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Solitary and coupled semiconductor ring lasers as optical spiking neurons
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We theoretically investigate the possibility of generating pulses in an excitable (asymmetric) semiconductor
ring laser (SRL) using optical trigger pulses. We show that the phase difference between the injected field and the
electric field inside the SRL determines the direction of the perturbation in phase space. Due to the folded shape
of the excitability threshold, this has an important influence on the ability to cross it. A mechanism for exciting
multiple consecutive pulses using a single trigger pulse (i.e., multipulse excitability) is revealed. We furthermore
investigate the possibility of using asymmetric SRLs in a coupled configuration, which is a first step toward an
all-optical neural network using SRLs as building blocks.
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I. INTRODUCTION

Excitability is a phenomenon that is observed in a wide
range of systems and has first been coined in biology to
describe the behavior of individual nerve cells. Excitable
behavior is, however, by no means limited to nerve cells. Other
examples include nonlinear chemical reactions, cardiovascular
tissues, ion channels, climate dynamics, and lasers [1].
Common to all these excitable systems is their highly nonlinear
response to external perturbations. When unperturbed, the
system remains quiescent and resides in a resting state. Small
perturbations only lead to a small-amplitude linear response.
However, if the perturbation is sufficiently large, the system is
transferred from the resting state to an excited state (the firing
state). After this strong response, the system returns to its initial
resting state through a refractory cycle. This large excursion
of the system’s variables in phase space corresponds to the
emission of a large-amplitude pulse. During the refractory
cycle, it is impossible to generate a second pulse; the system
does not respond to any external perturbation.

In optical systems, excitability has attracted much interest
in recent years [2–11]. It provides a way to generate well-
defined optical pulses and opens up possibilities for optical
neural networks, all-optical pulse reshapers, and delay lines.
Lasers with saturable absorber [4,6], optically injected lasers
[8,10,11], and lasers with optical or optoelectronic feedback
[2,3,5,7,9] have all been proposed as optical excitable units.

In Ref. [12], we proposed a mechanism for excitability
in systems with a weakly broken Z2 symmetry close to a
Takens-Bogdanov bifurcation [13]. As optical prototypes of
such systems, we used semiconductor ring lasers (SRLs), the
active cavity of which has a circular geometry. As a result,
SRLs can generate light in two opposite directions referred
to as the clockwise (CW) and the counterclockwise (CCW)
modes. The convenient device properties of SRLs allow this
optical excitable unit to be highly integrable and scalable [15,
16], allowing for fully integrated optical neural networks and
all-optical devices.

It was experimentally shown that short deterministic pulses
can be excited by noise in asymmetric SRLs [12], and their
origin was explained as a noise-activated escape across a
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barrier in an asymptotic two-dimensional phase space [17].
Breaking theZ2 symmetry was realized by bringing a flat facet
fiber very close to one of the output waveguides, increasing the
reflective coupling for one of the counterpropagating modes.
Moreover, that output waveguide was pumped to increase the
power that is reflected (see [12] for more details). Hence, an
asymmetry in the magnitude of the linear coupling between
the counterpropagating modes was obtained.

From an application point of view, it would be desirable
to excite pulses in a deterministic way by injection of an
external optical trigger, which is theoretically investigated in
this paper. We will also investigate the possibility of forming
an optical neural network using SRLs as building blocks.
Optical neural networks are attractive because of the high
degree of parallelism that can be achieved and the large optical
bandwidth that allows for very fast processing [18,19]. The
typical spike duration in asymmetric SRLs is of the order
of 10 ns, which is 5 orders of magnitude faster than the
biological ms time scale. Kravtsov et al. [19] have recently
demonstrated an optical spiking neuron operating at GHz
speed, but it requires a substantial setup. We feel that the
ability of integrating the SRL based neuron on chip offers a
clear advantage. These advantages in speed and size yield good
perspectives as an artificial neural network. It will be shown
in this paper that coupled asymmetric SRLs are able to excite
pulses in each other, mimicking neuron functionality as optical
spiking neurons.

This paper is organized as follows. The modeling of the
device, both the rate equation model and the asymptotic
phase plane, is discussed in Sec. II, in which we also briefly
review the excitability mechanism. In Sec. III, we analyze
the SRL response to optically injected pulses, revealing a
sensitive dependence on the phase of the optical trigger signal
and a mechanism to excite consecutive pulses using a single
trigger pulse. The possibility of coupling the SRLs toward the
realization of an optical neural network will be examined in
Sec. IV. Finally, in Sec. V, we summarize the results.

