
(MF) models, which, however, can describe the macroscopic
behavior. An additional considerable feature in reactive dy-
namics is the mobility of species, which mixes spatially
separated groups [12]. For real ecosystems it is known that
mobility is an inclusive attribute that is common from bacteria
swarming [13] to the collective motion of birds [14] and
animal migration [3]. In recent studies [8,15–17] this mobility
has been considered a diffusive mixing mechanism which
compensates for the locality of spatial interactions. In other
words, long-distance exchange plays the role of a coupling
mechanism between distant neighborhoods of the system. The
evolution of the system depends strongly on the combination
of reaction and long-distance exchange processes.

In previous works the authors have studied an interacting
population model with cyclic domination of two species
(predator and prey) and empty sites which is governed by con-
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servative, center-type dynamics in the MF description [16,17].
In [16] and [17], the system shows periodic oscillations around
an elliptic equilibrium point (center) in the MF approach.
Stochastic simulations showed that the cooperation between
the local dynamics and the long-distance coupling mechanism
causes a transition to synchronization of populations between
different neighborhoods of the reaction network. The role of
species mobility (migration over long distances) in the two-
species model has been analyzed in [16]. In the current study
we extend the above concepts to a multispecies model with
more complex or even chaotic dynamics. Mobility-mixing
processes are also investigated in such ecosystems.

In recent experiments [18], evidence of deterministic chaos
has been observed in real trophic webs. Furthermore, determin-
istic chaos at the MF level has been theoretically investigated
for multispecies food chain models [19], considering that
two predators consume the same prey or other types of
species interactions. Nevertheless, to understand the interplay
of global versus local environmental factors and the influence
of species mobility, further theoretical studies are needed in
these directions, as well as studies of synchronization. Toward
this purpose, we introduce a multispecies ecosystem which
exhibits deterministic chaos at the MF level. The analytical
MF approach assuming an infinite number of homogeneously
mixed populations is presented in order to give a macroscopic
picture of the system. Nevertheless, the main purpose of this
work is the study of synchronization when the system is
realized on a square lattice with kinetic Monte Carlo (KMC)
simulations. Particularly, synchronization is studied in two
situations. In the first case all species can react with all
other species independently of the distance between them.
The dynamics here is qualitatively well described by the MF
theory. In the second case the species react only locally and
they can exchange their position with a certain probability pex.
The latter process stands for a gradually mixing mechanism.
Synchronization here arises as a function of this exchange
probability pex or as a function of the mixing distance rex.

As shown in the sequel, local KMC simulations of the cur-
rent multispecies model always lead to poisoning states, i.e., to
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states where only some of the species survive. This is different
from the two-species model [16], where nonpoisoning states
are a common feature, even in the absence of global coupling.
It is shown in the next sections that for multispecies models
the role of long-distance (and global) reaction or diffusion
processes is crucial because they drive the system away from
poisoning states. In this case a species equilibrium is achieved
with the presence of all interacting species.

The current work is organized as follows. In Sec. II the
reactive model is briefly presented, while its MF deterministic
dynamics is worked out in detail in Sec. III. Power spectra and
Lyapunov exponents are used to characterize the quasiperiodic
and chaotic dynamics. In Sec. IV the stochastic dynamics of the
model is studied. Local reactions and fluctuations are taken into
account in a Master equation approach which is solved with
KMC simulations. Finally, a gradually mixing step is added
to the reactive scheme and allows for long-distance species
mobility. The degree of mobility is determined by the exchange
probability pex and the maximum exchange distance rex. The
interplay of mobility with local dynamics can drive the system
to synchronization, which is studied both qualitatively and
quantitatively. In Sec. V a short discussion briefly recapitulates
the main aspects of this system.

II. THE MODEL

From the previous discussion it becomes evident that the
proposed kinetic scheme needs to fulfill the following two
criteria: (a) it must exhibit chaotic dynamics at the MF level,
and (b) it must be lattice compatible due to its implementation
on a lattice by stochastic KMC simulations [16]. Although
it is easy to find kinetic schemes that meet each one of the
two criteria separately, very few schemes satisfy both of them
at the same time. The proposed scheme was chosen as a
representative, simple example in the class of schemes that
fulfill both requirements.

