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Epidemic spreading in networks with nonrandom long-range interactions
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An “infection,” understood here in a very broad sense, can be propagated through the network of social
contacts among individuals. These social contacts include both “close” contacts and “casual” encounters among
individuals in transport, leisure, shopping, etc. Knowing the first through the study of the social networks is not
a difficult task, but having a clear picture of the network of casual contacts is a very hard problem in a society of
increasing mobility. Here we assume, on the basis of several pieces of empirical evidence, that the casual contacts
between two individuals are a function of their social distance in the network of close contacts. Then, we assume
that we know the network of close contacts and infer the casual encounters by means of nonrandom long-range
(LR) interactions determined by the social proximity of the two individuals. This approach is then implemented
in a susceptible-infected-susceptible (SIS) model accounting for the spread of infections in complex networks. A
parameter called “conductance” controls the feasibility of those casual encounters. In a zero conductance network
only contagion through close contacts is allowed. As the conductance increases the probability of having casual
encounters also increases. We show here that as the conductance parameter increases, the rate of propagation
increases dramatically and the infection is less likely to die out. This increment is particularly marked in networks
with scale-free degree distributions, where infections easily become epidemics. Our model provides a general
framework for studying epidemic spreading in networks with arbitrary topology with and without casual contacts
accounted for by means of LR interactions.
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I. INTRODUCTION

The main paradigm of the study of dynamic processes in
complex networks is that information is transmitted through
the paths that connect pairs of nodes [1–4]. Such paths are
formed by sequences of nodes representing the entities of a
complex system, which are connected by links representing
the interactions between these entities. This paradigm is
particularly useful for studying the spread of information
in complex networks [4], in particular for studying how
“infections” propagate and become epidemic [5–16]. One
of the most important challenges of modeling the spread
of epidemics is the determination of the network of social
contacts that allow the spread of the infection. While in
some situations, such as in the spread of sexually transmitted
diseases or computer viruses, knowing the network of contacts
is not very difficult, in those cases involving the transmission
of airborne or close contact infections the contact network
is quite hard to define [17]. This was, for instance, the case
of the severe acute respiratory syndrome (SARS), which was
propagated when a medical doctor from Guangzhou, China,
eventually met at a hotel in Kowloon people from Singapore,
Viet Nam, Canada, and Hong Kong who were not among
his “close” social contacts [18]. These kinds of encounters
between individuals who can facilitate the transmission of
an infection are referred to as “casual” contacts in order to
distinguish them from the more frequent close contacts among
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individuals [19–22]. These casual contacts can play a major
role in a variety of phenomena, which include, for instance,
imitative obesity as “it may be easier to be fat in a society that
is fat” [23] or the fact that “the spread of obesity is related
to the environment in which individuals live” [24] in addition
to their social ties [25]. Other examples can include epidemic
hysteria [26] as well as the recent growth of “binge” drinking in
the United Kingdom as a “fashion-related phenomenon” [27].

Due to the importance of the social contacts, both close and
casual, among individuals in our society for understanding dis-
ease and attitude spreading, there have been serious attempts
to account for them on an experimental basis. The first attempt
traced the route of the circulation of bank notes in the United
States [28]. The second one studied the trajectory of 100 000
mobile phone users by detecting their positions during the
period of half a year [29]. The results of these studies are both
theoretically and practically interesting. However, we never
make commercial transactions in our elevators, buses, trains,
or airplanes and do not necessarily use our mobile phones all
at the same time and place. Then, the problem of determining
the social contacts of individuals in a society is a very difficult
and challenging problem of tremendous importance. More
recently, however, some attempts of quantifying all close and
casual contacts among individuals have been conducted in a
series of European cities [30]. This study and its implications
are analyzed in the next section. The division of social
contacts between close and casual is somewhat artificial, but
it allows some important theoretical approaches. For instance,
by knowing the network of close contacts among individuals
it is possible to include some effects produced by the casual
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encounters among individuals. This has been generally done
by considering that these casual contacts occur at random. We
will analyze the implications of this assumption in the next
section.