II. MODEL

We use a general rate equation model as proposed in [20],
which assumes that the SRL operates in a single transverse and
single longitudinal mode and can sustain two counterpropagat-
ing directional modes. It consists of two complex mean-field
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equations for the counterpropagating modes E1 (clockwise)
and E2 (counterclockwise) and a third equation for the carrier
density N . Following [20] with a straightforward modification
to account for the optical injection, we can write the following
rate equations for an optically injected asymmetric SRL
(neglecting spatial variations within the laser and adiabatically
eliminating the medium’s polarization dynamics):

Ė1 = κ(1 + iα)[g1N − 1]E1 − k1e
iφkE2 + F (t), (1a)

Ė2 = κ(1 + iα)[g2N − 1]E2 − k2e
iφkE1, (1b)

Ṅ = γ [μ − N − g1N |E1|2 − g2N |E2|2]. (1c)

Here, the dot represents differentiation with respect to time
t , E1 and E2 are the slowly varying complex envelopes of
the counterpropagating waves, N is the carrier population
inversion, g1 = 1 − s|E1|2 − c|E2|2 and g2 = 1 − s|E2|2 −
c|E1|2 are the differential gains of the modes (s and c,
respectively, model the self- and cross-saturation effects), μ is
the renormalized injection current (μ = 0 at transparency and
μ = 1 at lasing threshold), κ is the field decay rate, γ is the
carrier decay rate, and α is the linewidth enhancement factor.
The term F (t) = Ei(t)ei(�t+ϕ)/τin represents the optically
injected trigger pulses in the clockwise mode, where τin is
the cavity round-trip time, Ei(t)2 the power envelope of the
injected pulse, � the detuning between the frequency of
the injected field and the cavity resonance frequency, and
ϕ represents a constant phase difference. A detuning � > 0
corresponds to an injected frequency, which is higher than
the cavity resonance frequency. The linear coupling between
the counterpropagating waves, referred to as backscattering,
is caused by reflections inside the cavity at the interface with
the coupling waveguide and at the cleaved end facets of the
output waveguide. It is modeled by a backscattering amplitude
ki with a phase shift φk . The backscattering phase φk is chosen
to be identical for both counterpropagating modes since it has
been shown that an asymmetry in φk has no influence on the
topology of the phase space structure [17]. The asymmetry in
the backscattering amplitude �k = k2 − k1 is defined by the
dimensionless parameter δ = �k/2k, where k is the average
backscattering amplitude. This asymmetry causes the SRL to
be excitable [12,17]. When δ > 0 in Eq. (1), residence in the
E2 mode is favored, allowing for excitable pulses of the E1

mode.
In a typical SRL, the photon lifetime κ−1 and the carrier

lifetime γ −1 are, respectively, of the orders 10 ps and 5 ns,
yielding two different time scales in the system. The other
parameters are fixed to realistic values α = 3.5, s = 0.005, c =
0.01, the average backscattering value k = 0.44 ns−1, φk =
1.5, and τin = 0.6 ps [20], unless mentioned otherwise. The
value of the bias current μ = 1.65 is chosen slightly above
the value for which alternate oscillations disappear in a fold of
cycles [17].

Although we numerically investigate excitability in asym-
metric SRLs with the rate equation model given in Eq. (1),
the excitability mechanism can be interpreted more easily in
a reduced two-dimensional phase space. It has been shown
that, on time scales slower than the relaxation oscillations,
the dynamics of the SRL essentially takes place in a two-
dimensional phase plane. The dynamical behavior in this phase
plane is described by an asymptotically reduced model, which

has been introduced in [21], characterized by the variables θ

and ψ . The resulting asymptotic description of the SRL is
valid on time scales slower than the relaxation oscillations,
and it has been shown that it is able to predict many of the
experimentally observed SRL characteristics [12,17,22,23].
But, including optical injection in the asymptotic model makes
it rather cumbersome, and its validity can be argued for short
pulses. However, projecting our simulation results from Eq. (1)
on the asymptotic phase plane will prove to be useful.