The kinetic model contains four interacting species, X, Y, Z,
and U taking part in a series of trimolecular and bimolecular
reactions on an underlying lattice network. The network is
represented by a regular square lattice containing a constant
number of sites. Each site can be occupied by only one species
or can be empty (denoted S). Thus empty sites S are considered
virtual species, allowing for a lattice implementation of the
model. Within this picture, every lattice site can be found in
any of the five possible states {X,Y,Z,U,S}. The interactive
scheme is given by

X + 2Y
k1→ 3Y, (1a)

2Y + Z
k2→ 3Z, (1b)

Z + U
k3→ 2U, (1c)

U + S
k4→ 2S, (1d)

S + X
k5→ 2X, (1e)

where the parameters ki , i = 1 . . . 5, are the transition prob-
abilities of the corresponding reaction processes. All five
reactions have self-feedback and the whole process represents
a chain of prey-predator interactions. In process (1a) two
predators Y give birth to a third one by consuming a prey X. In

process (1b) two species Y become prey and are consumed by
the new predator Z. In the bimolecular process (1c) a species
Z becomes prey and is consumed by the new predator U . This
new predator dies in the absence of prey, as defined in process
(1d). The chain is completed with the birth of a new species X

in an empty site, given in process (1e).

III. MEAN-FIELD DETERMINISTIC APPROACH

In the following the MF theory of system (1) is presented
with some analytical results and numerical arguments. In
this approach each individual element interacts with the
MF of all the others and the interaction does not depend
on the distance between them. The MF approach focuses
on the macroscopic features of the system, which may be
used for comparison with the KMC simulations. Fluctuations
are neglected in this description, which characterizes the
macroscopic deterministic dynamics of the system (1). The
time evolution of the concentrations x,y,z,u,s of the species
X,Y,Z,U and empty sites S, respectively, can be described by
the rate equations

.
x = k5xs − k1xy2, (2a)

.
y = k1xy2 − 2k2y

2z, (2b)
.
z = 2k2y

2z − k3uz, (2c)
.
u = k3uz − k4us, (2d)
.
s = k4us − k5sx, (2e)

which contain all the dynamical features of the system.
These equations describe a homogeneous and isotropic system,
without spatial correlations [20]. It is obvious already, from the
initial scheme, (1), that the total number of individual species
and empty sites is conserved, which is a property correctly
reproduced by the rate equations, (2). The corresponding
constant of motion reads

C1 = x + y + z + u + s. (3)

By setting the constant C1 = 1 the dynamical variables
x,y,z,u,s represent the partial concentrations of the corre-
sponding species. Using Eq. (3), the dimensionality can be
reduced and the system dynamics can be displayed in a
four-dimensional phase space written in terms of x,y,z,u (if
s = 1 − x − y − z − u). The reduced system is given by the
equations

.
x = −k1xy2 + k5x(1 − x − y − u − z), (4a)

.
y = k1xy2 − 2k2y

2z, (4b)
.
z = 2k2y

2z − k3uz, (4c)
.
u = k3uz − k4u(1 − x − y − u − z). (4d)

The reduced system, (4), has one more constant of motion:

C2 = ln[x2k2k4zk1k4u2k2k5 (1 − x − y − z − u)k1k3 ] − k3k5/y.

(5)

Expressions (3) and (5) are invariant with respect to time.
Equation (3) reflects the lattice restriction, which dictates that
the number of lattice sites, empty or occupied, is conserved.
Equation (5) shows the conservation of the expression C2, but
it does not have a direct energy-like physical analog.
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In the following the parameters ki , i = 1 . . . 5, are restricted
to positive values, since they represent transition probabilities.
The dynamical variables x,y,z,u,s are positive and less than
unity, as they represent the relative concentrations of species:

0 � x; 0 � y; 0 � z; 0 � u; x + y + z + u � 1.

(6)

The closed contour bounding region, (6), determines the
invariant manifolds of the reduced system

x = 0; y = 0; z = 0; u = 0; x + y + z + u = 1. (7)

Hence, choosing the initial values inside the bounded region,
(6), the trajectories will always be bounded. The reduced
system, (4), has five equilibrium subsets of the manifolds,
(7), and two equilibrium points in the interior of these sets.

One trivial equilibrium point is
P1 = (0; 0; 0; 0) with eigenvalues [0; 0; −k4; k5]. This

point is located on the intersection of the four invariant
manifolds and represents the annihilation of the four species.

