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Deterministic fractals: Extracting additional information from small-angle scattering data
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The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space.
In the fractal region, the curve I (q)qD is found to be log-periodic with good accuracy, and the period is equal
to the scaling factor of the fractal. Here, D and I (q) are the fractal dimension and the scattering intensity,
respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that
the log-periodicity of I (q)qD in the momentum space is related to the log-periodicity of the quantity g(r)r3−D in
the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering
intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that
the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain
quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal
with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above
findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension
and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of
structural units from which the fractal is composed.
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I. INTRODUCTION

Modern experimental techniques in materials science for
preparing hierarchically organized systems at nanoscales
and microscales open up new possibilities in controlling
their functions and properties. Considerable scientific and
technological efforts have been directed to the development
of such systems [1–11]. The hierarchical structures, such as
fractals [12] or biological objects [13], manifest themselves
in the electromagnetic [14], statistical [15], dynamical [16],
or optical [17,18] properties, and therefore one of the basic
challenges is to understand the correlations between these
properties and the microstructure of the materials [19,20].

Experimentally, the microstructure of the materials can be
determined by means of scattering techniques, which yield
the elastic cross section per unit solid angle as a function of
momentum transfer. The cross section, usually normalized per
unit volume of a sample, is called the scattering intensity:
I (q) ≡ (1/V ′)dσ/d�. The scattering angle 2ϑ is related to
the momentum transfer h̄q by the equation q = 4πλ−1 sin ϑ ,
where λ is the radiation wavelength. The typical range in which
the materials exhibit a hierarchical structure is within d = 1–
1000 nm (see, e.g., Ref. [21]). The structural characteristics in
this range are probed well when the scattering wave vector lies
within q � 2π/d = 10−3–1 Å

−1
, which corresponds to small-

angle X-ray or neutron scattering (SAXS/SANS) [22–24].
This important investigation technique has become a powerful
tool for studying the microstructure of a fractal (see reviews
[25–28] and references therein).

At present, various deterministic fractals can be created
artificially [4–6,8,10] due to rapid progress in nanotech-
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nologies. This makes it relevant and promising to study
the connections between their scattering properties and their
microstructure. Deterministic fractals frequently allow an
analytical description of small-angle scattering (SAS) and
thus give us “exactly solvable models,” which are very useful
for understanding the scattering properties of fractals. By
choosing parameters of deterministic fractals at random (say,
by introducing polydispersity), one can understand the basic
properties of random fractals as well [29,30].

An essential feature of a fractal is the Hausdorff (fractal)
dimension. While it can be rigorously defined (see Appendix ),
it is convenient in practice to adopt a simple descriptive
definition of the dimension D [12,31–33]: N ∝ (1/a)D for
a → 0, where N is the minimum number of open sets of di-
ameter a needed to cover a fractal. Nonrandom (deterministic)
fractals are generated by deterministic processes, in particular
by iterative rules. This implies the presence of an initial set
(initiator) and a generator (iterative operation). The number of
iterative operations is called fractal iteration. Let us consider
a finite iteration of a mass fractal, consisting of simple units,
say, balls of radius a. Let the fractal size be l. If N is the total
number of balls, then the fractal dimension D is defined by the
asymptotics

N ∝ (l/a)D (1)

for a large number of iterations, which assumes a → 0
(from the physical point of view, a � l). One can use
this definition for a given finite iteration (a = const) in
order to estimate the number of balls enclosed by an
imaginary sphere of radius r with a ball in the cen-
ter. Equation (1) yields N (r) ∝ (r/a)D ∝ rD . This esti-
mation is valid within the fractal region lmin � r � l,
in which fractal properties can be observed experimentally.
Here lmin is the minimal distance between the ball centers.

A main indicator of the fractal structure is the power-law
dependence between the small-angle scattering intensity and
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the absolute value of scattering vector [34–37]. For a mass
fractal, it takes the form

I (q) ∝ q−D. (2)

The fractal region in real space implies the fractal region in
reciprocal space,

1/l � q � 1/lmin, (3)

for which Eq. (2) is applicable. Equation (2) is quite general,
because the fractal dimension essentially regulates the spatial
correlations between fractal units. Indeed, the scattering
intensity is proportional to the Fourier transform of the pair
distribution function g(r), describing the spatial correlations
between particles inside a fractal (see Sec. VI A below). In
more detail, once a particle lies in the coordinate origin, then
the number of other particles in the volume d3r near the radius
vector r is equal to dN = ng(r)d3r , where n is the average
particle density. If the pair distribution function is radially
symmetric, we obtain N (r) = ∫ r

0 ng(r ′)4πr ′2dr ′ for the total
number of particles in the sphere of radius r . On the other
hand, the fractal dimension implies N (r) ∝ rD , as discussed
above. It follows that

g(r) ∝ rD−3 (4)

for r � l [38,39], which leads to Eq. (2) in accordance
with Erdélyi’s theorem for asymptotic expansion of Fourier
integrals [40].

Thus, three parameters can be extracted from experimental
fractal scattering intensities: the exponent and the edges of the
fractal region in the q space, which appear as “knees” in the
scattering line on a logarithmic scale. Other parameters are
not usually obtained from SAS curves. For random fractals,
it is rather difficult to extract more information from the
scattering, because a fine structure of particle correlations
is usually smeared due to the randomness. One can expect
that deterministic fractals, being more ordered, allow us to
obtain additional information from the scattering data. In
this paper, we suggest a scheme for estimating the iteration
number, the scaling factor, and the total number of struc-
tural units in deterministic mass fractals from the scattering
curves.