The two phase space variables θ ∈ [−π/2,π/2] and ψ ∈
[0,2π ] are defined by

θ ≡ 2 arctan

( |E2|
|E1|

)
− π

2
, (2a)

ψ ≡ φ2 − φ1, (2b)

where φi ≡ arg(Ei). Hence, θ is a measure for the relative
power distribution among the counterpropagating modes (θ =
π/2 if |E1| = 0, θ = −π/2 if |E2| = 0, and θ = 0 if |E1| =
|E2|) and ψ is the relative phase difference between the
corresponding electric fields. The phase space topology of
the asymmetric SRL in the (θ,ψ) phase plane is shown in
Fig. 1(b).

The gray and white regions indicate the basins of attraction
of the two stable states in the SRL, the CW and CCW states,
which are quasiunidirectional. In this case, the CCW state is
favored. They are separated by the stable manifold of a saddle
point indicated by S. The branches of the unstable manifold
spiral toward the CW and the CCW states. Assume that the
unperturbed SRL resides in the CCW state. A perturbation
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FIG. 1. (Color online) Simulation of Eq. (1) when optically
injecting a 2-ns-wide square pulse. (a) Time trace of the modal
intensities. The CW (CCW) modal power is depicted in red/gray
(black). The injected pulse is shown by a dashed black line. Note
that the optically injected pulse power is scaled up by a factor 107

in this plot. τ indicates the time at which the injected pulse ends.
(b) Two-dimensional phase space trajectory corresponding to the
time trace. The point τ also corresponds to the moment when the
injected pulse ends. S indicates the location of the saddle. The basin
of attraction of the CW (CCW) state is depicted in gray (white).
Parameter values: δ = 0.045, Ei = 8 × 10−5, resonant detuning,
phase difference = 1.3π .
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forcing it to cross both branches of the stable manifold will
make the SRL relax back to the CCW state by turning around
the CW state, generating a large amplitude pulse. Hence, the
excitability threshold is defined by the stable manifold of a
saddle point, which is folded throughout the phase space and
separates the basins of attraction of the counterpropagating
states.

We stress that the same results apply for every dynamical
system with an underlying Z2 symmetry close to a Takens-
Bogdanov point providing the same sequence of bifurcations
[13] (for more information on the bifurcation scenario specific
to SRLs, we refer to [17]).

III. OPTICAL TRIGGERING OF PULSES

The asymmetric SRL will be excited to fire a pulse if a
perturbation forces it to cross both branches of the stable saddle
manifold by altering the phase difference ψ and/or the relative
power distribution θ between the counterpropagating modes.
The stable manifold can be crossed by introducing spontaneous
emission noise as shown in [12]. In this paper, we investigate
the possibility of deterministically crossing the stable manifold
by optically injecting a pulse into the SRL. An example of
SRL “firing” triggered by an optically injected pulse is shown
in Fig. 1(a). We have injected a 2-ns-wide square pulse in
the CW mode at resonant detuning (the optical frequency of
the injected field and the SRL fields are identical). The SRL
responds by emitting a large-amplitude pulse in the CW mode,
while the CCW mode acts in antiphase showing a power drop.
Subsequently, the SRL relaxes back to its former state in a
decaying oscillatory fashion.

From the trajectory in the (θ,ψ) phase plane shown in
Fig. 1(b), we see that the trigger pulse kicks the SRL across
both branches of the stable manifold of the saddle (gray
region). When the trigger pulse is finished at the point τ ,
the SRL relaxes back to the CCW state by turning around
the CW state, which it is forced to do by the folded saddle
manifold. The oscillatory tail of the pulse corresponds to
the spiraling movement toward the CCW state in the (θ,ψ)
plane and indicates the existence of subthreshold oscillations.
While decaying toward the resting state (CCW), the close
proximity of the stable manifold allows for some perturbations
to experience a temporary reduction of the distance to the
excitability threshold, which has been shown to lead to
noise-excited double pulses [12,17].

A. Phase dependency

It is clear from Fig. 1(b) that the direction in which the SRL
is kicked out of the CCW state has an influence on whether or
not the stable manifold will be crossed, and, hence, whether
or not the SRL will fire a pulse.