One nontrivial equilibrium point is
P2 = (K1−

√
K2

K3
; 2K4

K4+
√

K2
; k1(K1−

√
K2)

2k2K3
; k5(K1−

√
K2)

k4K3
),

where K1 = k2k4(2k1(k3 + k4) + k3k5 + 4k2(k4 + k5), K2 =
k2

2k3k
2
4k5(4k1(k3 + k4) + k3k5 + 8k2(k4 + k5)), K3 =

(k1(k3 + k4) + 2k2(k4 + k5))2, and K4 = k2k3k4k5. This
point is located inside the bounded region and has purely
imaginary, per two conjugate eigenvalues. Its coordinates
determine the average concentrations of species within the
phase space. The five equilibria sets are

(i) P3 = (x; 0; 1 − x; 0), with eigenvalues [0; 0; k3(1 −
x); −k5x].

(ii) P4 = (x; 0; 0; 1 − x), with eigenvalues [0; 0; −k3(1 −
x); k4 − (k4 + k5)x]. This point changes its stability on xcr =
k4/(k4 + k5).

(iii) P5 = (0; y; 0; 1 − y), with eigenvalues [0; k4(1 −
y); −k1y

2; −k3(1 − y) + 2k2y
2]. This point changes its sta-

bility on ycr = (−k3 ± √
k3(8k2 + k3)/(4k2).

(iv) P6 = (1 − z; 0; z; 0), with eigenvalues [0; 0; −k5(1 −
z); k3z].

(v) P7 = (1 − u; 0; 0; u), with eigenvalues
[0; 0; −k3u; −k5 + (k4 + k5)u]. This point changes its
stability on ucr = k5/(k4 + k5).

Each of these five lines represents the survival of only
two among four species, while the other two die out. The
competition between these two surviving species, if it is
allowed by the initial scheme, may finally cause the domination
of only one and the annihilation of the other.

Besides the above equilibrium points and their linear
stability it is important to study the whole phase space of
the system. The phase space study, the Poincaré sections, and
the Lyapunov exponent analysis are helpful in the comparison
with KMC simulations presented in the next section.

The phase trajectories are wrapped around the nontrivial
equilibrium point P2 and they evolve inside the absorbing
boundary (6). This means that the dynamical variables x,y,z,u

revolve around P2, thus the species population follows a
corresponding cyclic behavior.

As shown in Fig. 1 the system demonstrates both ordered
and chaotic trajectories. This is depicted in the Poincaré
sections. For low values of k4 the Poincaré sections point to a

regime where the flow trajectories lie on a toroidal surface
embedded in the four-dimensional phase space. For larger
values of k4 it reaches a chaotic regime. It is clearly shown that
by increasing the parameter k4 the trajectories become more
dense in phase space. The parameter value k4 = 0.2 produces
an ordered trajectory with a very thin trace on the Poincaré
section. For k4 = 0.3 the trajectory is weakly chaotic and its
trace on the surface of Poincaré section is wider. For k4 = 0.31
the chaotic behavior is more pronounced, however, stability
islands are still shown on the section. Finally, for k4 = 0.7 the
trajectory is fully chaotic and all the stability islands have been
destroyed.
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FIG. 1. Transition from quasiperiodic to chaotic oscillations.
Left: Projections of trajectories of the reduced system, (4), on the
x-y-z phase space. Right: Projections of the corresponding Poincaré
sections on the x-y plane. From top to bottom the parameter k4

takes the values (a) 0.2, (b) 0.3, (c) 0.31, and (d) 0.7. The other
parameters are k1 = k2 = 0.7 and k3 = k5 = 0.1. Initial conditions
are x0 = y0 = z0 = u0 = 0.2.
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FIG. 2. Power spectral density of trajectories presented in Fig. 1.
The parameter k4 takes the values (a) 0.2, (b) 0.3, (c) 0.31, and
(d) 0.7. The remaining parameters are the same as in Fig. 1.

