
PHYSICAL REVIEW E 84, 036207 (2011)

Chaos computing in terms of periodic orbits

Behnam Kia,1,2 Mark L. Spano,1 and William L. Ditto1

1School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, USA
2School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, USA

(Received 12 October 2010; revised manuscript received 19 January 2011; published 12 September 2011)

The complex dynamics of chaotic systems can perform computations. The parameters and/or the initial
conditions of a dynamical system are the data inputs and the resulting system state is the output of the computation.
By controlling how inputs are mapped to outputs, a specific function can be performed. Previously no clear
connection has been drawn between the structure of the dynamics and the computation. In this paper we
demonstrate how chaos computation can be explained, modeled, and even predicted in terms of the dynamics
of the underlying chaotic system, specifically the periodic orbit structure of the system. Knowing the dynamical
equations of the system, we compute the system’s periodic orbits as well as its stability in terms of its eigenvalues,
thereby demonstrating how, how well, and what the chaotic system can compute.

DOI: 10.1103/PhysRevE.84.036207 PACS number(s): 05.45.Gg, 05.10.−a, 02.70.Wz

I. INTRODUCTION

Chaos computing, a candidate for replacing conventional
computing technology, has been around for more than one
decade [1–20]. So far, research in the area has focused on
the observation and manipulation of computation within the
rich chaotic dynamics of highly nonlinear systems. In essence,
data inputs and control inputs are encoded as either the initial
conditions of a given chaotic system, the parameters of the
chaotic system, or the parameters of a chaos controller or
chaos synchronizer. The final state, or the stabilized state of
the chaotic system in the case of control or synchronization, is
the computation’s output. By observing how the chaotic system
maps inputs to outputs, an instruction set is generated that the
chaotic system can perform. Each function of the instruction
set is chosen by using appropriate control inputs [3–20].

Until now, to the best of our knowledge, no direct technique
has been introduced to determine the possible functions that
a given chaotic system can implement or the control inputs
that select these instructions. Rather, the evolution of chaotic
computing model under different inputs is observed and
monitored to determine its instruction set.

In this paper the relationship between the computational
capabilities and properties of a chaos-based computer and
the dynamical properties of the underlying chaotic system is
explained. Specifically we demonstrate the instructions that a
chaotic system can implement. We also examine the stability
of those instructions against noise; this stability is directly
determined from the periodic orbit structure and the dynamics
of the system.

Periodic orbit theory is an efficient approach to study a
chaotic dynamical system in terms of the fundamental orbits
of its attractor [21]. In this paper we explain, model, and study
chaos computing in terms of these basic periodic orbits.

Periodic orbits were introduced into the theory of dynamical
systems by Poincaré [22], and they have played a main
role in the mathematical work on dynamical systems ever
since [21–24]. Periodic orbits provide a detailed, invariant
characterization for deterministic low-dimensional dynamical
systems [21,24]. As a result, explaining chaos computing
in terms of these periodic orbits has profound theoretical
consequences. On the other hand, low-period periodic orbits

are experimentally extractable from time series [25]. This
contributes practical importance to our ability to explain chaos
computing in terms of basic periodic orbits; e.g., it enables us to
predict and determine the instruction set that a chaotic system
can implement and the stability of those instructions against
noise just by having access to a time series from the chaotic
system. This latter will be explicated in a future paper.

The organization of the paper is as follows: in Sec. II, we
present a very brief review of chaos computing; in Sec. III, we
demonstrate how to derive the computational functionality; in
Sec. IV, we show how to estimate the computational robustness
of the chaotic system from its dynamical equations; in Sec. V,
two examples are presented; and in Sec. VI, we present our
conclusions.

II. CHAOS COMPUTING

The main idea of chaos computing is to harness the library
of orbits and patterns inherent in chaotic systems to select out
logic operations and to utilize the sensitivity to initial condi-
tions of such systems to perform rapid switching (morphing)
between all of these logic functions [3–7]. These features are
sufficient to perform reconfigurable logic operations using the
chaotic system.

Data and control inputs to a chaotic system (either continu-
ous or discrete) may be encoded as either the initial conditions
of the chaotic system or the parameters of the system. Here we
focus on the former technique. After applying the inputs, the
system is allowed to evolve for a predefined time, after which
time this “final state” of the chaotic system is decoded as the
computation’s output.

To be more precise, consider the m digital data inputs
X1

Data,X
2
Data, . . . ,X

m
Data to a computing engine and the n digital

control inputs X1
Control,X

2
Control, . . . ,X

n
Control. Computation with

this system consists of three steps:
Step 1. Each set of data and control inputs is mapped to

a point on the unstable manifold of the chaotic system. This
point will be used as the initial condition for the chaotic system.
Let T map (encode) the m data and n control inputs onto the
space of the initial conditions. If L is a binary set {0,1}, then
L(n+m) represents the domain of T, which consists of all the
possible combinations of digital data and control inputs. We

036207-11539-3755/2011/84(3)/036207(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.036207


BEHNAM KIA, MARK L. SPANO, AND WILLIAM L. DITTO PHYSICAL REVIEW E 84, 036207 (2011)

let β be the unstable manifold of the chaotic system, Rs the
general state space of the chaotic system, and Y the output of
the encoding map on the unstable manifold. In this case the
general form of the encoding map T is as follows:

T : L(n+m) → β, β ⊂ Rs, L = {0,1},
Y = T

(
X1

Data,X
2
Data, . . . ,X

m
Data,X

1
Control, . . . ,X

n
Control

)
.

(1)

Step 2. Starting from the initial conditions produced by the
encoding map, the chaotic system evolves for a fixed time (or
for a fixed iteration number, if the chaotic system is discrete).