We examine the initial direction in phase space by looking
at the optical injection terms in Eq. (1). Prior to the injection,
the SRL will reside in the resting state for which the right-hand
sides of Eq. (1) are zero in absence of the F (t) term. Hence,
at the start of the pulse, the optical injection term is the only
nonzero term. For the square pulse injected in the CW mode,
F (t) = Eie

i(�t+ϕ)/τin, and at the start of the pulse, we get the

following equations for the amplitude |E1| and the phase φ1

of the field of the CW mode:

d|E1|
dt

= Ei

τin
cos(φ1 − �t0 − ϕ), (3a)

dφ1

dt
= − 1

|E1|
Ei

τin
sin(φ1 − �t0 − ϕ). (3b)

Here, t0 indicates the time corresponding to the start of
the injected pulse. Equations (3) can easily be interpreted
by considering either constructive (φ1 − �t0 − ϕ = 0) or
destructive (φ1 − �t0 − ϕ = π ) interference. Reformulating
Eqs. (3) for θ and ψ using Eqs. (2) yields

dθ

dt
= − 2|E2|

|E1|2 + |E2|2
Ei

τin
cos(φ1 − �t0 − ϕ), (4a)

dψ

dt
= 1

|E1|
Ei

τin
sin(φ1 − �t0 − ϕ). (4b)

Equations (4) show that the angle under which the trajectory
leaves the CCW rest state is exactly the phase difference φ1 −
�t0 − ϕ (defined as the clockwise angle with the negative θ

axis), which is an uncontrollable quantity in a practical setup.
This phase difference will play an important role in whether
or not the SRL will be excited to fire a pulse. An unfavorable
phase difference leads to a perturbation in the wrong direction
and, hence, fails to excite the SRL. Based on the topology of the
saddle manifolds in the asymptotic (θ,ψ) phase plane, we can
predict which phase differences will have difficulties triggering
a pulse. Given that Eqs. (2) are only first order approximations
with limited validity in time, and that the phase difference
corresponds to the clockwise angle with the negative θ axis
in the (θ,ψ) phase plane, a coarse estimate would be that
phase differences between 0 and π/4 tend to be detrimental
for triggering pulses.

This is confirmed in Fig. 2, showing the influence of
the phase difference on the firing of the SRL by numerical
simulation of the rate equation model in Eqs. (1). We
inject a square optical pulse with a fixed width of 2 ns at
resonant detuning and monitor the response. In the diagram,
both the amplitude Ei and the phase difference between
the injected field and the SRL fields are varied. For low
injection amplitudes, the SRL only fires a pulse when the
phase difference is close to −π/2. In the (θ,ψ) plane, this
corresponds to a downward kick [comparable to Fig. 1(b)],
which is indeed the shortest way to cross the stable saddle
manifold. For higher injection amplitudes, the phase condition
is less stringent but nevertheless does not allow firing when
the phase difference is close to π/4, which corresponds to our
previous reasoning. We can conclude that the phase difference
between the fields determines the direction of the perturbation.
Due to the folded shape of the excitability threshold in phase
space (the stable manifold of the saddle point), it is not accurate
to speak of inhibitory and excitatory perturbations. But, the
folding is such that there does exist a “wrong” direction for
perturbations, along which no pulse will be excited (see Fig. 2).
The cumbersome phase dependency is an aspect that will
arise in every optical excitable system, when triggered by an
optically injected pulse. The experimental results of Wünsche
et al. in [7], covering an optically excitable multisection laser,
indeed show a distinct jitter in the spikes although nominally
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FIG. 2. Influence of the phase difference between the injected
field and the SRL field on the response of the SRL. A pulse with a
fixed width of 2 ns is injected in the CW direction with varying phase
difference and amplitude Ei . Gray indicates excitation of a single
pulse, while black indicates excitation of two consecutive pulses.
Inset: Magnitude of the response peak vs amplitude of the optical
excitation pulse for a fixed phase difference of 3π/2 (corresponding
to the arrow). Note the clear threshold behavior.

identical pulses were injected, which is attributed to the phase
difference between the fields.

The inset in Fig. 2 shows the distinct threshold behavior
for raising injection amplitude when the phase difference is
kept fixed. Below threshold, the response amplitude increases
proportional to the trigger amplitude. Above threshold, it
jumps to a much larger value and is less sensitive to the
trigger amplitude. It was shown in [24] that there exists an
inverse correlation between the response pulse amplitude and
the response pulse duration. The delay between the response
and the trigger pulse ranges from approximately 3 to 10 ns
depending on the phase difference, since this determines where
the threshold curve is crossed and, hence, also the length of
the phase space trajectory up to the pulse maximum.