A detailed view of the power spectral density S(f ) of
these trajectories (as projected on the axis of the variable x)
indicates that the system follows a quasiperiodic route to chaos.
In Fig. 2(a), for the parameter value k4 = 0.2, in addition
to the main frequency and its harmonics, a series of other
frequencies and their sums is observed. This indicates that the
corresponding toroidal in Fig. 1(a) represents a quasiperiodic
trajectory. For a larger value of parameter k4 = 0.3 [Fig. 2(b)],
the spectrum acquires more power at higher frequencies.
Increasing the parameter further, to the value k4 = 0.31, these
secondary frequencies become more pronounced and even
more new frequencies emerge. Finally, for k4 = 0.7, S(f )
becomes continuous [Fig. 2(d)], indicating a chaotic trajectory.

The dynamical stability of the trajectories presented in
Fig. 1 can be quantitatively identified by calculating the
maximum Lyapunov exponent λ1, which gives the rate of
exponential divergence from perturbed initial conditions. The
calculated λ1 of the corresponding trajectories is presented on a
logarithmic scale in Fig. 3 . It has already been mentioned that
the parameter k4 = 0.2 points to a quasiperiodic trajectory.
This is confirmed by λ1, which tends to 0 as time goes to
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FIG. 3. (Color online) Maximum Lyapunov exponent of the
trajectories presented in Fig. 1. The corresponding parameter k4 is
shown in the legend. The remaining parameters are the same as in
Fig. 1.
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FIG. 4. Maximum Lyapunov exponent as a function of parameter
k4, calculated for t = 107 time steps. The remaining parameters are
the same as in Fig. 1.

infinity. The other values of k4 in Fig. 3 correspond to weak
or full chaos and thus λ1 tends to positive values. Larger
positive values indicate further developed chaos within the
time interval of the numerical calculations (107 time steps).
However, there is a plateau where λ1 takes values of the same
order of magnitude. This plateau is reached after a transition
from zero values [O(10−6)] of λ1, as shown in Fig. 4 .

The above MF description of system (1) shows that the
multispecies prey-predator system demonstrates quasiperiodic
and chaotic behavior as a function of the control parameter k4.
Qualitatively similar behavior is also observed for the other
parameters ki . In the next section we investigate the deviation
in the behavior of this system from the MF when spatial
restrictions of the reaction rules and fluctuations are taken
into account.

IV. KINETIC MONTE CARLO SIMULATIONS

At the microscopic level, the probability Pη of finding
the system in a configuration η is determined by the Master
equation,

d

dt
Pη =

∑

η′
(Wη′→ηPη′ − Wη→η′Pη). (8)

In Eq. (8) η,η′ are two different lattice configurations,
Wη′→η and Wη→η′ are the rates of transition η′ → η and η →
η′, respectively, and the sum is over all possible configurations.
Each configuration is given by a vector

η = H1,1,H1,2 . . . H1,L; . . . Hi,j . . . Hi,L; . . . Hi+1,j . . . ;

× . . . HL,L, (9)

where the element Hi,j , with {i,j} = 1 . . . L, stands for
the state of lattice site (i,j ). The lattice has linear size
L and the variable Hi,j can take values from the set of
states {X,Y,Z,U,S}. The description of this problem needs
a complicated nonlinear Master equation, which makes its
solution a hard task or even impossible. Thus KMC simulations
are employed on a square L × L lattice, where the local
environment can be exactly specified and stochastic local
reactions can be directly simulated from the initial scheme.
KMC is a way to solve the Master equation and consists
of the following steps for the cyclic sequence of species
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obeying (1):
(1) A lattice site (i,j ) is randomly chosen.
(2) If site (i,j ) contains a species X or a species Y , then two

additional nearest-neighbor sites are randomly selected.
(a) If the original site (i,j ) contains a species X and

both the neighbors contain species Y , step (1a) takes
place. Namely, site (i,j ) changes its state from X to
Y with transition probability k1.

(b) If the original site (i,j ) contains a species Y and
one of the neighbors contains a species Y while the
other contains a species Z, then both sites containing
Y species change their state from Y to Z with
probability k2 [step (1b)].

(3) If site (i,j ) contains a species Z or U or is empty, then
one neighbor site is also selected.

(a) If site (i,j ) contains a species Z and the selected
neighbor site contains a species U , then the site
(i,j ) changes its state from Z to U with probability
k3 [step (1c)].

(b) If the original site (i,j ) contains a species U and the
selected neighbor site is empty, then the desorption
(1d) takes place with probability k4.

(c) If the original site (i,j ) is empty and the selected
neighbor site contains a species X, then a second
X can adsorb on the selected empty site with
probability k5 via the adsorption step (1e).