Step 3. After the evolution time, the system stops working
and its state at the end of the evolution time is sampled and
decoded to the outputs using a decoding map.

The encoding map maps different sets of the inputs to
different points on unstable manifold of the chaotic system
and these points are used as initial conditions for the chaotic
system. Since the system is on the unstable manifold, the orbits
of the chaotic system are very sensitive to the inputs and the
orbits dramatically change with just a one-bit change in the
control input. Thus control inputs can select a chaotic logic
function. To evaluate which digital function is selected with
a particular control input, one notes the association of this
control input with the logic function and then enumerates all
possible combinations of data inputs to construct the truth table
of the function.

By changing the control input and repeating this procedure
(of constructing the truth table of the digital function), one
may observe a second digital function different (with high
probability) from the first one. This is the meaning of the
reconfigurability of chaos computing. By using all possible
control inputs and finding the type of function that the chaotic
system implements, we obtain the full instruction set of the
chaotic system [4–7]. Different implementations have been
introduced for chaos computing [10–14]. Furthermore, a com-
pany named ChaoLogixTM has been founded to commercialize
chaos-based logic gates [15]. Also recently another method
for computation based on nonlinearity of a dynamical system
is introduced, which is named logical stochastic resonance
(LSR) [26–31].

In what follows we address the important remaining
questions: Why do we observe a specific form of logic function
from a chaotic dynamic system? What are all the possible logic
functions that we can obtain from any given chaotic system?
How can we connect computation to the dynamics of chaos
computing? In the next part these questions are addressed by
connecting the chaos computing model to the dynamics of the
chaotic system.

III. DYNAMICS AND COMPUTATION

Let x be the dynamic state of a chaotic system and let the
chaotic discrete evolution of the system be governed by the
dynamical equation

xp+1 = f (xp). (2)

The aim is to compute directly the spectrum of functions
that a given chaotic system can implement and the robust-
ness of these functions against noise from the dynamical
equation (2).

The description of a low-dimensional chaotic system in
terms of unstable periodic orbits, which is known as periodic
orbit theory, is a powerful tool for the analysis of chaotic
systems [21,23–25]. A chaotic system is composed of an
infinite number of unstable periodic orbits (UPOs) [32]. It
is known that a collection of short-period UPOs is enough
to obtain a very precise approximation of a sufficiently low-
dimensional chaotic system [21,23,24]. Here we approximate
our chaotic system with an appropriate collection of short
period orbits to estimate the computational functionality and
robustness of the chaotic system. As was mentioned in Sec. II,
during step 2 of computation, the chaotic system undergoes a
specific number of iterations, which we denote as p. We claim
that, in one-dimensional (1D) unimodal chaotic maps where
the critical point xc is mapped to unity and f (0) = f (1) =
0, for the p iterations that the chaotic system undergoes,
approximating the chaotic system by all of its UPOs of length
p + 1 is enough to determine the function set of the chaotic
system and to approximate the robustness of these functions
against noise. This method works for any other chaotic system
where all symbolic sequences are admissible and therefore
the topological entropy is ln(2). But in other chaotic systems
we might need to use slightly higher length UPOs to model
the system. This case will be studied in the Gaussian map
example.

In a unimodal map, where the height of the map is unity
and where f(0) = f(1) = 0, there are 2p different unstable
periodic points of order p, including repetition of periodic
points of lower order [33]. For example, there are 24 unstable
periodic points of period 4, which includes two unstable fixed
points and two unstable periodic points (one unstable periodic
orbit) of period 2. Thus in a unimodal map of height unity,
there are exactly 24 possible symbolic sequences of length
4, and for each symbolic sequence there is a neighborhood
of initial conditions where all the initial conditions have the
same four-symbol iterates. Therefore, there is a one-to-one
relationship between UPOs and the neighborhood of similarly
behaved initial conditions. The same argument is correct for
any other chaotic system that has no forbidden symbolic
sequence or, equivalently, whose topological entropy is ln(2)
[33]. Figure 1(a) shows how all periodic orbits of length 2
produce a polygonal approximation of the unimodal map. The
unimodal map has two period-1 unstable fixed points, which
are at the intersection of the map and the identity line, and two
period-2 unstable fixed points. Two repetitions of the period-1
unstable fixed points are considered as periodic orbits of length
two as well.

Because the behavior of the dynamical system in the
neighborhood of each of these points may be approximated
linearly, the unstable fixed point and nearby points lying on a
straight line are a good approximation of the dynamics near
that unstable fixed point. If we have sufficient numbers of
these linear approximations, we can approximate the map in
its entirety. Therefore, each fixed point neighborhood is one
of the four faces of the polygonal (piecewise) approximation
for the map, as illustrated by red (dark gray) tangent lines for
period-1 fixed points and yellow (light gray) tangent lines for
period-2 fixed points in Fig. 1(a).