B. Multipulse excitability

In the region of higher injection amplitude, the black area
in Fig. 2 indicates the excitation of two consecutive pulses, an
example of which is shown in Fig. 3. Note that the threshold for
this double pulse generation is formed by the second fold of the
stable manifold. By changing the values of the pump current J

and the backscattering phase φk , one can increase the number
of folds of the stable manifold [12,17]. This leads to identical
scenarios in which more than two consecutive pulses can be
excited using a single trigger pulse, i.e., multipulse excitability.
Multipulse excitability was first reported for an optically
injected laser by Wieczorek et al. [8], explained by the vicinity
of n homoclinic bifurcations resulting in n response pulses.
Other reported mechanisms are the period doubling of a limit
cycle on which a saddle-node bifurcation takes place, resulting
in double pulses [10], and slow-fast dynamics with folded
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FIG. 3. (Color online) Simulation of Eq. (1) when optically inject-
ing a 2-ns-wide square pulse with a higher amplitude than in Fig. 1.
(a) Time trace of the modal intensities. (b) Two-dimensional phase
space trajectory corresponding to the time trace. Parameter values:
δ = 0.045, Ei = 1.2 × 10−4, resonant detuning, phase difference =
1.3π . Conventions as in Fig. 1.

slow manifold and a ramped parameter [25]. The mechanism
reported here is characteristic for systems with a phase portrait
similar to Fig. 1(b), i.e., Z2-symmetric systems close to a
Takens-Bogdanov bifurcation [13]. The multiple folding of the
stable manifold, i.e., the threshold curve, around the resting
state allows for a deterministic multipulse return trajectory
given that the perturbation is sufficiently large [see Fig. 3(b)].

Note that this multipulse generation differs from the noise-
induced clustering we previously reported in [12]. In that case,
the SRL is excited a second time while it is relaxing back to the
CCW state close to the stable manifold, resulting in two very
similar pulses. The deterministic return trajectory in Fig. 3(b)
consists of a first, sharp pulse followed by a wider pulse. The
width of the excited pulses can vary depending on the strength
of the initial perturbation, but the second pulse will always
be wider than the first pulse. This range of widths is due to
the characteristic flow in the reduced phase space [24]. The
occurrence of this event in the noise-excited case [12] is very
unlikely because of the the stochastic driving force and the
invariant flow of the system.

C. General considerations

Since the excitability mechanism emerges from an asymp-
totic model, which assumes the carrier density N to be close
to its threshold value, the scenario described in this paper
must assume the amplitude of the trigger pulse to be small
[i.e., O(10−4)]. In this way, the SRL is confined on the (θ,ψ)
subplane of its phase space (see Sec. II). Injecting large pulses
highly perturbs the value of N and causes the SRL to leave
this plane. Using such a large-amplitude trigger pulse, it is
hence possible to excite a pulse if the SRL happens to relax
back to the the other side of the stable manifold on the
(θ,ψ) plane. This excitability threshold is, however, obscured
since the SRL dynamics can no longer be clearly described
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in the (θ,ψ) plane and the excited pulses have a distorted
pulse shape due to large-amplitude relaxation oscillations. The
fact that the carrier density is not involved in the excitable
excursion contrasts with the excitability mechanisms reported
for other laser systems [4,6–10]. This is due to the ability of
redistributing optical power between the counterpropagating
modes due to the backscattering k. In other laser systems, one
needs to generate additional optical power for the pulse for
which the carrier reservoir needs to be addressed.

Aside from the amplitude of the trigger pulse, the detuning
between the optical frequency of the trigger pulse and the
SRL fields also has an influence. In the case of resonant
injection, it is physically meaningful to talk about constructive
or destructive interference between the injected field and
the SRL field. However, if there is a frequency mismatch,
the interference will be constructive at one point, but destruc-
tive at another. This results in a periodic instead of constant
driving force in the (θ,ψ) plane, which is unfavorable to cross
the threshold (i.e., the stable manifold). Since the relevant
physical quantity is the product �t of the frequency detuning
� with time t , as long as � < O(1/τ ) (with τ the pulse
width), the driving force will not vary significantly. In that
case, the scenario sketched above remains valid. This is also
what we observe numerically. We find numerically that there is
a tolerance on the frequency mismatch of the order of a couple
hundred MHz (cf. the pulse width is of the order of 2 ns),
depending on the trigger pulse amplitude. There is of course a
balance to be considered between the trigger pulse amplitude
and the detuning. When the frequencies of the injected field
and the SRL field are largely detuned, one can always use a
shorter pulse with a higher amplitude for which the previous
considerations (of large pulse amplitudes) apply.