The algorithm above describes the local reactions occurring
in one elementary time step (ETS). In our simulations one
Monte Carlo step (MCS) equals L × L ETSs. Thus in each
MCS, L2 elementary reactions attempts take place.

Extensive simulations have shown that when only local
reactions occur, all possible initial configurations end up as
either frozen steady states, which contain a constant number
of species and whose contiguity does not allow for further
reactions, or poisoning states, where only one species remains.
Obviously, the system behaves very differently from the
MF because of the local restriction of reactions and the
intrinsic randomness of the KMC method. Nevertheless, both
approaches show similar behavior when global instead of local
reactions take place. Namely, rather than restricting reactions
to occur only between neighboring sites, the range of reactivity
is expanded to allow species to interact globally with all other
species within the whole lattice. The simulation algorithm
remains the same, but instead of selecting only nearest-
neighboring sites, the “potential neighbors” are equiprobably
chosen throughout the whole lattice. This procedure, also
referred to as “rewiring” [21–23], constructs an evolving
random network which, in qualitative agreement with the MF,
can exhibit chaotic dynamics, as shown in Fig. 5. In both
figures the power spectral density shows two main frequencies
and a continuous background. Of course this agreement is
not quantitative, as the time scale is different, and there
are fluctuations in the KMC that do not occur in the MF.
Quasiperiodic oscillations are also observed in the KMC
for different sets of parameters ki (not presented here). In
conclusion, this “all-to-all” reaction mechanism induces phase
synchronization and the same chaotic oscillations observed in
the whole lattice as well as in small sublattice regions.

We consider an intermediate situation where the species
can react locally with a certain probability, and with the
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FIG. 5. (Left) The time series of concentration x(t) and (right)
the corresponding S(f ) on a linear and (inset) logarithmic scale
in a chaotic regime calculated from Eqs. (4) (top) and with KMC
simulations (bottom). Initial conditions are the same as in Fig. 1 and
the parameters are k1 = k2 = k4 = 0.7 and k3 = k5 = 0.1.

complementary probability they choose one or more distant
species to react with. This “rewiring” process results in an
evolving structure of the lattice substrate. Recent studies
[17,22] have shown that this “partial rewiring” constructs a
regular “small world” network and, for increasing probability
of rewiring, synchronization takes place. Nevertheless, react-
ing species remain immobile, although they can react even
with distant regions. In the following a different mechanism is
introduced, which leads to the species mobility and can cause
synchronization phenomena.

As an alternative to all-to-all reactions a different gradually
mixing mechanism can counterbalance the effects of purely
local reactions. Returning to the initial algorithm, an additional
iterative step follows step 1 and reads

(i) A second lattice site (i ′,j ′) is randomly selected within
a region of maximum exchange radius rex from the original
site (i,j ). Then

(a) with a certain probability pex, sites (i,j ) and (i ′,j ′)
can instantly exchange their states or

(b) with the complementary probability 1 − pex, steps
2 and 3 of the algorithm (for local reactions) take
place.

This process is termed “long-distance exchange” because
it refers to exchange between all species. In the case where
we only have exchange of species {X,Y,Z,U} with empty
sites {S}, this corresponds to “long-distance diffusion” [16,17,
27]. Apart from the long-distance exchange, species have the
possibility to react locally with the complementary probability.
Hence the probability pex, which is independent of the two site
positions, defines the number of exchange attempts over the
total number of all attempts. The interplay of this mobility with
local reactions induces a threshold in pex and rex beyond which
species in different areas of lattice are synchronized and bulk
oscillations emerge, which coincide in phase and amplitude
in different areas. This scenario is illustrated in Fig. 6, where
the time evolution of the concentration S species on a slice of
the lattice is presented with the corresponding x(t) time series.
In these space-time plots, each time a lattice site is empty, a
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FIG. 6. Transition to synchronization depicted in the evolution of
a slice of the lattice. At the top of each panel the space-time plots of
the slice are shown, where a black dot is plotted each time a lattice site
is empty. The corresponding x concentrations of two distant areas are
shown at the bottom of each panel. The long-distance exchange radius
is rex = 200 sites and its probability pex is (a) 0.0003, (b) 0.0012,
(c) 0.0014, and (d) 0.01. The initial configuration and remaining
parameters are the same as in Fig. 5.

black dot is plotted (only empty sites are plotted for better
illustration). Starting from pex = 0.0003 [Fig. 6(a)] the lattice
sites change states randomly. Thus each subarea of the lattice
exhibits small fluctuations of the species abundance and no
bulk oscillations arise. Increasing pex to larger values the sites
start to be empty or occupied in a more coherent way, forming
stripe patterns in the space-time plots as shown in Figs. 6(b)
and 6(c).