The present analysis of deterministic fractals is based on
the method of calculating the scattering amplitude, developed
in Refs. [18,30,41,42] (for a generalization, see Ref. [43]).
Recently, analytical calculations of SAS intensity from the
three-dimensional (3D) triadic Cantor and Vicsek [44] sets
were reported in Ref. [45]. In the previous paper [46],
the generalized 3D Cantor set was suggested, whose di-
mension can vary from 0 to 3 by means of the scaling
factor. If the SAS is considered from monodispersive sets,
which are randomly oriented and placed, then the scattering
intensities represent minima and maxima superimposed on
a power-law decay, with the exponent equal to the fractal
dimension of a mass fractal. This dependence of the intensity
on momentum is called the generalized power-law decay.
As was shown [42,45,46], the minima and maxima are
damped with increasing polydispersity of the fractal sets.
The physical reasons for such behavior are quite clear: the
fractal dimension dictates the power law (4) for the particle

correlations only on the average. In this paper, we show that
in a deterministic fractal, the pair distribution function g(r)
also obeys the generalized power law [see Eq. (55) below],
that is, it exhibits minima and maxima on the power-law
decay (4). This structure appears due to clusterization and
intimately relates to the fractal scaling factor. Polydispersity
smears the spatial distribution between fractal units. Strongly
developed polydispersity thus leads to the simple power-
law behavior (2) and (4). In this paper, we construct and
consider the generalized self-similar Vicsek fractals (GSSVF)
as an example in order to elucidate the above scattering
properties.

The paper is organized as follows. In Sec. II, we emphasize
some important issues concerning SAS. Section III describes
the construction of GSSVF with controllable dimension,
governed by the scaling factor. In the subsequent section,
we derive analytically the scattering amplitude for GSSVF
and calculate its scattering properties: the intensity, structure
factor, and radius of gyration. The influence of polydispersity
on the fractal scattering properties is considered in Sec. V.
The spatial correlation functions of the fractal are obtained
and interpreted in Sec. VI. In Sec. VII, we discuss the
obtained results and promising prospects of the developed
analysis.

II. GENERAL REMARKS ON SMALL-ANGLE
SCATTERING

Let us consider the SAS scattering (neutron, X-ray, light,
or electron diffraction) on a sample consisting of microscopic
objects with the scattering length bj . If the multiscattering
processes are neglected (which is a very good approxi-
mation usually), then the differential cross section of the
sample is given by [23] dσ/d� = |A(q)|2, where A(q) ≡∫
V ′ ρs(r)eiq·rd3r is the total scattering amplitude and V ′ is the

total volume irradiated by the incident beam. The scattering
length density can be defined with the help of Dirac’s δ function
as ρs(r) = ∑

j bj δ(r − rj ), where rj are the microscopic
object positions.

In this paper, we restrict ourselves to two-phase systems,
which are composed of homogeneous units of “mass” density
ρm. The units are immersed into a solid matrix of “pore”
density ρp. A constant shift of the scattering length density
in the overall sample is important only for small values of
wave vector q � 2π/(V ′)1/3, which are usually beyond the
resolution of the scattering device. Therefore, by subtracting
the “pore” density, we can consider the system as if the units
were “frozen” in a vacuum and had the density 	ρ = ρm − ρp.
The density 	ρ is called the scattering contrast.

In practice, it is convenient to represent the total scattering
amplitude as a sum of amplitudes of rigid objects. For instance,
considering the scattering from stiff fractals, whose spatial
positions and orientations are uncorrelated, one can choose
them as the objects. Then the scattering intensity (that is, the
differential cross section per unit volume of the sample) is
given by

I (q) = n|	ρ|2V 2 〈|F (q)|2〉, (5)
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where n is the fractal concentration, V is the volume of each
fractal, and F (q) is the normalized form factor,

F (q) = 1

V

∫
V

e−iq·rdr, (6)

obeying the condition F (0) = 1. Here, the brackets 〈· · · 〉
stand for the ensemble averaging over all orientations of the
fractals. If the probability of any orientation is the same, then
it can be calculated by averaging over all directions n of the
momentum transfer q = qn, that is, by integrating over the
solid angle in the spherical coordinates qx = q cos ϕ sin ϑ ,
qy = q sin ϕ sin ϑ , and qz = q cos ϑ ,

〈f (qx,qy,qz)〉 = 1

4π

∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕ f (q,ϑ,ϕ). (7)

The intensity in zero angle results directly from Eq. (5),

I (0) = n|	ρ|2V 2. (8)

Given the contrast, the concentration of fractals, and the abso-
lute value of intensity, the fractal volume can be determined
from Eq. (8).

Once a deterministic fractal is composed of the same
objects, say, N balls of the same radius R, then the form
factor can be written as

F (q) = ρqF0(qR)/N. (9)

Here the ball form factor of unit radius is given by [23]

F0(z) = 3(sin z − z cos z)/z3, (10)

and ρq = ∑
j e−iq·rj is the Fourier component of the density

of ball centers, where rj are the center-of-mass positions of
balls. By substituting Eq. (9) into Eq. (5), we obtain for the
scattering intensity

I (q) = I (0)S(q)|F0(qR)|2/N, (11)

where we put by definition (see, e.g., [47])

S(q) ≡ 〈ρqρ−q〉/N. (12)

The quantity S(q) is called the structure factor, and it is
intimately connected to the pair distribution function (see
the discussion in Sec. VI below). The structure factor carries
information about the relative positions of the balls in the
fractal and can be rewritten as

S(q) = 1

N

N∑
j,k=1

〈exp[−iq · (rj − rk)]〉. (13)

It obeys the relations S(0) = N and S(q) � 1 for q � 1/lmin.
The former relation follows from the definition (12), and the
latter is fulfilled because the contribution of nondiagonal terms
on the right-hand side of Eq. (13),

∑
j 
=k〈e−iq·(rj −rk)〉/N , tends

to zero in the limit of large momentum due to the randomness
of the phase. This limit is analogous to the limit of geometrical
optics.

