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Current reversals of coupled driven and damped particles evolving in a tilted potential landscape
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We explore the driven and damped dynamics of two coupled particles evolving in a symmetric and periodic
substrate potential that is subjected to a static bias force. In addition, each particle is time-periodically driven with
the same magnitude as, but out of phase to, its counterpart. It is shown that, for a certain parameter regime, the
coupled particles can become self-organized and go against the direction of the bias force. This self-organization
involves the particles becoming frequency locked with the driving force, and thus periodic motion ensues. We
employ numerical arguments to show that running periodic states provide solutions of the system. Further,
heuristic evidence is provided explaining how the two particles can travel against the bias force. In an effort
to unearth coupling phenomena within the system, a detailed analysis of how the coupling strength affects the
nonlinear dynamics is carried out. We show that within a range of coupling strengths the existence of periodic
running solutions associated with negative mobility. To examine the robustness of our results we compare the
deterministic system with the corresponding Langevin system. It is shown that, below a critical temperature, the
qualitative behavior of the system remains the same.
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I. INTRODUCTION

Nonlinear transport processes continue to be of vital
importance to the understanding of many physical systems. In
particular, the transport of particles in symmetric and periodic
potential landscapes has attracted considerable interest [1–6].
This ubiquitous potential lends itself to a vast number of
applications, including Josephson junctions [7], charge density
waves, nanoengines [8], and transport in biological systems
[9]. Much of the research done in this area involves systems
with an external time-periodic modulation applied, allowing
for more complex dynamics. Striking effects, such as phase
locking and stochastic resonance [10], are often seen in
such a system. An interesting extension to problems with
an externally modulated potential comes when a dc bias
is introduced, serving as a constant tilt to the potential
landscape [11–14]. In the single-particle case, these systems
have produced some fascinating results, most notably being
the existence of “absolute negative mobility” [15]. Here a
particle travels against the bias with the same velocity, but
with negative sign, as when the bias is removed. In this paper
we consider the extension of this problem to two interacting
particles. We examine the motion of two coupled damped and
driven particles evolving in a tilted periodic and symmetric
potential. We will highlight the anomalous transport properties
of the system and aim to show that these properties are
not isolated examples brought about by fine tuning of the
parameters or by choice of initial condition. Our modus
operandi is to explore cooperative phenomena in the system,
and thus we will provide a detailed numerical investigation
on how the coupling between the particles affects the overall
nonlinear dynamics.

This paper is organized as follows: In the next section
we introduce the system of coupled particles. In Sec. III
we discuss the feature of negative mobility. We also give a
brief comparison between the given system and its Langevin
counterpart. Section IV explores how the coupling strength
influences the nonlinear dynamics present in the system and,
in particular, how it relates to the emergence of a directed flow,
i.e., the current. We finish with a summary of our findings.

II. SYSTEM OF COUPLED PARTICLES

We study the dynamics of two damped, coupled particles
evolving in a symmetric and periodic “washboard” potential,
which has a spatial period L = 1. These particles are further
subjected to a static bias force of magnitude F0 > 0 that serves
to tilt the potential landscape such that particle motion to the
right is favored. The equations of motion for this system are
given by

q̈1 = − sin(2πq1) − γ q̇1 − F sin(�t + θ0)

− κ(q1 − q2) + F0, (1)

q̈2 = − sin(2πq2) − γ q̇2 + F sin(�t + θ0)

+ κ(q1 − q2) + F0. (2)

The two particles are driven by an external time-dependent
modulation of amplitude F , frequency �, and phase θ0. Notice
the out-of-phase character of the periodic modulation of the
two particles expressed by the different sign of the modulation
amplitude F . The additional parameters γ and κ regulate the
strength of the damping and coupling, respectively.

We stress that in our system the two particles, forming a
dimer, are supposed to perform one-dimensional motion in
parallel directions, each of them in a washboard potential.
That is, for equal coordinates q1 = q2 = q the axis of the
dimer (virtual line connecting the two particles) is perpen-
dicular to the q direction. As a realization we can suggest
a simple mechanical system comprising two balls moving
along parallel corrugated lines. The inclination of the latter
are, apart from the static tilt, temporally modulated in an
out-of-phase fashion. In addition the balls are coupled via a
spring.