As explained above, each face of the approximation is
composed of an unstable fixed point or periodic point, plus

036207-2



CHAOS COMPUTING IN TERMS OF PERIODIC ORBITS PHYSICAL REVIEW E 84, 036207 (2011)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(
x)

x(0,1,C0)(0,0,C0)
Xc

(1,1,C0)(1,0,C0)

10

11

01

00

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f(
x)

(0,0,C0) (0,1,C0)
Xc

011

010 110

111

101

(1,0,C0) (1,1,C0)

001

100000

(a) (b)

FIG. 1. (Color online) The figure on the left-hand side (right-hand side) shows how UPOs of length 2 (3) and the neighborhoods around
them can be used to determine the functionality of the chaotic system when it undergoes one (two) iteration(s). Consider the left-hand graph
and recall that we have chosen Xi = 0 if f (i)(x0) � xc and Xi = 1 if xc < f (i)(x0). Any set of initial conditions in the area denoted “00” will
return to that area, generating the symbolic itinerary 00. An initial condition in the region denoted “01” will start below xc, but the next iteration
will take it above xc, thus generating the symbolic itinerary 01. This is similar for the other regions. Note that some UPO neighborhoods are
not used to implement the function of interest here.

all close-by points. These points are those whose Jacobian
is qualitatively similar. Notice that projecting each face of
the polygonal approximation on the x axis results in a
neighborhood around each periodic point, where all the initial
conditions within this neighborhood symbolically (in the
symbolic dynamics sense) behave the same as the periodic
orbit. In unimodal maps the critical point xc can be used for
partitioning of state space and assigning symbolic itineraries
to initial conditions. As an example, the symbolic itinerary
for x = x0 is X0X1X2 · · ·Xk , where each succeeding digit
in the itinerary denotes the next iteration of the map. We
(arbitrarily) choose Xi = 0 if f (i)(x0) � xc and Xi = 1 if
xc < f (i)(x0). Therefore, each periodic point locally explains
the symbolic behavior of the initial conditions around itself
during a specific number of iterations of the map. More
specifically, UPOs of length p + 1 represent the symbolic
behavior of nearby orbits during the first p iterations of
the chaotic map. Furthermore, the measure of the robustness
against noise of each periodic orbit in terms of eigenvalues
is a good approximation for the robustness of orbits around
it until the pth iteration of the chaotic map. In Fig. 1(a)
on the x axis, the neighborhoods of initial conditions that
symbolically behave the same as the UPOs are denoted in
the same colors. As an example, the first neighborhood on
the x axis, which is illustrated by the red color, contains the
initial conditions that symbolically behave the same as the
UPO at 0 and all of which produce the symbolic itinerary 00
when they evolve under the chaotic map, i.e., for any initial
condition in this neighborhood, x0,x0 < xc and f (x0) < xc. In
Fig. 1(b) a different polygonal approximation for the chaotic
map using period-3 UPOs is illustrated. This approximation is
composed of two unstable fixed points and two new UPOs of
period-3, resulting in an eight-faced polygonal approximation.
Two faces of the polygonal approximation are delineated by
the two unstable fixed points of the chaotic system, and the
remaining six faces are related to two unstable periodic orbits
of period-3, each unstable fixed point of the periodic orbit
centering a face. In these two approximations, the boundaries
between neighborhoods on the x axis are the preimages of the
critical point xc.

As described above, chaos computation encodes the data
as well as the control inputs to form the initial conditions,
next evolving the chaotic system from these initial conditions
for some number of iterations, and lastly decoding the final
state to obtain the output of the computation. The technique
for obtaining the instruction set of a chaotic system for use in
computation is as follows: When the chaotic system is iterated
p times, approximate the chaotic system by its UPOs of length
p + 1. Determine in which UPO neighborhood the encoding
map places each initial condition and the characteristic
itinerary [e.g., (0,1) in Fig. 1(a)] for that neighborhood. The
last symbol of this itinerary represents the output of the
computation for those specific data and control inputs. By
applying this technique for all combinations of data and control
inputs, the instruction set of the chaotic system can be directly
obtained.

Consider as an example a one-humped map, as shown
in Fig. 1(a). This might be the logistic map or any other
similar map. Now let us consider that this chaotic system
undergoes one iteration and that, as explained above, we will
be using period-2 UPOs. If we denote the selected control
inputs from Eq. (1), X1

Control,X
2
Control, . . . ,X

n
Control, collectively

as C0, all four possible initial conditions produced by the
encoding map are illustrated on the x axis. Here, the aim is
to implement a two-input function; therefore, we have four
different combinations of initial conditions. In this example,
the encoding map encodes the data inputs (0,0) to the point
(0,0,C0), (0,1) to (0,1,C0), (1,0) to (1,0,C0), and (1,1) to
(1,1,C0). The initial condition (0,0,C0) falls in the first
neighborhood on the x axis, which produces 0 after one
iteration. Therefore, the output of the computation for the (0,0)
input is 0. The second and third initial conditions (0,1,C0) and
(1,0,C0) fall in the second neighborhood, which is represented
by the periodic orbit 01, and so the output of the computation
for these two inputs is 1. The last initial condition (1,1,C0)
settles in the third neighborhood, which corresponds to the 11
periodic orbit. Therefore, the output of the computation will be
1. We observe that the set of control inputs C0 thus constructs
an OR gate. This procedure can be repeated for other control
inputs to obtain the instruction set of any given chaotic system.

036207-3



BEHNAM KIA, MARK L. SPANO, AND WILLIAM L. DITTO PHYSICAL REVIEW E 84, 036207 (2011)

The instruction set of the chaotic system for other iteration
numbers can be obtained in a similar way. As a further
example, we show this for iteration number 2 in Fig. 1(b).
From the figure it is clear that the set of control inputs C0

constructs a function that produces the output 1 when the
inputs are (0,0) and (0,1), but produces the output 0 when
inputs are (1,0), and (1,1).