Here we propose to account for both the close and casual
contacts among individuals by considering the transmission of
an infection through paths and by long-range (LR) interactions
in a complex network. The main paradigm used by this model
is that if we know the structure of the network of close contacts,
we can infer the casual contacts by means of the long-range
interactions between two individuals, which here are assumed
to depend on the social distance between them. Using this
model, we study how an infected node can propagate an
infection in random and real-world networks. We show that
an epidemic expands faster and is less likely to die out when
casual contacts are considered. The heterogeneity of a network
also contributes significantly to the propagation of an infection
when casual contacts are taken into account.

II. SOCIAL CONTACTS: EMPIRICAL EVIDENCE

In order to model effectively the way in which infections are
spread in networks it is necessary to account for the pattern of
human interactions [30,31]. In certain situations, e.g., sexually
transmitted diseases or computer viruses, the determination
of such social contacts can be done in an effective way.
However, in other scenarios, such as in the transmission of
airborne or close contact infections, the pattern of human
interactions produced by encounters between individuals is
harder to define [17]. While in the first case only close contacts
produced by direct interactions among the individuals can
be responsible for the transmission of the infection, in the
second case the contributions of both close and casual contacts
play a fundamental role. The combination of both close and
casual contacts among individuals accounts for those social
interactions, which include physical and nonphysical contacts
occurring at different environments (home, work, school,
transport, leisure, etc.) for periods of time that range between
a few minutes and several hours. Only recently, some studies
have been conducted that shed some light on the patterns
of these social contacts. For instance, Mossong et al. [30]
have studied 97 904 contacts among 7290 individuals in 8
different European countries. They have registered the age,
sex, duration, location, frequency, and occurrence of physical
contacts. Because they study the occurrence of these social
contacts in places like home, work, school, leisure, transport,
and others as well as the combination of them, this study
accounts for both close and casual contacts among individuals.
A remarkable finding of this study is that the social contacts
among individuals occur preferentially among those of similar
ages. This pattern is particularly pronounced among children
and youngsters in the age range between 5 and 24 years.
This kind of age assortativity is also observed for adults of
about 40 years. It is well known that children, teenagers,
and youngsters develop friendship relationships preferentially
among them, observing some kind of age assortativity in
their social ties. Middle-aged adults are also preferentially
tied to other individuals of similar ages by mean of working
relationships or other social ties. The role of assortativity

in social relationships has been well documented. In social
science it is also known as “homophily” and refers to the
observed fact that “similarity breeds connections” or that
“birds of a feather flock together.” An excellent compendium
on homophily in social networks is the work of McPherson
et al. [32]. To review some of the results described in that
work, it has been found in studies of close friendship that
homophily (assortativity) by age is the strongest dimension
controlling the relationships, with only the exception of race.
For instance, about 38% of close friends among men in Detroit
were found to be within two years of age and 72% within
eight years. This assortativity is less marked in the people in
the 60+ age group, which has been the only one group for
which there was significant outbreeding [32]. These results on
social friendship, or close contacts, reproduce very well those
obtained for the social contacts, which include both close and
causal, in the work of Mossong et al. [30]. Consequently,
the assortativity relationship between social contacts (close
and casual) and age is indicative of the relationship between
social distance between individuals and social contacts. By
social distance we mean the shortest path distance between
two individuals in their social network. That is, two teenagers
who are not friends are closer to each other than they are to
some middle-aged strangers. The probability that these two
teenagers frequent the same place, e.g., concerts, cinema,
school, etc., is larger than that for the social contact among
the teenager and the adult. By social network we understand
here the social interaction between individuals that can be
considered to be of relevance for epidemiological studies
and which excludes those contacts that do not correlate with
transmission opportunities for infections, such as links by
means of only letters, telephone, emails, etc. Unfortunately, we
have not found studies that provide empirical evidence of other
types of homophilies in the casual contacts among individuals.
However, it is highly probable that individuals with similar
ethnicity, religion, education, occupation, social class, etc.,
who have been found to be closer in their social networks [32],
live in similar geographic locations, use similar transportation,
and visit similar places for leisure than individuals with less
similarities, confirming the hypothesis of a correlation between
casual contacts and social distance.