Let us emphasize that although Eq. (11) is quite general, the
choice of structure factor S(q) and the form factor F0 is rather
arbitrary. It depends on the choice of the scattering units, to
which the form factor F0 is related. This choice means just
a regrouping of terms in the total scattering amplitude A(q),

introduced in the beginning of this section. For example, if
we associate F0 with the form factor of an entire fractal, then
the structure factor describes the spatial correlations between
different fractals. In this case, the structure factor equals 1 for
nonzero momenta, because the fractal positions are assumed
to be completely uncorrelated. For this choice, Eq. (5) is
analogous to Eq. (11) with S(q) = 1.

An important characteristic in SAS is the radius of gyration,
Rg . It can be defined from the intensity expansion in the
Guinier regime q � 1/l0 [23],

I (q) = I (0)
(
1 − q2R2

g

/
3 + · · · ). (14)

III. CONSTRUCTION OF THE GENERALIZED
SELF-SIMILAR VICSEK FRACTAL

The construction of the generalized self-similar Vicsek
fractal (GSSVF), embedded into three-dimensional space, is
very similar to that of generalized Cantor fractals considered
in Ref. [46].

We start with a cube with the edge l0 and place in its center
a ball of radius l0/2. This is a zero fractal iteration, called the
initiator. Let us choose the Cartesian coordinates: the origin
lies in the cube center, and the axes are parallel to the cube
edges. The iteration rule (generator) is to replace the initial
ball by nine smaller balls of radius βsl0/2. The position of one
ball is at the origin, while the centers of the eight other balls
are shifted from the origin by the vectors

aj = {±βt l0, ± βt l0, ± βt l0} (15)

with all the combinations of the signs, where

βt ≡ (1 − βs)/2. (16)

The dimensionless positive parameter βs , called the scaling
factor, obeys the condition βs <

√
3/(

√
3 + 2) in order to

avoid overlapping of the balls. The next iterations are obtained
by performing an analogous operation to each ball of the first
iteration, and so on (see Fig. 1). Infinite number of iterations
yields the ideal GSSVF.

Thus, the total number of balls at the mth iteration equals

Nm = 9m, (17)

and the corresponding radius is given by

rm = βm
s l0/2. (18)

In accordance with the definition (1), the fractal dimension can
be calculated as (see also Appendix)

D = lim
m→∞

log Nm

log(l0/rm)
= −2 log 3

log βs
. (19)

Because of the restrictions imposed on the scaling factor, the
fractal dimension of the GSSVF can vary from 0 to 2.862 . . . .

The above procedure is an obvious generalization of the
original Vicsek fractal [44], which is constructed from the
cubes by means of the scaling factor βs = 1/3 and whose
fractal dimension is equal to 2.
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FIG. 1. (Color online) The initiator and first three iterations for
the GSSVF at the scaling factor βs = 1/6. (See Ref. [48] for a video
of the first iteration of the GSSVF.)

IV. THE FRACTAL FORM FACTOR AND STRUCTURE
FACTOR

A. The analytical expressions

The standard method for calculating the fractal form factor
is the Debye formula [22,23,49], including the double integra-
tion over the scattering length density. Direct application of
the formula could be extremely difficult, since the number of
balls in the fractal increases exponentially with the iteration
number. Here we apply an analytical method of calculating
the fractal form factor suggested in Refs. [18,30,41] (see also
Ref. [50], where the Fourier transform of the Cantor measure
was calculated). This scheme was developed afterward in
Refs. [27,42,43,46]. We give only the results here and refer the
reader to our previous paper [46] for details of the derivation.

Once the number of balls at the mth iteration of the GSSVF
(17) and their radius (18) are known, the total fractal volume
is given by

Vm = Nmβ3m
s V0, (20)

where V0 = 4π
3 ( l0

2 )3 is the volume of the initial ball. Then the
scattering intensity in zero angle Im(0) can be calculated with
the help of Eq. (8).

The form factor of the mth generation is calculated
analytically by means of the generative function, which is
determined by the positions of the centers of balls inside
the fractal for each iteration. For the GSSVF, the generative
function reads

Gm(q) = [1 + 8 cos(umqx) cos(umqy) cos(umqz)]/9, (21)

with um ≡ l0βtβ
m−1
s and m = 1,2, . . . . Here βt is defined by

Eq. (16). If we set G0(q) ≡ 1, one can express the form factor
as

Fm(q) = F0(rmq)
m∏

i=0

Gi(q) (22)

for m = 0,1,2, . . . . The form factor of the ball and its
radius for the mth iteration are given by Eqs. (10) and (18),
respectively. Then SAS intensity is obtained with the help of
Eq. (5) by averaging over the solid angle (7)

Im(q)/Im(0) = 〈|Fm(q)|2〉. (23)

Equation (23) gives the normalized scattering intensity as a
function of ql0 and the scaling factor βs .

Comparing Eqs. (9) and (22), one can conclude that the
Fourier component of the density of ball centers in the mth
iteration is given by

ρ(m)
q = Nm

m∏
i=0

Gi(q). (24)

By substituting this expression into Eq. (12), we obtain

Sm(q)/Nm =
〈 m∏

i=1

|Gi(q)|2
〉
. (25)

It follows from Eqs. (22), (23), and (25) that

Im(q)/Im(0) = ∣∣F0
(
βm

s ql0
/

2
)∣∣2

Sm(q)
/
Nm, (26)

which is in agreement with the general relation (11).