IV. ROBUSTNESS AGAINST NOISE

UPOs can also help us in approximating the robustness
against noise of the chaotic system while doing computation.
The robustness of each UPO against noise can be measured by
evaluating its Jacobian matrix. In our 1D case, the measure of
the robustness of each UPO is simply the product of the slopes
of all the tangent lines at each UPO. For example, for the
dynamical system xn+1 = f (xn), the robustness against noise
for a UPO of length p + 1, xUPO

0 ,xUPO
1 , . . . ,xUPO

p ,xUPO
p+1 =

xUPO
0 , is λ0 × λ1 × · · · × λp, where λi = f ′(xUPO

i ).
This robustness measure for each UPO can be used as an

approximation for the robustness of orbits that start in the
neighborhood of the UPO. To construct a specific function,
the chaotic system maps the initial conditions produced
by the encoding map to the final states. Therefore, to evaluate
the robustness of each function in doing computation, the
robustness for each orbit needs to be obtained, and the overall
robustness of the function is the robustness measure of the
least robust orbit, i.e., the worst case.

We assume the noise to the system is additive, xn+1 =
f (xn) + Dε(t), where D is the intensity of the noise and ε(t)
is the white noise. We also assume the noise is approximately
Gaussian white noise with zero mean and unit variance
ε(t) = N (0,1). Earlier we claimed that, when the chaotic
system iterates p times, approximating the chaotic system
by its UPOs of length p + 1 is sufficient to determine the
robustness against noise of the functions implemented by the
chaotic system. To demonstrate this, let the chaotic system f

iterate p times from a given initial condition x0, producing the
noisy orbit

x0 + ε(0),f (x0 + ε(0)) + ε(1),

f (f (x0 + ε(0)) + ε(1)) + ε(2), . . . ,

f (· · · (f (f (x0 + ε(0)) + ε(1)) · · ·) + ε(p). (3)

By use of the polygonal approximation by UPOs of length
p + 1, the orbit can be approximated by:

x0 + ε(0),f (x0) + Dλ1ε(0) + ε(1),
f 2(x0) + Dλ1λ2ε(0) + Dλ2ε(1) + ε(2), . . . ,
f p(x0) + Dλ1λ2 . . . λpε(0)
+Dλ2 . . . λpε(1) + · · · + ε(p), (4)

where λi = f ′(xUPO
i ) and xUPO

i is an iterate of the UPO into
whose neighborhood f (i)(x0) places the iterate of the initial
condition x0.

Since ε(t) is a normal Gaussian random variable, ε(t) =
N (0,1), the deviation of the final state in the noisy case
from the original final state will be a Gaussian random

process:

Dλ1λ2 · · · λpε(0) + Dλ2 · · · λpε(1) + · · · + ε(p)

= N
(
0,D2λ2

1λ
2
2λ

2
3 · · · λ2

n + D2λ2
2λ

2
3 · · · λ2

n

+ · · · + D2λ2
n + D2

)
. (5)

Let y be the minimum distance of the noiseless final state
f (p)(x0) from the boundaries of the neighborhood in which it
resides. If the deviation introduced by the noise exceeds this
value, the orbit will enter another neighborhood, and it may
result in an incorrect (undesired) output symbol. Therefore,
the output symbol is robust to noise only if the noise cannot
move the final state out of the neighborhood where it settles. If
z is a Gaussian random variable, z = N (0,σ ), the probabilities
that z is less than σ , 2σ , and 3σ are 84.2%, 97.8%, and 99.9%,
respectively. We observe that the probability of 3σ < z is
just 0.1%. This fact suggests that, if 3σ < y, where σ is the
standard deviation of ε, then the outcome will be robust against
this noise 99.9% of the time. Since y is the minimum distance
of final state f (p)(x0) from the boundary of the neighborhood,
it can be easily computed. Therefore, the noise intensity should
be limited by

D<Dmax ≡ y

3×
√

λ2
1λ

2
2λ

2
3 · · · λ2

n + λ2
2λ

2
3 · · · λ2

n+ · · · + λ2
n+1

.

(6)

Therefore, the symbol of the final state is robust against
noise when the signal-to-noise ratio (SNR) is greater than
20 log Arms

Dmax
, where Arms is the root mean square of f (x) over

all x. Notice that because of the ergodicity of the chaotic map f ,
Arms does not depend on the selection of the initial condition.

Here we derived a measure of the robustness of an orbit
against noise. To compute a robustness measure for a function,
we apply the procedure to all orbits produced by the encoding
map and set the lowest allowed SNR (highest D), as determined
over all the orbits.

V. EXAMPLES

A. Logistic map

As an example, consider the functionality of the logistic
map for doing computation and approximate the robustness
of the resulting functions against noise. In this example we
assume that an additive noise perturbs the dynamics as follows:

xn+1 = 4xn(1 − xn) + Dε(t). (7)

A simple digital-to-analog converter with ten binary digital
inputs will be used as the encoding map. Two inputs are
allocated for data, which enables us to construct two-input
functions, and the eight remaining inputs are used as controls
to reconfigure the chaotic system by morphing between
different functions. As the first step of the three-step computing
algorithm, the two binary data inputs and eight binary control
inputs are each encoded to either 0 or 1, yielding a combined
initial value in [0,1), as follows:

x0 = (0.I1I2C1C2 · · · C8)base 2, (8)

where I1,I2 are the two binary data inputs, and C1,C2, . . . ,C8

are the eight control inputs.