The synchronization is not complete and thus space-time
patterns look noisy. Finally, beyond pex ≈ 0.0025, distant
areas of the lattice are completely synchronized as shown in
Fig. 6(d), which induce better coherence between them and
thus higher oscillation amplitudes.

The degree of coherence can be characterized using the
synchronization index (SI) [1]. Following the analytic signal
approach for concentration x(t), measured in regions of 64
lattice sites, the instantaneous phase φ(t) and the amplitude
Q(t) of the measured concentration within a region can be
uniquely defined by the analytic signal

ζ (t) = x(t) + ix̃(t) = Q(t)eiφ(t), (10)

where the imaginary part x̃(t) is the Hilbert transform of x(t).
Assuming two arbitrary chosen distant regions A and B, each
consisting of 64 lattice sites, the phase difference between
them is defined as, �φ = φA(t) − φB(t). Therefrom the SI
can be estimated, given by

γ 2 = 〈cos(�φ)〉2 + 〈sin(�φ)〉2, (11)

which relates in Gaussian approximation to the variance of
�φ distribution. When phases are narrowly distributed around
a constant value, the SI goes to unity; otherwise, for broadly
distributed phases it goes to 0.

Synchronization can also be confirmed by the mutual
information (MI) [24–26]. In recent studies, MI is used as
the rate with which information is being exchanged between
two oscillation modes or elements in active networks. In
those networks the MI and synchronization level increase
simultaneously. The maximum of MI is achieved for complete
synchronization [27–30].

MI exchange between region A and region B is defined as

I (A,B) =
∑

mn

pAB(m,n) log
pAB(m,n)

pA(m)pB(n)
, (12)

where pA(m) and pB(n) are the marginal probability distribu-
tions, for appropriate binning of the measured concentration
x(t) in regions A and B, respectively, at fixed time intervals
(KMC steps). Namely, pA(m) estimates the frequency of
finding an x(t) measurement within region A in bin m, while
pB(n) estimates the frequency of finding an x(t) measurement
within region B in bin n. pAB(m,n) is the corresponding joint
probability distribution.

In general, MI can be defined as a function of the lag
τ , assuming the variables xA(t) and xB(t − τ ), i.e., I (τ ) =
I (At,Bt−τ ). The estimation of the degree of independence
between the subsystems by I (At,Bt−τ ) depends on the choice
of τ . In order to suppress this effect the cumulative MI (CMI)
is defined by averaging over a range of lags up to a maximum
lag τmax [31]:

〈I (At,Bt−τ )〉τ = 1

τmax + 1

τmax∑

τ=0

I (At,Bt−τ ). (13)

The MI and thus the CMI are 0 only if the subareas A and
B do not exchange information and thus the species within
them are not correlated. In the absence of intercorrelations,
the CMI equals 0 (asynchronous regime), while for a positive
CMI mutual dependence emerges, which corresponds to a
synchronous regime.

In Fig. 7 the transition to synchronization is shown for
two lattice sizes, L = 512 and 1024, using the SI and
CMI. For sufficiently low probabilities, species mobility is
insufficient to restrict the leading role of local reactions
and thus the lattice is still poisoned. For slightly higher
probabilities (e.g., pex = 0.0003) the lattice escapes poisoning
states, however, distant areas remain asynchronous, resulting
in very small positive values of the SI and CMI and thus
very small correlations between them. Namely, a low rate of
species mobility is inadequate to synchronize distant regions
throughout the lattice. This is also depicted in Fig. 8, where
the phase difference of two distant areas seems to follow a
random walk for the same, small pex. Nevertheless, increasing
pex further, e.g., to values of 0.0012 and 0.0014, correlations
between distant areas also increase, which, however, may be
lost after some time. This results in different dynamics of
the phase difference, which now locks for long time intervals
of almost-synchronous oscillations of species concentrations,
but consecutively slips and locks in other intervals. These slips
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FIG. 7. (Color online) Transition to synchronization as repre-
sented by the SI and CMI with respect to the exchange probability pex.
The exchange radius is rex = 200 sites and the remaining parameters
are the same as in Fig. 5. Displayed points are the means over 10
different numerical experiments for the same initial configuration.