B. Analysis and interpretation of the obtained results

First, let us discuss the physical meaning of the scattering
amplitude (22). It can be written in different forms,

Fm(q) = G1(q)Fm−1(βsq)

= G1(q)G1(βsq)Fm−2(β2
s q) = · · · . (27)

The resulting amplitude can be understood as a sum of
amplitudes of different clusters in the fractal; see Fig. 1. As
discussed in Sec. II, the choice of clusters is quite arbitrary.
Thus, the amplitude (27) is a sum of N1 = 9 amplitudes
of (m − 1)th fractal iterations, with ρ

(1)
q being the density

Fourier component of their centers of masses. Or it is a sum
of N2 = 92 scattering amplitudes of (m − 2)th iterations,
whose spatial positions are described by ρ

(2)
q , and so on.

Then we can represent the resulting intensity for each
choice of clusters as a product of associated structure factor
and form factor 〈|Fm(q)|2〉 � S1(q)〈|Fm−1(βsq)|2〉/N1 �
S1(q)S1(βsq)〈|Fm−1(β2

s q)|2〉/N2
1 � · · · � S1(q)S1(βsq) · · ·

S1(βm−1
s q)|F0(βm

s ql0/2)|2/Nm. Therefore, we arrive at the
approximation for the fractal structure factor

Sm(q) � S1(q)S1(βsq) · · · S1
(
βm−1

s q
)
. (28)

The numerical results for the scattering intensities and
related structure factor are shown in Fig. 2. One can see a
complex pattern of maxima and minima superimposed on
a power-law decay (2), that is, the generalized power-law
behavior of intensity, discussed in detail below. In the curves,
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FIG. 2. (Color online) (a) Scattering intensity (23) for the first
four iterations of the monodisperse GSSVF. The scattering curve for
the mth iteration is scaled up for clarity by the factor 103(m−1). Black
at low q shows the Guinier regions; light gray (orange) represents
fractal regions; dark gray (blue) at high q Porod regions. (b) The
fractal structure factor (25) for the first four iterations. Inset: the
quantity S(q)(ql0)D/Nm vs ql0, log-periodic in the fractal region.
(c) The structure factor (25) (full lines) and its approximation (28)
(dashed lines) for three iterations. The values of structure factor for
m = 3 and 2 are scaled-up by 10 and 100, respectively.

one can separate out three different regions: the Guinier,
fractal, and Porod regions.

1. Guinier region

The Guinier region, as discussed in Sec. II, is

q � 1/l0. (29)

In this region, the intensity is well described by the expansion
(14). The intensity at zero angle is given by Eq. (8) at the fractal
volume (20), and Sm(0) = Nm. Expanding the form factor (22)
in power series in ql0 and substituting the result into Eq. (23)
yield the fractal radius of gyration for the mth generation,

Rg =
√

β2m
s R2

g0 + 8

3
β2

t

1 − β2m
s

1 − β2
s

l2
0 . (30)

Here, for a uniform ball of radius l0/2, the radius of gyration
is given by Rg0 = (3/5)1/2l0/2. In the limit of a high number
of iterations (the ideal fractal), when β2m

s � 1, we obtain

Rg = (8/3)1/2βt l0(
1 − β2

s

)1/2 . (31)

2. Fractal region

The fractal region in the momentum space is determined by
the maximal and minimal distances between the ball centers;
see Eq. (3). As can be seen from the fractal construction
(Sec. III), these distances are of order l0 and l0βtβ

m−1
s ,

respectively. This yields for the fractal region

1/l0 � q � 1/
(
l0βtβ

m−1
s

)
. (32)

The explicit analytical expressions (21)–(23) allow us to check
these general estimations. For a given momentum, if the cosine
argument in Gm+1 is much smaller than 1, then Gm+1 � 1, and
further increasing of m does not lead to an essential correction.
Hence, the mth iteration reproduces the intensity that the ideal
fractal would give at this momentum. As a result, the scattering
amplitude of the mth iteration coincides with the amplitude of
the ideal fractal within the region ql0βtβ

m−1
s � 1, which is

consistent with Eq. (32). Such a behavior can be seen in Fig. 2
as the coincidence of various iterations in the fractal regions.
In the fractal region, the value of normalized intensity is very
close to that of the structure factor,

Im(q)/Im(0) � Sm(q)/Nm, (33)

since F0 � 1 in Eq. (26).
One can interpret the structure factor S1(q) by analogy

with optics. The quantity N1G1(q) is merely the amplitude,
produced by nine interfering pointlike particles of unit ampli-
tude. The resulting scattering pattern N2

1 〈|G1(q)|2〉 = S1(q)N1

is the intensity, averaged over all directions of vector q; see
the representation (13). In optics, this average corresponds
to diffraction with an entirely uncollimated beam, which
leads to the strong spatial incoherence. As a result, only
the first minimum and maximum are quite distinguishable.
They are associated with out-of-phase (ϕ = π ) and in-phase
(ϕ = 2π ) interferences, respectively. The next minima (ϕ =
3π,5π, . . . ) and maxima (ϕ = 4π,6π, . . . ) are practically not
seen; however, they are responsible for the subsequent series
of small oscillations. Besides, at q = 0 we have a completely
coherent diffraction (the intensity is equal to the squared
number of the points), and at large q, a completely incoherent

036203-5



CHERNY, ANITAS, OSIPOV, AND KUKLIN PHYSICAL REVIEW E 84, 036203 (2011)

regime of geometrical optics (the intensity is equal to the
number of points). By Eq. (13), the phase is governed by
distances between the points, which are of order