In general, the system will exhibit a rich and varied behavior
as a function of its parameters γ , F , κ , �, θ0, and F0. However,
one of our main objectives, as was previously mentioned, is to
explore coupling phenomena within the system, and therefore
in much of this study we will fix the remaining parameters
while varying the coupling parameter κ .
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III. EXISTENCE OF NEGATIVE MOBILITY

As an explanation of this phenomenon, we describe
the mechanism that makes negative mobility possible. The
equations of motion have been solved numerically using a
fourth-order Runge-Kutta method. Figure 1 shows snapshots
of a two-particle compound moving in the opposite direction
of the bias force, where the particles move in the respective
potential landscape given by

U (q1,t) = 1

2π
[1 − cos(2πq1)] +F sin(� t + θ0)q1 − F0q1,

(3)

U (q2,t) = 1

2π
[1 − cos(2πq2)] −F sin(� t + θ0)q2 − F0q2.

(4)

(Note that the potential energy as given above relates to
the on-site potential not containing the particle interaction
part.) These seven snapshots, taken over one period of the
driving, show the relative position of each particle (henceforth
called particle 1, referring to left panels in Fig. 1, and
particle 2, referring to right panels in Fig. 1) versus its
position in the potential landscape. In addition, arrows, where
present, indicate the direction and magnitude of momentum
for the respective particles, with no visible arrow indicating a
vanishing momentum. It can be seen that negative mobility is
the product of coupling between the particles and the effect of
the time modulated potential. For example, at the beginning of
the period particle 1 has a positive momentum in the direction
of the bias force. However, this is countered by the height of
the potential barrier and by the coupling to particle 2, which
has an even stronger negative momentum. Thus motion in
the direction of bias is hindered. Regarding negative mobility,
we underline that the opposite time-periodic forces make it
only possible that for one particle the current inclination of
the washboard potential is of such form that the particle
is temporarily locked in a potential well (thus hampering
its dragging influence on the other particle in the unwanted
direction of the tilt) while the other particle experiences a
washboard potential whose current inclination favors motion
against the static tilt force F0. These phases of temporary
locking and running against the tilt alternate between the
particles. This cooperative effect between the particles and
the finely tuned modulations of the potential combine, for the
duration of the period, aiding motion against the bias force.
Consequently, in one period of the driving, the dimer moves
one spatial period against the bias force.

In fact, this combination even stabilizes the periodic uphill
motion against perturbations induced by noise from a thermal
bath. To demonstrate the robustness of negative mobility with
respect to thermal fluctuations we consider the following
Langevin equations:

q̈1 = − sin(2πq1) − γ q̇1 − F sin(�t + θ0)

− κ(q1 − q2) + F0 + ξ1(t), (5)

q̈2 = − sin(2πq2) − γ q̇2 + F sin(�t + θ0)

+ κ(q1 − q2) + F0 + ξ2(t) , (6)
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FIG. 1. (Color online) Snapshots of the dimer motion against
the bias force taken over a period T of the external time-periodic
modulation. Arrows indicate direction and magnitude of a particle’s
momentum. Left (right): particle 1 (particle 2). Here F0 = 0.1, γ =
0.11, F = 1.3, � = 2.22, θ0 = 0, and κ = 0.372.

where ξ1,2(t) denotes a Gaussian distributed thermal random
force of vanishing mean and correlation 〈ξm(t) ξn(t

′
)〉 =

2γ kBT δm,nδ(t − t
′
) with temperature T . Our numerical sim-

ulation results are reported in Fig. 2, displaying the temporal
behavior of the mean velocity [as defined in Eq. (8)] of the
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FIG. 2. (Color online) Time evolution, omitting an initial tran-
sient, of the mean velocity in the presence of a heat bath of thermal
energy kBT = 10−3	E, with 	E = 1/π being the energetic barrier
height of the washboard potential. The system parameters are given
in Fig. 1.

two-particle system for thermal energy kBT = 10−3	E, with
	E = 1/π being the energetic barrier height of the washboard
potential. The Langevin equations were numerically integrated
using a second-order Heun stochastic solver. We took averages
of 1000 realizations of the thermal noise. Notably, negative
mean velocity results, indicating negative mobility.