036207-4



CHAOS COMPUTING IN TERMS OF PERIODIC ORBITS PHYSICAL REVIEW E 84, 036207 (2011)

TABLE I. Instruction set of the logistic map for different iteration numbers.

p Instruction set

1 {(6,129,39.39 dB,39.9 dB), (7,255,26.74 dB,26.11 dB), (14,0,26.67 dB,26.31 dB)}
2 {(5,255,32.95 dB,34.2 dB), (9,123,30.73 dB,31.8 dB), (10,0,35.48 dB,33.7 dB),

(11,52,42.72 dB,48.79 dB), (13,207,44.89 dB,46.3998 dB)}
3 {(2,89,50.46 dB,57.09 dB), (3,53,38.59 dB,38.79 dB), (4,165,52.28 dB,52.59 dB),

(5,255,45.29 dB,46.89 dB), (6133,36.32 dB,42.2 dB), (10,0,47.52 dB,45.79 dB),
(11,20,46.80 dB,47.79 dB), (12,211,37.62 dB,42 dB) , (13,233,45.92 dB,51.89 dB)}

4 {(1,228,50.83 dB,50.39 dB), (3,200,52.73 dB,58.89 dB), (5,93,40.41 dB,45.19 dB),
(6,126,44.13 dB,46.79 dB), (7,114,49.45 dB,59.49 dB), (8,24,49.45 dB,59.89 dB),
(9,20,48.56 dB,59.89 dB), (10,17,40.40 dB,42.59 dB), (11,8,47.01 dB,51.29 dB),
(12,59,50.89 dB,62.2 dB), (13,62,49.98 dB,61.89 dB), (14,144,53.41 dB,54.89 dB)}

5 {(1,177,54.97 dB,59.69 dB), (2,98,50.07 dB,57.39 dB), (3,106,47.72 dB,51.89 dB),
(4,43,50.83 dB,53.09 dB), (5,170,57.96 dB,63.39 dB), (6,35,54.85 dB,60.99 dB),
(7,29,62.30 dB,67.79 dB), (8,80,54.69 dB,57.79 dB), (10,85,59.64 dB,64.49 dB),

(11,195,47.40 dB,48.69 dB), (12,146,48.20 dB,47.79 dB), (13,58,47.30 dB,48.19 dB),
(14,228,63.97 dB,70.39 dB), (15,128,55.34 dB,58.19 dB)}

6 {(0,110,60.66 dB,62.69 dB), (1,106,58.20 dB,58.99 dB), (2,232,61.11 dB,62.59 dB),
(3,140,58.56 dB,69.69 dB), (4,66,59.67 dB,71.59 dB), (5,68,55.76 dB,62.19 dB),
(6,35,66.87 dB,69.19 dB), (7,173,55.50 dB,57.89 dB), (8,56,56.42 dB,63.49 dB),
(9,53,53.76 dB,61.29 dB), (10,92,57.01 dB,63.09 dB), (11,46,55.98 dB,60.39 dB),

(12,118,60.55 dB,65.19 dB), (13,210,59.97 dB,60.49 dB), (14,123,55.1 dB,64.69 dB),
(15,126,54.21 dB,62.39 dB)}

At the second step of the algorithm, we allow the logistic
map to undergo different numbers of iterations in order
to determine the instruction set for each of those different
numbers of iterations.

As the last stage of the computing model, the final state of
the system is decoded to obtain the output of the computation
as follows:

output =
{

0 if x � 0.5,

1 if x > 0.5,
(9)

where x has obviously been converted to base 10. We have com-
puted period 2, 3, 4, 5, 6, and 7 UPOs for the logistic map. Then
we have found the aforementioned neighborhoods around
these UPOs and have computed the robustness of these UPOs
against noise. Then for each iteration, e.g., p−1, we approxi-
mate and model the chaotic logistic map with period p UPOs.
By use of this model we directly compute the instruction set
of the chaotic logistic map when it undergoes p iterations. The
results are listed in Table I for different values of p, 1 � p � 6.

In Table I each instruction set consists of 4-tuples, the
first element being the type of function that the logistic map
constructs. The format that we use for identifying each of
these functions is as follows: Table II presents the truth table
of a sample function. We denote this function by a function

TABLE II. Truth table of a typical two input, one output function.

Data inputs Output

00 O0

01 O1

10 O2

11 O3

number defined as 23O3 + 22O2 + 21O1 + 20O0. Based on
this definition, a chaotic system would present a two-input
AND gate (with outputs 1000) as function number 8 and a
two-input OR gate (with outputs 1110) as function number 14.

The second element of the 4-tuple is the control inputs
that construct this sample function. There are eight binary
digital control inputs to the system, so the control inputs
are numbered from 0 to 255. [Note that this is equivalent
to expressing the control inputs as in Eq. (8), setting the
data inputs to 0, and then multiplying the resulting number
by 210 or 1024.] To evaluate the accuracy of our method in
obtaining the functionality obtainable from a chaotic map, we
have applied the computed control inputs to the logistic map,
and in practice we have observed computationally that they
construct the same functions that were predicted based on the
periodic orbit approximation.

The third element of each 4-tuple is the computed SNR
using the UPO approximation. To examine the precision of
these SNRs, we experimentally compute the SNR (called
SNRe) for all functions and report it as the fourth element
of each 4-tuple. To compute these experimental SNRs, we
statistically compute the probabilities that the desired func-
tions are constructed when the noise intensity is changed.
For this example, we choose the noise intensity such that
a given threshold value for noise intensity results in 99.9%
success in constructing the desired function. We then use
this same noise intensity to compute SNRp, based on the
formula 20 log Arms

DThreshold
. In order to facilitate understanding

of the last two elements of the 4-tuples, the estimated SNR
and the experimental SNRs, we compute the statistical mean
and variance of the differences between these two SNRs,
defined as r = SNRp − SNRe, for different iteration numbers,
p−1. As explained above, SNRp is the predicted SNR based

036207-5



BEHNAM KIA, MARK L. SPANO, AND WILLIAM L. DITTO PHYSICAL REVIEW E 84, 036207 (2011)

1 2 3 4 5 6
0

1

2

3

4

5

6

7

Iteration

M
ea

n

1 2 3 4 5 6
0

10

20

30

40

50

60

Iteration

V
ar

ia
n

ce

(a) (b)