√
3βt l0, and

ϕ � √
3βtql0. Thus, we can summarize for the scattering

from the first fractal iteration: ϕ � 1 implies an entirely
coherent regime, ϕ � π and ϕ � 2π correspond to minimum
and maximum, respectively, and finally, the condition ϕ � 2π

leads to an entirely incoherent regime.
The behavior of the structure factor for an arbitrary mth

iteration can be described in the same manner. Each of the most
pronounced minima or maxima corresponds to the interference
of cluster amplitudes, where each cluster is a fractal iteration of
the order k = 1, . . . ,m. The most common distances between
the centers of mass of the clusters are equal to (see Sec. III)

bk =
√

3l0βtβ
k−1
s . (34)

Then by analogy with the above considerations, the minima
and maxima positions can be estimated from the condition
that the distances (34) equal π/q and 2π/q, respectively.
Therefore, we obtain the conditions of minima,

qkl0 ≈ π√
3βtβ

k−1
s

, k = 1, . . . ,m, (35)

and the conditions of maxima,

qkl0 ≈ 2π√
3βtβ

k−1
s

, k = 1, . . . ,m. (36)

These relations are satisfied with good accuracy; see Fig. 2.
Thus, the number of minima is equal to the number of fractal
iterations. The same is true for the number of maxima.

To explain the generalized power-law behavior, one can
use the approximate expression (28), which works quite well
[Fig. 2(c)]. Note that for a given range 1/(

√
3βtβ

k−1
s l0) � q �

1/(
√

3βtβ
k
s l0), only one term S1(βk−1

s q) in the product (28)
has a nontrivial behavior. The other terms are nearly equal,
N1 = 9 (the coherent regime for the terms on the right), or
approximately equal (the incoherent regime for the terms on
the left). This physically means that the diffraction pattern in
this range is produced by the interference of only one group
of subunits, which are the kth fractal iterations. Hence, by
increasing the argument 1/βs times, one term on the right
in the product is forced from the coherent regime into the
incoherent one, thus reducing the total value of the structure
factor N1 = 9 times. Therefore, we arrive at the equation

Sm(q/βs) � βD
s Sm(q), (37)

valid for 1/(
√

3βt l0) � q � 1/(
√

3βtβ
m−2
s l0). Here we use the

equation N1 = 1/βD
s , which follows from the definition of

fractal dimension (19). Equation (37) in conjunction with the
relation (33) yields

Im(q/βs)(q/βs)
D � Im(q)qD (38)

for the same region. This means that within the region,
the functions Sm(q)qD and Im(q)qD are approximately log-
periodic with the period, equal to the inverse scaling factor
1/βs [see Fig. 2(b)].

3. Porod region

Beyond the fractal region

q � 1/
(
βtβ

m−1
s l0

)
, (39)

Sm(q) � 1, as discussed above, and we have in accordance
with Eq. (26)

Im(q)/Im(0) = ∣∣F0
(
βm

s ql0/2
)∣∣2/

Nm. (40)

It follows that beyond the fractal region, the scattering intensity
resembles the intensity of the initiator, i.e., a ball in the present
case. In particular, the maxima of the curve obey Porod’s law
q−4 [22,23] in the Porod region,

q � 1/
(
βm

s l0
)
, (41)

whose lower border is of order the upper edge of the fractal
region. Such a behavior can be seen in Fig. 2(a). However, if
the radius of the initiator is much smaller than l0, then we have
an intermediate region, where Im(q)/Im(0) � 1/Nm. So, a well
or even “shelf” appears in the normalized intensity between
the fractal and Porod regions near the volume 1/Nm [46].

The generalized power-law behavior of the GSSVF is
consistent with the SAS from other types of deterministic
fractals reported in the literature [27,42,45,46]. In Ref. [42],
the authors studied SAS from Menger sponges and another
type of fractal and found some general scattering properties
of deterministic fractals: the generalized power-law behavior
of the intensities and log periodicity of the main maxima and
minima. However, the method of calculations does not allow
the authors to distinguish between the fractal structure factor
and the total scattering intensity; for instance, the correct
asymptotics of the structure factor was not found, and the
positions of the minima and maxima were not estimated. In
Ref. [43], self-affine characteristics of the scattering curves,
like Eq. (37), were investigated; however, the author studied
the exact anisotropic form factors like Eq. (22), which were
not averaged over all directions of momentum. We believe
that the log periodicity, even if it is approximate, takes place
only after averaging the scattering curves over the angles. We
discuss this important issue in Sec. VI below.

V. POLYDISPERSE FORM FACTOR AND STRUCTURE
FACTOR

In a real physical system, scatterers almost always have
different sizes. Therefore, a more realistic description should
involve polydispersity. This means that we deal with a set of
fractals with various sizes and forms in general. Here we can
consider a kind of polydispersity, an ensemble of GSSVF’s
with different sizes l (that is, l is the length of the initial
cube; see Sec. III). Note that in the previous sections, we
denote the fractal size as l0, while here and below l0 is the
mean value of fractal sizes over the ensemble. The distribution
function DN (l) of the scatterer sizes is defined in such a way
that DN (l)dl gives the probability of finding a fractal whose
size falls within the interval (l,l + dl). We consider here one
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of the most common distribution functions, the log-normal
distribution, given by

DN (l) = 1

σ l(2π )1/2
exp

(
− [log(l/ l0) + σ 2/2]2

2σ 2

)
, (42)

where σ = [log(1 + σ 2
r )]

1
2 . The quantities l0 and σr are the

mean length and its relative variance,

l0 ≡ 〈l〉D , σr ≡ (〈l2〉D − l2
0

)1/2/
l0, (43)

where 〈· · · 〉D ≡ ∫ ∞
0 · · · DN (l)dl.