IV. TWO COUPLED EXCITABLE SRLs

In this section, we will investigate whether excitable
asymmetric SRLs are able to excite each other, paving the
way to an integrated optical neural network. A detailed study
about the dynamical behavior of coupled SRLs lies outside
the scope of this work and will be dealt with elsewhere. We
limit ourselves to excitable behavior and consider two SRLs
coupled by a single bus waveguide as shown in Fig. 4. In this
type of coupling, the CW (CCW) mode of SRL a (b) is coupled
in the CW (CCW) mode of SRL b (a). We therefore extend
the model with two coupling terms:

Ė1a = κ(1 + iα)[g1aNa − 1]E1a − k1e
iφkE2a + F (t), (5a)

Ė2a = κ(1 + iα)[g2aNa − 1]E2a − k2e
iφkE1a

− kce
iφcE2b, (5b)

Ė1b = κ(1 + iα)[g1bNb − 1]E1b − k1e
iφkE2b

− kce
iφcE1a, (5c)

Ė2b = κ(1 + iα)[g2bNb − 1]E2b − k2e
iφkE1b. (5d)

The rate equation for the carrier density is given by Eq. (1c)
for both SRLs, with N = Na and Nb. The term F (t) again
represents the external triggering and is only present in the
equations for SRL a (see Fig. 4). Based on the results of the
preceding section, we will use a trigger pulse with a favorable
phase difference of −π/2 w.r.t. the fields in SRL a (see

a b
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FIG. 4. (Color online) Schematic representation of the coupling
scheme for excitable asymmetric SRLs considered in this paper. The
CW (CCW) mode of SRL a (b) is coupled in the CW (CCW) mode
of SRL b (a). The notch to the ring cavity is merely added as a visual
indication of the asymmetry of the cavity. The curved black arrow
indicates the stable resting state, the dashed red arrow indicates the
propagation direction of excitable pulses. The injected trigger pulse
(F ) is shown by a straight black arrow.

Fig. 2). The coupling is modeled by the coupling amplitude
kc and the coupling phase φc, which is the optical phase
accumulated by the field when traveling from SRL a to SRL
b (and vice versa). Note that Eqs. (5) are invariant under the
transformation

φc �→ φc + π, (6a)

φia �→ φia ± π/2, (6b)

φib �→ φib ∓ π/2, (6c)

where φij ≡ arg(Eij ) and i = {1,2}. The second and third
equation signify shifting the phase origin in each SRL over
π/2, but in the opposite direction. The only difference with
the untransformed system is that the value of the relative phase
differences between the fields of the SRLs (without taking φc

into account) will be shifted by π . However, the dynamical
behavior of the global system will be identical. Therefore, we
only need to consider φc ∈ [0,π ] to grasp the behavior for all
values of φc. All parameter values are identical to the preceding
section, except for the asymmetry δ. We raise its value to 8%
in this section to increase the stability of the resting state. The
phase space of the solitary SRL is qualitatively the same as
sketched in the previous section up to δ = 8.4%, where the
saddle and the CW state disappear in a fold bifurcation (see
Ref. [17] for more detailed information).

For the coupling amplitude kc, we have chosen kc < k,
which means that the reflective coupling inside each SRL
has to be larger than the coupling to the other SRL. This
is hard to achieve when the backscattering is small. However,
the value of the backscattering increases with the reflective
coupling between the counterpropagating modes, which can
be manipulated through the cavity design. Due to the weak
character of the coupling, excitatory excursions still persist
due to the similar phase space structure. We will, however,
not project the trajectories on the respective (θ,ψ) planes of
each SRL. The phase space structure of the solitary SRL in
these planes does not provide a suitable reference since the
projection does not capture the extra dimension of the coupled
system.