FIG. 2. (Color online) Statistical measures, mean and variance, of the error in estimating robustness of different instructions against noise
are reported. The error is the difference between the estimated SNR and the experimental SNR for each instruction. The mean of these errors
at each iteration is reported in the left-hand panel, and the variance of the error at each iteration is presented in the right-hand panel. The solid
lines denote cases where, for (p−1) iterations of the map, period p UPOs are used for modeling. Dashed lines denote the means and variances
when period-7 UPOs are used for predicting the SNR. Dotted lines show the means and variances of the difference r, where a direct slope
technique is used.

on UPOs of order p and SNRe is the experimental SNR.
The results are plotted as solid lines in Fig. 2. The overall
trend is that with increasing iteration number, the mean and
variance of the error signal grow. The predicted SNRs are
not very accurate, since we approximate a large portion of
the map f or the iterated map f (p−1) with a straight line.
To obtain more accurate SNR predictions, we need more
precise modeling and approximations. In this example we have
computed all the UPOs up to period-7, so an alternative, more
precise (and no additional cost) approximation would use these
already computed period-7 UPOs for a better calculation of
the SNRs for lower iteration numbers as well. The mean and
variance of the error r = SNR7 − SNRe, where SNR7 is the
predicted SNR based on UPOs of order 7, is computed for
different iteration numbers. The results are presented in Fig. 2
by dotted-dashed lines. We observe that when the iteration
number is less than 6, these predicted SNRs are considerably
more precise than the previously predicted SNRs, because of
more accurate modeling and approximations. Based on Fig. 2,
we observe that modeling the chaotic orbits by their nearby
UPOs results in a very good approximation of the symbolic
behavior of the orbits during limited iteration of the chaotic
map. This observation follows the main claim of periodic orbit
theory: A collection of short-period UPOs is enough to obtain
a very precise approximation of a sufficiently low-dimensional
chaotic system [21].

Finally, to examine the accuracy of the approximated SNRs
by use of UPOs, we approximate SNRs directly based on
the slopes of the orbits, starting from the chosen initial
conditions. Thus, instead of finding a nearby UPO and using its
robustness measure, we compute the slope of the main orbit
at various points on the orbit and use these slopes directly
in the formula Dmax = y

3×
√

λ2
1λ

2
2λ

2
3···λ2

n+λ2
2λ

2
3···λ2

n+···+λ2
n+1

, where

λi = f (i)′(x0) and x0 is the initial condition produced by the

encoding map. The mean and variance of the error is plotted
in Fig. 2 by dashed lines. We see that using UPOs of order 7
for predicting SNRs is as precise as using direct slopes, when
the iteration number is less than 6.

B. Gaussian map

As a second example, we determine the functionality
of the Gaussian map for doing computations and estimate
the robustness of the resulting functions against noise. The
Gaussian map is studied in detail in Ref. [34]. Again, in
this example we assume that an additive noise perturbs the
dynamics as follows:

xn+1 = e−bxn + c + Dε(t). (10)

The phenomenon of chaos is observed in this map at some
parameter values [34]. In this paper we set b = 6.5 and
c = −0.54 in order to make the Gaussian map chaotic. The
chaotic attractor of the Gaussian map lies in [−0.28,0.5].
Similar to the logistic map example, a simple digital-to-analog
converter with ten binary digital inputs, two inputs for data
and eight inputs for control, will be used as the encoding
map. As the first step of the three-step computing method, the
combination of two binary data inputs and eight binary control
inputs are, with an initial value in [−0.28,0.5), as follows:

X0 = −0.28 + 0.78(0.I1I2C1C2 · · · C8)base 2, (11)

where I1, I2 are the two binary data inputs, and C1,C2, . . . ,C8

are the eight control inputs. Notice that the coefficient value,
−0.28, and the additive value, 0.78, are inserted to insure that
the initial condition is situated inside the attractor.

At the second step of the algorithm, we let the Gaussian map
undergo different numbers of iterations in order to determine
the instruction set at each iteration number.

036207-6



CHAOS COMPUTING IN TERMS OF PERIODIC ORBITS PHYSICAL REVIEW E 84, 036207 (2011)

TABLE III. Instruction set of the Gaussian map for different iteration numbers.

p Instruction set

1 {(7,133,18.90 dB,19.7 dB), (15,0,45.79 dB,45.89 dB)}
2 {(9,0,23.62 dB,25.50 dB), (12,192,33.15 dB,34.20 dB), (13,118,28.42 dB,28.80 dB)}
3 {(6,0,26.47 dB,26.40 dB), (7,88,36.24 dB,37.2 dB), (11,246,25.50 dB,25.80 dB),

(15,147,36.4 dB,36.5 dB)}
4 {(6,191,34.45 dB,35.5 dB), (7,246,40.37 dB,40.89 dB), (10,118,55.71 dB,56.69 dB),

(11,88,29.73 dB,33.60 dB), (14,138,35.51 dB,36.4 dB), (15,0,51.85 dB,51.79 dB)}
5 {(4,89,37.62 dB,39.89 dB), (5,106,36.81 dB,38.6 dB), (9,187,41.931B,42.29 dB),

(12,47,35.42 dB,43.19 dB), (13,30,40.96 dB,40.39 dB), (15,0,36.88 dB,37.3 dB)}
6 {(2,6,45.40 dB,44.99 dB), (3,22,45.96 dB,48.69 dB), (7,45,38.81 dB,49.39 dB),

(8,244,44.09 dB,47.19 dB), (9,255,62.52 dB,62.39 dB), (10,223,41.67 dB,51.49 dB),
(14,213,47.67 dB,48.79 dB), (15,79,39.77 dB,36.1 dB)}