As in the previous sections, we assume that spatial positions
of different fractals are uncorrelated. Hence, the resulting
intensity is the average of the intensity (5) over the distribution
function (42),

Im(q) = n|	ρ|2
∫ ∞

0
〈|Fm(q)|2〉V 2

m(l)DN (l)dl, (44)

where the volume and amplitude of the monodisperse fractal
are given by Eqs. (20) and (22), respectively. The fractal
structure factor in the presence of polydispersity can be
calculated in the same manner but without the term V 2

m(l),

Sm(q) = Nm

∫ ∞

0

〈
m∏

i=1

|Gi(q)|2
〉

DN (l)dl, (45)

where Gi is given by Eq. (21). Equations (44) and (45)
correspond to the different statistical ensembles. Indeed, the
former averaging assumes that the size of the balls constituting
the fractal equals l/2 and thus it is also distributed in
accordance with Eq. (42). The latter averaging assumes that
all the distances between the ball centers inside the fractal are
changed when the fractal size varies, but the radius of the balls
is invariable. In this case, the structure factor becomes clearly
defined even in the presence of polydispersity.

Figure 3 shows the influence of polydispersity on the
obtained scattering intensity (44) and structure factor (45). As
expected, the small oscillations, present in the monodisperse
case (see Fig. 2), are now smeared out, and the scattering curves
became smoother. One can see that the smoothness increases
with growing the width of the distribution function, which
is controlled by the relative variance σr. Nevertheless, the
exponent of the generalized power-law dependence remains
unchanged and equal D in the fractal region (32). In the
Porod region (41), the value of exponent still equals −4. The
structure factor is close to one beyond the fractal region (39).
The logarithmic periodicity of the quantity I (q)qD becomes
even more pronounced in comparison with the monodispersive
fractals, discussed in Sec. IV B 2.

VI. PAIR DISTRIBUTION FUNCTION AND PAIR
DISTANCE DISTRIBUTION FUNCTION

A. General definitions

The form factor and related structure factor are intimately
connected to spatial correlations of subunits, composing the
investigated system, and the main problem of SAS is to extract
information about the real-space structure from the scattering
data.

FIG. 3. (Color online) Influence of polydispersity on the scat-
tering curves: (a) intensity (44) and (b) structure factor (45) for
various values of the relative variance σr , given by Eq. (43). Scattering
curves for σr = 0.2 and 0.4 are scaled-up for clarity by 10 and 100,
respectively. (c) The quantity I (q)qD clearly shows the log periodicity
in the fractal region. The period in the log scale is equal to log10(1/βs),
where βs is the scaling factor of the fractal. The colors are the same
as in Fig. 2.

Let us consider first a monodisperse fractal, composed of
balls of the same radius. The general expression (13) can be
rewritten in the form

S(q) = 1 + 2

N

∑
1�k<j�N

sin qrjk

qrjk

, (46)
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where rjk ≡ ∣∣rj − rk

∣∣ are the relative distances between the
ball centers. Deriving this last relation, we use the formula
〈exp(ia · q)〉 = sin(aq)/(aq), which follows from Eq. (7). In
Eq. (46), the sum contains many equals terms, because the
distances separating different points can coincide. One can
introduce the probability density of finding the distance r

between the centers of two arbitrarily taken balls inside the
fractal:

p(r) ≡ 2

N (N − 1)

∑
k<j

δ(r − rjk)

= 2

N (N − 1)

∑
rp

Cp δ(r − rp), (47)

where Cp are the numbers of distances separated by rp. The
dependence on the fractal length l appears through rp = lzp,
where the distances zp correspond to the fractal of unit length.
The quantity (47) is called the pair distance distribution
function. In terms of this function, Eq. (46) reads

S(q) = 1 + (N − 1)
∫ +∞

0
dr p(r)

sin qr

qr
. (48)

By performing the inverse Fourier sine transform, we obtain

p(r) = 2

π

∫ +∞

0

S(q) − 1

N − 1
qr sin qr dq. (49)

Let us choose an arbitrary ball in the fractal and consider
a spherical layer of radius r and width dr , whose center
coincides with the center of the chosen ball. It follows from the
definition (47) that dN = (N − 1)p(r)dr gives the average
number of other ball centers, which lay within the spherical
layer. Then the total average number of other balls in the sphere
of radius r is given by

N (r) = (N − 1)
∫ r

0
p(r ′)dr ′. (50)

Conversely, (N − 1)p(r) = dN (r)/dr . The quantity N (r) (50)
is proportional to the “mass,” or measure, enclosed in the
imaginary sphere of radius r , which is centered on the fractal;
see the discussion in Appendix. The relation (50) gives a more
precise definition of N (r), discussed in Sec. I. By substituting
Eq. (49) into Eq. (50), we arrive at the relation between N (r)
and the fractal structure factor,

N (r) = 2

π

∫ +∞

0

S(q) − 1

q
[sin(qr) − qr cos(qr)] dq. (51)

The polydispersity can be taken into account by averaging
the above equations (47)–(51) over the distribution (42). All
the relations take the same form but with the replacements
S(q) → 〈S(q)〉D , N (r) → 〈N (r)〉D , p(r) → 〈p(r)〉D . The last
quantity can be calculated explicitly,

〈p(r)〉D = 2

N (N − 1)

∑
p

Cp

zp

DN

(
r

zp

)
. (52)

For a finite iteration, the total number of balls N is given by
Eq. (17).

To describe spatial particle correlations, one can also use the
pair distribution function [51] g(r), which is directly related
to the pair distance distribution function (47)

g(r) ≡ p(r)l3

4πr2
, (53)

where l3 is the total volume of the fractal. As discussed in
Sec. I, the pair distribution function has a transparent physical
interpretation: it is merely the conditional probability density,
because it gives the probability density to find a particle at
the distance r from another particle, provided a position of
the latter particle is given. As follows from the discussion
below Eq. (49), the number of particles within the spherical
layer is indeed given by dN = ng(r)dV . Here n = (N − 1)/l3

is the average particle density in the fractal (if we neglect
the difference between N and N − 1 for a large number of
particles), and dV = 4πr2dr is the layer volume.