We are aware of the lack of empirical data about casual
contacts in real social systems. Even the empirical study
of Mossong et al. [30] does not include social contacts
among individuals in a confined space or in close physical
proximity in which the individuals are not talking among them,
e.g., crowds at concerts. Then, we look for some empirical
evidence that allow us to model casual social contacts. In some
cases these casual encounters between individuals have been
modeled by considering they occur at random [19–22,33].
In an analogous way epidemics are usually modeled on
“small-world” networks. That is, individuals are placed at
the nodes of a regular lattice whose links represent close
contacts along which the infection may spread to others. Then,
an infection proceeds either locally (through close contacts),
within a prescribed neighborhood, or through casual contacts
established at random between any two individuals [34–37].
That is, in this case also the long-range interactions among
individuals are considered to be at random and not to depend
at all on the social distance between individuals in the network.
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FIG. 1. (Color online) Average age of the nearest neighbor nodes
in different age groups (see text) by using the WS model with node
ages and a random rewiring of links. The ages are organized from
top to bottom at probability 0.0 in the following groups: 0–5, 5–10,
10–15, 15–20, 20–30, 30–40, 40–50, 50–60, 60–70, and 70+.

In order to illustrate the lack of age homophily when
casual contacts are considered as random we modify the
Watts-Strogatz (WS) model [38] in order to account for the
age of individuals. We start from a cycle graph of 100 nodes,
and then we connect every node to its second nearest neighbors.
This lattice, which is a circulant graph, is known as the WS
graph for rewiring probability p = 0.0. We assign an age to
every node staring from the node labeled as 1. The ages are
assigned starting from 0 years with a clockwise increment of
0.757 years. The node labeled as 100 is then 75 years old.
Thus, the nearest neighbors have similar ages, reproducing
the observed age homophily in real social networks [30,32].
In addition, the youngest and older nodes are also linked
together as a consequence of the circular nature of the lattice.
This characteristic has also been observed in real-world social
relationships [30,32]. For the age-WS graph we proceed with
the typical rewiring of links with probability p > 0.0. Then,
we calculate the average age of the nearest neighbors of each
node for a given rewiring probability and report the average for
the groups of ages 0–5, 5–10, 10–15, 15–20, 20–30, 30–40,
40–50, 50–60, 60–70, and 70+ as in the work of Mossong
et al. [30]. The results are illustrated in Fig. 1.

As can be seen in Fig. 1 the classical WS model is unable
to reproduce the age assortativity observed in social contacts.
As p → 1.0, all nodes tend to have neighbors of the same
average age. The age assortativity disappears even for small
values of p. For instance, for nodes in the group 10–15, which
are known to display high age homophily in real networks [30],
the average age of nearest neighbors is almost doubled from
12.5 for p = 0.0 to 22.8 for p = 0.4. For the nodes with ages
between 5 and 24 for which Mossong et al. [30] have found
strong age assortativity, the average age of nearest neighbors
is almost duplicated for p = 0.5 when a random rewiring is
used in the age-WS model. In closing, the randomness of
casual contacts is not able to explain the age assortativity
observed by Mossong et al. [30] and other possibly existing

homophilies in the social contacts among individuals in eight
different European countries.