As the third and last stage of the computing model, the final
state of the Gaussian map is decoded to obtain the output

output =
{

0 if x � 0,

1 if x > 0.
(12)

There is an important difference between the logistic map
and the Gaussian map examples. When the bifurcation value of
the logistic map is 4, for any symbolic sequence X0,X1,. . .,Xp,
there is a unique UPO of length p + 1 that has the same
symbolic itinerary. This one-to-one relationship between any
possible symbolic sequence and a unique UPO describes any
other one-humped map, where the attractor is between [0,b]
and the critical point xc is mapped to b [33]. Therefore,
the collection of all UPOs of length p + 1 can model the
behavior of the chaotic map over the next p iterations. But the
Gaussian map does not have this property and there are some
neighborhoods of initial conditions with admissible symbolic
itineraries of length p for which there is no UPO of length p + 1
with the same symbolic itinerary. But we know that, since the
UPOs are dense over the chaotic attractor, there is therefore
at least one UPO that comes inside the neighborhood and
which can model this portion of the attractor during the next p
iterations. Therefore, we can easily overcome the problem by
using higher-order UPOs, such as p + 2 or p + 3, to model the
next p iterations of the map. All we need to do is to compute
the preimages of the critical map to find the neighborhood of
initial conditions that symbolically behave the same during
limited iterations of the map. Then we compute the UPOs
until we can find at least one UPO in any neighborhood.
This collection of UPOs can be used to model the chaotic
map over a limited number of iterations. In the Gaussian map
example, we observe that UPOs of length 8 are enough to
model the attractor during any iteration up to six iterations.
By use of this model we directly compute the instruction set
of the chaotic logistic map when it undergoes p iterations.
The results are listed in Table III for different values of p,
1 � p � 6. The format of data in Table III is the same as the
format in Table I. We observe that, in a noise-free simulation,
this technique determines the instruction set of the chaotic

system precisely. Also simulation results illustrate that after
modeling the Gaussian map by period-8 UPOs, the robustness
of the instructions against noise are predicted with very high
precision.

VI. CONCLUSIONS

In this paper we have demonstrated how chaotic computa-
tion could be explained, modeled, and predicted in terms of the
dynamics of the underlying chaotic systems. Unstable periodic
orbits of the chaotic system were used first to model it and then
to approximate it. These periodic orbits and the polygonal
approximations based on them can be used for obtaining the
computational functionality (the instruction set) of the system.
In this way we have elucidated the deep connection between
the structure of the system dynamics and the system’s ability
to perform computation. This connection intimately depends
on the periodic orbit structure of the system.

In a noise-free simulation this technique determined pre-
cisely the instruction set of the chaotic system. Then, using
UPOs, we examined the robustness against noise of the chaotic
system while performing computations. Simulation results
illustrate that, by using enough UPOs to model the chaotic
system, the predicted SNRs are in close agreement with
the experimental SNRs. More specifically, by modeling the
logistic attractor with period-7 UPOs, and a Gaussian map by
period-8 UPOs, the robustness of the instruction set against
noise was predicted with very high precision.

In sum, chaotic dynamical systems provide a fertile base for
the construction of computing devices. The intrinsic complex-
ity of a chaotic system, along with its intrinsic controllability
(due to its sensitivity to perturbations), allows one to envision a
computing device that is simultaneously compact and flexible,
capable of highly specialized computation but generic in its
ability to morph into different devices as needed.

ACKNOWLEDGMENTS

We gratefully acknowledge support from Dr. Michael
Shlesinger of the Office of Naval Research under Grants No.
N00014-09-1-0963 (WLD and BK) and No. N00014-11-1-
0586 (MLS and BK).

036207-7



BEHNAM KIA, MARK L. SPANO, AND WILLIAM L. DITTO PHYSICAL REVIEW E 84, 036207 (2011)

[1] S. Sinha and W. L. Ditto, Phys. Rev. Lett. 81, 2156 (1998).
[2] S. Sinha and W. L. Ditto, Phys. Rev. E 60, 363 (1999).
[3] S. Sinha, T. Munakata, and W. L. Ditto, Phys. Rev. E 65, 036216

(2002).
[4] M.R. Jahed-Motlagh, B. Kia, W. L. Ditto, and S. Sinha, Int. J.

Bifurcation Chaos Appl. Sci. Eng. 17, 1955 (2007).
[5] K. Murali and S. Sinha, Phys. Rev. E 75, 025201

(2007).
[6] A. Miliotis, K. Murali, S. Sinha, W. L. Ditto, and M. L. Spano,

Chaos, Solitons Fractals 30, 809 (2009).
[7] K. Murali, A. Miliotis, W. L. Ditto, and S. Sinha, Phys. Lett. A

373, 1346 (2009).
[8] D. Cafagna and G. Grassi, Int. J. Bifurcation Chaos Appl. Sci.

Eng. 16, 1521 (2006).
[9] T. Munakata, S. Sinha, and W. L. Ditto, IEEE Trans. Circuit

Syst. 49, 1629 (2002).
[10] K. Murali, S. Sinha, and W. L. Ditto, Phys. Rev. E 68, 016205

(2003).
[11] K. Murali, S. Sinha, and W. L. Ditto, Int. J. Bifurcation Chaos

Appl. Sci. Eng. 13, 1 (2003).
[12] K. Murali, S. Sinha, and W. L. Ditto, Pramana J. Phys. 64, 433

(2005).
[13] H. R. Pourshaghaghi, B. Kia, W. Ditto, and M. R. Jahed-

Motlagh, Chaos, Solitons Fractals 41, 233 (2008).
[14] H. R. Pourshaghaghi, R. Ahmadi, M.R. Jahed-Motlagh, and B.