Note that Eq. (53) is consistent with the other definition
g(r) ≡ l3/[N (N − 1)]〈∑i 
=j δ(r − r ij )〉, more common in the
literature (see, e.g., Ref. [47]). Here the brackets denote the
average over all the directions of r , and r ij are the relative
positions of two particles. By using the average of the δ

function 〈δ(r − a)〉 = δ(r − a)/(4πr2), we derive Eq. (53).

B. Analysis of results

The real-space characteristics are shown in Fig. 4. Fig-
ure 4(a) represents the coefficients in the expression (47) for the
pair distance distribution function. They are found numerically
for the fourth iteration by a simple combinatoric analysis. The
self-similarity of GSSVF manifests itself in the periodicity
of the groups of distances on the logarithmic scale. As
expected, the centers of groups are the distances between the
clusters (34), discussed in Sec. IV B 2, and the period in the log
scale is related to the scaling parameter through log10(1/βs).

When the polydispersity is present, the pair distance
distribution function can be calculated from Eq. (49) with the
polydisperse structure factor (45) or directly from Eq. (52) with
known quantities Cp and zp. We obtain a very good agreement
between the two formulas; see Fig. 4(b). Small differences
appear at the low distances because of the finite upper
integration limit in Eq. (49), which we have to use in numerical
calculations. Equation (49) is nevertheless preferable for large
fractal iterations, since it surpasses the inconvenience of
calculating the exponentially increasing number of distances.
This gives a nearly independent computation time with the
increasing iteration number.

The simple power law (4) for g(r) implies that p(r) ∝
rD−1 due to the relation (53). Instead, one can see the
generalized power-law behavior in Fig. 4(b). Moreover, the
quantity p(r)/rD−1 is log-periodic in the fractal region in
real space, which results from the self-affinity relation (37)
for the structure factor. Indeed, the main contribution in the
integral of Eq. (49) comes from the fractal region in momentum
space, where S(q) � 1 and Eq. (37) is satisfied. Then, equating
S(q) − 1 to S(q) in the integral of Eq. (49) and substituting
q → q/βs yield

p(βsr)

(βsr)D−1
= p(r)

rD−1
, (54)
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FIG. 4. (Color online) (a) The coefficients Cp in the
expression (47) for the pair distribution function of GSSVF. The
centers of groups are the distances between the clusters (34), and the
period on the log scale is equal to log10(1/βs). (b) The influence of
polydispersity on the pair distance distribution function. Scattering
curves for the distribution width σr = 0.2,0.4 are scaled-up for clarity
by 10 and 102 respectively. Solid (black) lines show the solutions
obtained with Eq. (49) from the polydisperse structure factor of
Fig. 3(b), dashed (blue) lines represent its direct calculation (52). The
shift of maxima in comparison with Eq. (34) is due to a polydispersity
effect. The exponent of the generalized power-law behavior for p(r)
is equal to D − 1; see Eq. (54). (c) The log-periodic function N (r)/rD

with the same log period. The quantity N (r) (50) is proportional to
the “mass”, or measure, enclosed in the imaginary sphere of radius r ,
which is centered on the fractal.

which is valid for βtβ
m−2
s l0 � r � l0. By Eq. (53), the

analogous relation takes place for the pair distribution function

g(βsr)

(βsr)D−3
= g(r)

rD−3
. (55)

By using Eq. (51) in the same manner as Eq. (49), we arrive at
the relation

N (βsr)

(βsr)D
= N (r)

rD
. (56)

The last three equations are equivalent.
The real-space correlation functions of fractal measure

are well-studied in the literature; see the textbooks [12,33]
and references therein. In particular, the log periodicity of
the reduced mass-radius relation (56) is known for ideal
deterministic fractals (see, e.g., Refs. [52–54]). In this paper,
the mass-radius relation is connected to the log periodicity
(38) in the momentum space for finite fractal iterations.
Conversely, once Eq. (54) or (55) or (56) is fulfilled, then the
log periodicity S(q)qD , given by Eq. (37), is also satisfied. For
a fractal embedded in 3D space, the quantity N (r) is radially
symmetric by definition. This means that the log periodicity of
S(q)qD , which follows from Eqs. (51) and (56), is met only
for the structure factor (25), which includes the averaging
over all directions of momentum. The squared anisotropic
scattering amplitude

∏m
i=1 |Gi(q)|2 does not obey in general

the self-affinity relation (37), as discussed in Sec. IV B.
The log periodicity of the mass-radius relation (56) is shown

in Fig. 4(c). The number of periods on the logarithmic scale
coincides with the fractal iteration number.

Polydispersity makes the above log periodicity even more
apparent. Increasing the value of the distribution width σr leads
to smoothing of p(r), g(r), and N (r). One can see a little shift
of the minima to the right. From the general considerations, this
is allowed as long as the distribution width is much greater than
the relative shift 	r/r . The simple power law [p(r) ∝ rD−1,
g(r) ∝ rD−3, and N (r) ∝ rD], typical for random fractals, is
restored in the limit of strongly developed polydispersity.