Coupling the two SRLs nevertheless has an effect on
the dynamics of the individual lasers. Due to the single
waveguide coupling, SRL a and b are continuously injected
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FIG. 5. (Color online) Simulated time traces of Eqs. (5) for the
coupled setup shown in Fig. 4. The upper (lower) trace shows the
powers in SRL a (b). At t = 0.6 μs, a trigger pulse is injected solely
in SRL a (see Fig. 4). Parameter values: δ = 0.08, Ei = 1.6 × 10−4,
kc = 0.35k, φc = 0.35π . Conventions as in Fig. 1.

in, respectively, the CCW and the CW modes, which stabilize
these respective modes in the SRLs [26]. On the other hand,
the cavity asymmetry δ favors the CCW mode in both SRLs.
In the range of parameters we consider, the coupled system
has a steady state s1 that has both SRLs lasing in the CCW
mode (see Fig. 4), which is stable throughout the considered
parameter range. We raised the value of δ in this section to
increase the stability of this initial steady state. Furthermore,
there is another stable steady state s2 in which SRL a and b are,
respectively, lasing in the CCW and CW modes. This steady
state does not exist for coupling phases φc close to 0 [and π ,
due to the transformation in Eqs. (6)].

Figure 5 shows that a pulse generated in SRL a (excited
by an external optical trigger signal) can in its turn excite a
pulse in SRL b. Note that the pulse shape in SRL a is a little
distorted. Small oscillations are superimposed on it and the
damping to the resting state is increased. The superimposed
oscillations are relaxation oscillations as explained in the
previous section for high(er) amplitude trigger pulses. The
need for a slightly higher amplitude stems from the stabilizing
effect of the continuous injection from SRL b, which also
explains the increased damping rate toward the resting state.
This change in damping rate is not very visible in SRL b

(compare with Fig. 1) because the weakest mode of SRL a

is injected in the CW (firing) mode of SRL b. The different
power levels of the resting state in SRL a and b in Fig. 5 are
an artifact of the single waveguide coupling, which produces
an additional asymmetry of the global system. The dominant
mode of SRL b is coupled to SRL a, while the weakest
mode of SRL a is coupled to SRL b. The dominant mode
of SRL a and the weak mode of SRL b are not fed through.
This gives rise to the asymmetric steady state power levels.
If we would add an additional bus waveguide connecting
the bottom of both rings, the dominant mode of SRL a

and the weak mode of SRL b would also be fed through.
No additional asymmetry is introduced in this case, and
the steady state power levels are symmetric. This double
waveguide coupling also yields positive results with regard
to pulse excitation in SRL b, but exhibits much more unstable
behavior than the single waveguide coupling. For this reason,
we will focus on the single waveguide coupling scheme of
Fig. 4.

The response of SRL a and b for various values of kc

and φc are shown in Fig. 6. The color coding represents the
number of times the line θ = 0 is crossed in the asymptotic

FIG. 6. (Color online) The response of SRL a (top) and b (bottom)
for different values of kc and φc. The color map displays the number of
times the line θ = 0 is crossed in the asymptotic (θ,ψ) phase plane.
Number of crossings larger than 5 have been renormalized to 5 to
improve the readability. The upper (lower) white line in the bottom
figure bounds the region where the number of crossings in SRL a is
� 5 (= 4). The white circle (square) indicates the parameter values
for the time trace in Fig. 5 (Fig. 7). Trigger pulse: Ei = 1.6 × 10−4.
Parameter values: δ = 0.08.
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(θ,ψ) phase plane, which corresponds to an equal power
in both modes. Two subsequent crossings in SRL b can,
hence, be regarded as an excited pulse. An odd number of
crossings signifies that SRL b has switched from CCW to CW
lasing, instead of returning to its resting state and emitting
a pulse. For the coupled system, this indicates a switch to
the steady state s2. This is the case for the areas with 1
and 3 crossing(s), and for part of the area with 5 or more
crossings.