IV. CURRENT

In this section we will explore in detail the effect that the
coupling parameter has on the dynamics. Simulations show
that, depending on the value of κ > 0, there exist both periodic
and aperiodic solutions. This is clearly depicted in Fig. 3,
which shows a bifurcation diagram of the particle averaged
momentum defined as p = (p1 + p2)/2, where p1,2 = q̇1,2,
taken after a suitable transient at each period of the external
driving, as a function of κ . In Fig. 3 we see two windows

FIG. 3. (Color online) Bifurcation diagram as a function of the
coupling parameter κ . The remaining parameters are given in Fig. 1.

representing periodic motion, and the other windows represent
the chaotic motion in the system. The first periodic window,
which is difficult to see from the scale of Fig. 3, comes in the
region of very low coupling. To gain a quantitative perspective
on how κ influences the dynamics we compute the current v.
That is, we calculate the time averaged mean velocity for an
ensemble of initial conditions, i.e.,

v = 1

Ts

∫ Ts

0
dt〈p(t)〉, (7)

where Ts is the simulation time, and the ensemble average is
given by

〈p(t)〉 = 1

N

N∑
n=1

2∑
i=1

pi,n(t), (8)

with N being the number of initial conditions. These initial
conditions have been chosen such that qn(0) are uniformly
distributed in the potential well centered at the origin, with
pn(0) = 0 for all n. For computation of the long time average,
numerical integration is performed over a simulation time
interval Ts = 105. The ensemble average is calculated using
an ensemble of N = 1500 initial conditions.

The current as a function of κ is shown in Fig. 4. As we
would expect, in the uncoupled case a strong positive current
results, as the particles can travel freely in the direction of
the bias. This is what we see in Fig. 4. However, when we
couple the particles through increasing κ , we see a sharp
decline in the strength of the current. Now a restoring force
acts between the particles, impeding unhindered motion. This
decline happens in the range 0 < κ � 0.08 after which we
see a slight increase in the strength of the current. The most
spectacular results come in the range 0.22 � κ � 0.4, which
contains two windows, of notable extent, where there is a
negative current and a relatively smooth transition from v ≈
0.26 to v = 0 preceding these windows of negative current.
The smooth transition to a zero current is followed by a rather
sharp decline into the range of negative momentum. This range
of κ coincides with the window of periodic motion seen in the
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FIG. 4. (Color online) The current, as defined in Sec. IV, as a
function of the coupling parameter κ . The remaining parameters are
given in Fig. 1. The blue dashed line serves to highlight the regions
of negative current.
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FIG. 5. (Color online) (top) Time evolution of the two uncoupled
particles (κ = 0), traveling with the bias force. (bottom) Time
evolution of the two coupled particles (κ = 0.327) that are traveling
in the opposite direction to the bias force. The two lines represent
the trajectories of the individual particles. The system parameters are
given in Fig. 1. Note the different time scales.

bifurcation diagram (Fig. 3). Further, if we look closely at a
climbing trajectory (Fig. 5), it can seen that this is a cooperative
effect, with one particle pulling the other over one potential
barrier, only for the roles to be reversed when overcoming the
subsequent potential barrier. Notice that this is in compliance
with our earlier consideration (Sec. III), which showed that
motion against the bias can be provided by periodic running

solutions, which are frequency locked to the external periodic
driving force. After this window of negative current the
current saturates at approximately p = 0.75. Previously, there
was a cooperative effect helping the particles to overcome
potential barriers; now it appears that for κ � 0.4 the particles
effectively act as one and are unable to overcome these barriers.
Thus the dimer follows the direction of the bias, and hence a
positive current is produced.

V. SUMMARY

We have explored the dynamics of two coupled, damped,
and driven particles evolving in periodic and symmetric
potential while being subjected to a constant bias force.
Further the driving is time periodic and drives one particle
in the opposite direction of its counterpart. A key finding
was the existence of negative mobility, i.e., solutions in
which the motion goes against the direction of bias. We
demonstrated that the mechanism allowing for such motion
was cooperation between the particles, where they pull each
other over consecutive potential barriers. In more detail, a
coordinated energy exchange between the particles allows
them to collectively climb against the direction of the tilt.

Another aspect of our work dealt with directed particle
transport. This involved quantifying how the coupling strength
influenced the dynamics present in the system. As a first
step we produced the bifurcation diagram as a function of
the coupling parameter. This diagram is characterized by two
windows of aperiodic motion and one fairly extended window
of periodic motion. Then we computed the current as a function
of the coupling parameter. It was seen that there are two
windows of negative current, after which the current saturates
and becomes positive. Notably, these two windows of negative
current lie within the periodic window seen in the bifurcation
diagram.

Finally, we have demonstrated the robustness of the motion
against the bias of the tilt force with respect to thermal
fluctuations.

To conclude, we remark that it may be of interest to
extend the present study to include a chain of particles and
to determine whether negative mobility is possible in such
a system and, further, if it is possible then to determine the
mechanisms that make it so.
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