Kia, Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, 715 (2010).
[15] [http://www.chaologix.com]
[16] W. L. Ditto and S. Sinha, Philos. Trans. R. Soc. A 364, 2483

(2006).
[17] W. L. Ditto, K. Murali, and S. Sinha, Philos. Trans. R. Soc. A

366, 653 (2008).

[18] A. Miliotis, K. Murali, S. Sinha, W. L. Ditto, and M. L. Spano,
Chaos, Solitons Fractals 42, 809 (2009).

[19] J. P. Crutchfield, W. L. Ditto, and S. Sinha, Chaos 20, 037101
(2010).

[20] W. L. Ditto, A. Miliotis, K. Murali, S. Sinha, and M. Spano,
Chaos 20, 037107 (2010).

[21] P. Cvitanovic, Phys. Rev. Lett. 61, 2729 (1988).
[22] P. Holmes, Phys. Rep. 193, 137 (1990).
[23] P. Cvitanovic, Physica D 51, 138 (1991).
[24] R. Artuso, E. Aurell, and P. Cvitanovic, Nonlinearity 3, 325

(1990).
[25] D. Auerbach, P. Cvitanović, J.-P. Eckamnn, G. H. Gunaratne,

and I. Procaccia, Phys. Rev. Lett. 58, 2387 (1987).
[26] K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, Phys. Rev.

Lett. 102, 104101 (2009).
[27] K. Murali, I. Raja Mohamed, S. Sinha, W. L. Ditto, and A. R.

Bulsara, Appl. Phys. Lett. 95, 194102 (2009).
[28] D. N. Guerra, A. R. Bulsara, W. L. Ditto, S. Sinha, K. Murali,

and P. Mohanty, Nano Lett. 10, 1168 (2010).
[29] A. R. Bulsara, A. Dari, W. L. Ditto, K. Murali, and S. Sinha,

Chem. Phys. 375, 424 (2010).
[30] A. Dari, B. Kia, A. R. Bulsara, and W. Ditto, Europhys. Lett. 93,

18001 (2011).
[31] H. Ando, S. Sinha, R. Storni, and K. Aihara, Europhys. Lett. 93,

50001 (2011).
[32] R. Badii, E. Brun, M. Finardi, L. Flepp, R. Holzner, J.

Parisi, C. Reyl, and J. Simonet, Rev. Mod. Phys. 66, 1389
(1994).

[33] R. Gilmore, The Topology of Chaos: Alice in Stretch and Squeeze
Land (Wiley, Hoboken, NJ, 2002).

[34] V. Patidar, Electron. J.Theor. Physi. 3, 29 (2006).

036207-8

http://dx.doi.org/10.1103/PhysRevLett.81.2156
http://dx.doi.org/10.1103/PhysRevE.60.363
http://dx.doi.org/10.1103/PhysRevE.65.036216
http://dx.doi.org/10.1103/PhysRevE.65.036216
http://dx.doi.org/10.1142/S0218127407018142
http://dx.doi.org/10.1142/S0218127407018142
http://dx.doi.org/10.1103/PhysRevE.75.025201
http://dx.doi.org/10.1103/PhysRevE.75.025201
http://dx.doi.org/10.1016/j.chaos.2009.02.010
http://dx.doi.org/10.1016/j.physleta.2009.02.026
http://dx.doi.org/10.1016/j.physleta.2009.02.026
http://dx.doi.org/10.1142/S0218127406015465
http://dx.doi.org/10.1142/S0218127406015465
http://dx.doi.org/10.1109/TCSI.2002.804551
http://dx.doi.org/10.1109/TCSI.2002.804551
http://dx.doi.org/10.1103/PhysRevE.68.016205
http://dx.doi.org/10.1103/PhysRevE.68.016205
http://dx.doi.org/10.1142/S0218127403006534
http://dx.doi.org/10.1142/S0218127403006534
http://dx.doi.org/10.1007/BF02704569
http://dx.doi.org/10.1007/BF02704569
http://dx.doi.org/10.1016/j.chaos.2007.11.030
http://dx.doi.org/10.1142/S0218127410026009
http://dx.doi.org/10.1098/rsta.2006.1836
http://dx.doi.org/10.1098/rsta.2006.1836
http://dx.doi.org/10.1098/rsta.2007.2116
http://dx.doi.org/10.1098/rsta.2007.2116
http://dx.doi.org/10.1016/j.chaos.2009.02.010
http://dx.doi.org/10.1063/1.3492712
http://dx.doi.org/10.1063/1.3492712
http://dx.doi.org/10.1063/1.3489889
http://dx.doi.org/10.1103/PhysRevLett.61.2729
http://dx.doi.org/10.1016/0370-1573(90)90012-Q
http://dx.doi.org/10.1016/0167-2789(91)90227-Z
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://dx.doi.org/10.1103/PhysRevLett.58.2387
http://dx.doi.org/10.1103/PhysRevLett.102.104101
http://dx.doi.org/10.1103/PhysRevLett.102.104101
http://dx.doi.org/10.1063/1.3245318
http://dx.doi.org/10.1021/nl9034175
http://dx.doi.org/10.1016/j.chemphys.2010.06.015
http://dx.doi.org/10.1209/0295-5075/93/18001
http://dx.doi.org/10.1209/0295-5075/93/18001
http://dx.doi.org/10.1209/0295-5075/93/50001
http://dx.doi.org/10.1209/0295-5075/93/50001
http://dx.doi.org/10.1103/RevModPhys.66.1389
http://dx.doi.org/10.1103/RevModPhys.66.1389