Just as in the preceding section, the optical phase plays
an important role. Certain values of φc will be favorable and
others will be detrimental for transferring excited pulses. The
role of φc is, however, not the same as the role of the “phase
difference” between the injected and the SRL fields in the
preceding section. When residing in their resting state, SRL a

and b will have a constant phase difference between their
fields, which is a function of φc. Moreover, the phase of
the “source” laser (SRL a) is no longer independent of the
injected laser due to the bidirectional character of the coupling.
Nevertheless, there is a region around φc = 0 (and φc = π ) for
which no response can be elicited. Values of φc around π/2
yield clear responses from SRL b, i.e., the number of crossings
is nonzero. The area with value 2, in which we excite a single
pulse in SRL b, is relatively large. An example of a time
trace in this area was shown in Fig. 5 and is indicated by a
white circle in Fig. 6. The brown region at φc ≈ 0.6π indicates
more complex behavior than single pulse excitations, an exam-
ple of which is shown in Fig. 7. The corresponding location in
Fig. 6 is indicated by a white square. Note that both time traces
have the same coupling amplitude, but a different coupling
phase. Instead of each firing a single pulse, the different value
of φc allows SRL a and b to emit a series of spikes. Note
that they are emitted in antiphase by SRL a and b. After a
while, this oscillation can no longer be sustained and the SRLs
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FIG. 7. (Color online) Simulated time traces of Eqs. (5) for the
coupled setup shown in Fig. 4. The upper (lower) trace shows the
powers in SRL a (b). At t = 0.6 μs, a trigger pulse is injected solely
in SRL a (see Fig. 4). Parameter values: Ei = 1.6 × 10−4, δ = 0.08,
kc = 0.35k, φc = 0.7π . Conventions as in Fig. 1.

return to their resting states. The range over which both SRL
a and b yield a complex response coincides with the existence
of an unstable limit cycle. For increasing φc, it originates
in a homoclinic bifurcation on the left side of the complex
region (the side of lower φc), and is destroyed in a subcritical
Hopf bifurcation on the right side of the complex region,
resulting in the destabilization of s2. So, different values of the
coupling phase can have a profound influence on the dynamical
behavior.

Two coupled asymmetric SRLs can thus function as
communicating neurons. We moreover observe that they do
this in a single direction, i.e., the configuration of Fig. 4
enforces a preferential “propagation” direction for the excited
pulses. We have shown that it is possible to excite a pulse
in SRL b with a pulse from SRL a that was excited by an
external trigger. However, when exciting a pulse in SRL b

with an external trigger, we have not found any parameter
values for which SRL b excites a pulse in SRL a. Note that
in this case the “pulse” traveling from SRL b to SRL a is
actually not a pulse, but rather a dip in the steady state power.
The pulse can actually be interpreted as an increase in a desta-
bilizing injection, while the dip is a decrease in a stabilizing
injection (see Fig. 4), explaining the difference in response
sensitivity.

V. CONCLUDING REMARKS

In this paper, we have theoretically investigated the possi-
bility of triggering a pulse in an excitable (asymmetric) SRL
by using an optically injected trigger pulse. We have used a
standard rate equation model for the numerical simulations
and an asymptotic two-dimensional phase plane to interpret
the results. This two-dimensional phase plane provides a well-
defined threshold appearing as two branches of a stable saddle
manifold that need to be crossed. By using this approach, we
have shown that the phase difference between the injected field
and the SRL fields determines the direction of the perturbation
in this phase plane. An unfavorable phase difference, which
we were able to derive from the asymptotic phase plane
structure, fails to excite a pulse in the SRL. Furthermore, a
mechanism for exciting two or more consecutive pulses using
a single trigger pulse was revealed. The appearance of such
multiple response pulses is not related to period doubling
or homoclinic bifurcations as in [8,10], nor to noise-induced
clustering as in [12]. They arise due to the multiple folding of
the stable manifold, i.e., the threshold curve, around the resting
state.

We have also shown that two SRLs, coupled by a single
bus waveguide, can excite each other and can thus function as
communicating neurons. This type of neural network can be
fully integrated on chip and does not suffer from the drawback
of needing extra-cavity measures as other optical neurons do
[2–11]. The typical pulse duration of 10 ns moreover yields
a processing speed that is 105 times larger than biological
neurons. These advantages in size and speed, and the high
degree of parallelism, offer good perspectives as an artificial
neural network.

Although the asymptotic two-dimensional model used here
is derived particularly for SRLs, the excitability mecha-
nism presented in this work is general for a subclass of
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Z2-symmetric systems close to a Takens-Bogdanov point
providing the same sequence of bifurcations [13]. As an
example of another optical system that will exhibit simi-
lar dynamics, we mention semiconductor disk lasers [27]
as they essentially share the same circular symmetry as
SRLs.
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