VII. CONCLUSION

We developed a model of a deterministic fractal that enables
explicit analytic solutions for the scattering amplitude. The
model generalizes the regular 3D Vicsek fractals. The proper-
ties of GSSVF are studied and analyzed in both momentum
and real spaces. The fractal dimension is controlled by the
scaling parameter and can vary from 0 to 2.862 . . . . Based on
the developed model, we derive analytical expressions for the
main properties in the monodisperse and polydisperse cases:
the form factor and fractal structure factor, the pair distribution
function, the pair distance distribution function, the radius of
gyration, the intensity in zero angle, and the edges of the fractal
region in momentum and real spaces. We found the logarithmic
periodicity of the intensity scaled qD times within the fractal
region [see Eq. (38)] and relate it to the log-periodicity of the
functions (54), (55), and (56) within the fractal region of real
space. The period is governed by the scaling parameter βs and
is equal to log10(1/βs) on the logarithmic scale. This behavior
of the scattering curves is explained and interpreted by analogy
with optics (see Sec. IV B 2).
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An advantage of the exact analytic solutions for determin-
istic fractals is the absence of phenomenological parameters,
often used in the random fractal models. The behavior of
random fractals can be simulated by introducing strong
polydispersity in the deterministic fractal models.

The results, obtained for the GSSVF, illustrate a number of
general features, common for deterministic mass fractals with
a single scale, and can be used for interpreting the experimental
data. For this kind of fractal, one can extract a number of
parameters from the scattering intensity (see Fig. 3):

(i) The fractal dimension from the generalized power law.
(ii) The fractal scaling parameter from the period on the

logarithmic scale.
(iii) The number of fractal iterations, which is equal to the

number of periods of function I (q)qD .
(iv) The lower and upper fractal edges from the diagram

I (q)qD as the beginning and end of the “periodicity region.”
They allow us to estimate the fractal size and the smallest
distance between fractal units in accordance with Eq. (3).

(v) The total number of structural units, from which the
fractal is composed, by the relation Nm = (1/βs)mD .

Note that the number of structural units can also be
estimated from the ratio I (0)/I (qmax), where qmax is the upper
edge.

Once the internal fractal structure is known in more detail,
one can derive and use an analytical expression for the
scattering amplitude such as Eq. (22) and use it directly to fit
the scattering data. This scheme could be applied even more
efficiently to anisotropic scattering with a position-sensitive
detector.

The results obtained can be applied for various structures,
whose geometries are based on iterations of fractal systems.
This includes magnetic cluster structures, artificially created
chemical compounds, and so on.

We consider mass fractals composed of the same units, but
the developed scheme allows a generalization to mass fractals
containing units of various shapes and sizes and to surface
fractals as well. Generalizations of the developed scheme are
underway.
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APPENDIX: HAUSDORFF DIMENSION

The Hausdorff dimension [55] can be rigorously defined as
follows (see, e.g., Refs. [12,33,56]).

Let A be a subset of n-dimensional Euclidean space and
{Vi} be a covering of A with ai = diam(Vi) � a. Then the
α-dimensional Hausdorff measure mα(A) of the set A is

mα(A) ≡ lim
a→0

inf
{Vi }

∑
i

aα
i , α > 0. (A1)

Here the infimum is on all possible coverings. Note that mα(A)
may be infinite and α is not an integer in general.

We define the Hausdorff dimension D of the set A by

D ≡ inf{α : mα(A) = 0} = sup{α : mα(A) = +∞}. (A2)

In other words, the Hausdorff dimension is the value of α for
which the Hausdorff measure jumps from zero to infinity. For
the value α = D, this measure can be anywhere between zero
and infinity.

In practice, the rigorous definition (A2) is rather difficult
to apply, and one can use other methods for calculating the
Hausdorff (fractal) dimension of a fractal [12,33]. For instance,
one can use the mass-radius relation, that is, the “mass” of the
structure within a ball of dimension n and radius r centered on
the fractal,

M(r) = A(r)rD, (A3)

where log A(r)/ log r → 0 as r → ∞. By mass we mean the
total fractal measure, which could be a mass, volume, surface
area, or any other scalar quantity attached to the fractal support.

Let us consider a few examples. For a self-similar deter-
ministic fractal of total length L, whose first iteration consists
of k elements of size βsL, one can write M(L) = kM(βsL).
Using Eq. (A3), we obtain

kβD
s = 1. (A4)

The Vicsek fractal, considered in Sec. III, is a particular case of
the above fractal, and the formula (19) for its fractal dimension
results from Eq. (A4) at k = 9. For a multiscale fractal, giving
at each iteration ki elements of size βsiL, we obtain∑

i

kiβ
D
si = 1. (A5)

A more complicated example is a dense circle packing. It is
an infinite set of nonoverlapping circles of smaller and smaller
radii inscribed into a larger circle in order to fill it completely.
The set of circles is obviously a fractal. The distribution n(r) of
the circle radii is given by a simple power law n(r) ∝ r−τ with
2 < τ < 3 (see, e.g., Ref. [57]). The exponent τ can easily be
related to the fractal dimension. An analog of finite iteration
is the cutoff length a, for which only the circles of radii larger
than a are considered. The minimal number of disks of radius
a needed to cover a circle of radius r is proportional to r/a.
Then the minimal number of disks for covering the fractal with
a finite cutoff length a is

N (a) ∝
∫ ∞

a

dr n(r)r/a ∝ a1−τ . (A6)

Comparing this equation with the definition of Hausdorff
dimension N (a) ∝ a−D yields D = τ − 1. The value of
dimension depends on a specific type of packing and can be
found numerically. For instance, the value D = 1.307 . . . is
obtained for the classical Apollonian packing [57]. Note that
if we consider the set of the filled circles (disks), then its
Hausdorff dimension is obviously equal to D = 2. Indeed, the
minimal number of disks of radius a needed to cover a disk of
radius r is proportional to r2/a2, and we obtain in the same
manner

N (a) ∝
∫ ∞

a

dr n(r)r2/a2 ∝ a−2, (A7)

because the integral of n(r)r2 converges when a → 0 for
τ < 3.
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