appear rather often for lower values of pex and become rarer for
higher pex values as shown in Fig. 8. Following this scenario,
finally, the system is synchronized as shown in the same figure
for pex = 0.01 and species oscillations coincide even in distant
areas. The transition to synchronization, as shown in Fig. 7,
is rather abrupt. Near the transition a typical intermittency
crisis [17,32] is observed in the species oscillations appearing
as rare phase slips.

A similar, but not the same, phase slip scenario is observed
when the exchange radius increases for a constant probability
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-15

-10

-5

0

ΔΦ pex=0.0003
pex=0.0012
pex=0.0014
pex=0.01

FIG. 8. (Color online) Phase difference dynamics shows a “phase
slip” transition to synchronization. The corresponding probability pex

is shown in the legend. The remaining parameters are the same as in
Fig. 7.
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FIG. 9. (Color online) Transition to synchronization as repre-
sented by the SI and CMI with respect to the diffusion radius rex.
The diffusion probability is pex = 0.1. The parameters ki are the
same as in Fig. 5. Displayed points are the means over 10 different
numerical experiments for the same initial configuration.

pex. Figure 9 shows that for very small rex the species remain
asynchronous even for large pex. Nevertheless, beyond a
threshold of exchange probability, rex can drive the system to
synchronization, which appears around rex = 200 as shown in
Fig. 10. The latter results are presented here in order to supple-
ment the whole picture of the dynamics where mobility plays a
crucial role. Particularly, the exchange radius has been chosen
as rex = 200 sites in all previous figures to ensure that the sys-
tem can reach synchronization for pex values as small as 0.01.
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FIG. 10. (Color online) Phase difference dynamics. The corre-
sponding exchange radius rex is shown in the legend. The remaining
parameters are the same as in Fig. 9.
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V. DISCUSSION

In this study a prototype ecosystem model and its route
to synchronization are presented. This model consists of
four species plus a fifth virtual species which corresponds
to empty space in a cyclic domination. At the MF level,
quasiperiodicity and chaos are the main dynamical aspects.
Absorbing solutions which describe the survival of one species
and the annihilation of the others are also observed in the MF.
KMC simulations show that purely local reactions of immobile
species drive the lattice to poisoning states. Both approaches
converge only in the case where local rules are expanded to
allow global reactions within the whole lattice. Namely, the
“potential neighbors” are equiprobably chosen throughout the
lattice instead of only the nearest sites, and then complete
synchronization of all distant regions of the lattice is observed.

A different, gradually mixing mechanism that counter-
balances the effects of local reactions is the long-distance
exchange process. The probability of occurrence pex and the
maximum range rex of this process change the mobility of
species throughout the lattice. The system escapes poisoning
states even for a weak mobility and is organized in a finite
number of local oscillators, which in general are uncorrelated.
Increasing species mobility results in better correlations
between distant regions, and finally, synchronization arises.
Near the transition to synchronization a typical intermittency
crisis takes place, with the phase slips becoming more rare
as the transition is approached. For the estimation of phase
synchronization and interdependence, the SI and CMI, respec-

tively, are used. Upon increasing the exchange probability, the
SI increases abruptly (for small values of pex) and reaches
unity, while the CMI also reaches a maximum, amplifying the
scenario of phase synchronization. Finally, global and local
oscillations coincide in phase and amplitude. A similar but
less abrupt transition is observed as a function of rex, which
also follows a phase slip scenario.

While our study has focused on the effects of long-distance
exchange on the MF dynamics of the proposed chaotic model
and its KMC square lattice implementation, future studies are
needed to focus on species reactions taking place in complex
and hierarchical networks, since the network architecture
seems to play an important role in the stability of synchronous
oscillations. The kinetic schemes which have been explored
so far include conservative center-type, quasiperiodic, and
chaotic dynamics. Other schemes which, at the MF level,
present dissipative limit-cycle dynamics or weak chaos,
appropriate for KMC simulations, need to be considered since
the underlying MF dynamics seems also to play an equally
important role in the development of synchronous, global
oscillations.
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