In a different approach Cohen et al. [39] considered the
spread of tuberculosis by accounting for both close and casual
contacts among individuals. They considered a parameter D

that controls the relative probability of creating shorter- versus
longer-distance connections in a network. If the parameter D

is small, individuals separated at short distances are prefer-
entially linked; when D is large, the long-range interactions
are favored. It is remarkable that the number of casual social
contacts is considered to be a product of these long-range
interactions. The authors have claimed that “in areas where
a substantial proportion of transmission is due to ‘casual’
contacts, a network with higher D value would better represent
the contact structure.” That is, casual contacts are proportional
to long-range interactions among nodes in a network. In the
work of Cohen et al. [39], however, the proximity between
individuals is considered to be the Euclidean distance between
nodes placed randomly at a plane, which in some way tries
to capture their “geographical” separation. Then, we need to
provide some of the empirical evidence about the interrelation
existing between geographic and social proximity.

The concept of proximity is widely used in social sciences,
in particular in innovation studies, organization science, and
regional science [40]. In many cases “proximity” refers to
“geographical proximity,” such as territorial, spatial, local,
or physical proximity. However, there are other forms of
proximity that are also in use in the same contexts, such as
institutional, organizational, cultural, technological, and social
proximity. Social proximity in particular refers to actors that
belong to the same space of social relations [40]. In some cases
it has been observed that geographical proximity is subordinate
to the social one. For instance, for the transmission of knowl-
edge Agrawal et al. [41] have concluded that “geographical
proximity matters most in the absence of social proximity that
may otherwise facilitate access to knowledge.” However, it is
difficult in many cases to disentangle social and geographical
proximities. In fact, it has been stated that “the dichotomy
between spatial and aspatial indices is somewhat a false one,
since both types of measures incorporate implicit notions of
social distance” [42]. We then assume here that in general the
concept of social proximity encloses important information
about other types of proximities, such as the geographical and
cultural ones.

Finally, there is a group of empirical evidence that is
important for the development of the current approach. This
refers to the way in which individuals establish their links
in social networks. We remark that the number of close and
casual contacts among individuals has been claimed to be
proportional to the probability of creating links among them
[39]. This probability has been considered to be proportional
to the gain that these two individuals will obtain from the
new link [43]. Similarly, Sorenson and his coauthors have
assumed that the new social links are created on the basis of
the “expectations of the value” of those relationships [44].
An illuminating piece of evidence of the use of a “value
motivation” for the establishment of social relations was
obtained by Manson [45] in the study of the primates rhesus
macaques. Manson [45] observed that “a young female may
gain by investing in a friendship with a low-ranking male who
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(1) is not presently sought by many females as a Friend and
(2) will stay in the group and achieve high rank and thus have
high protective ability in the future.” So far, it is evident that
the creation of new social ties is seen as an investment in which
the “future value” of the relation is more important than the
“present value” that the establishment of this link represents.

In summary, we have seen that there is empirical evidence
that support the following claims.

(i) Social contacts among individuals are somewhat deter-
mined by their social distance. They account for an amalgam
of proximities including social and geographical ones.

(ii) The number of close and casual contacts is somewhat
determined by the probability of linking pairs of individuals
by means of short- and long-range interactions.

(iii) The probability of linking pairs of individuals in a
network depends on the future value that such a new link
will bring to both individuals.

III. ACCOUNTING FOR THE SOCIAL CONTACTS
AMONG NODES

Here we combine the empirical evidence analyzed in the
previous section and summarized in the three points at the end
of it into a mathematical model. Our aim is to account for
the probability that two individuals have social contacts that
are relevant for the transmission of an infection. We start by
considering the existence of a social network among a group
of individuals that is represented by a graph G = (V,E). We
assume that the social relationship between node i and node j

in a network, which is represented by (i,j ) ∈ E, corresponds to
one that conveys close contacts of relevance to the transmission
of the type of infection under consideration. In doing so we
are assuming that if (i,j ) ∈ E, the probability εij that the two
nodes have close social contacts is equal to 1, i.e., εij ≡ 1.

Our next assumption is that if (i,j ) �∈ E, the probability that
both nodes have social contacts is not necessarily equal to zero,
but 0 < εij < 1. This means that both nodes can “eventually
meet” in the same place and time by means of some kind of
casual contacts, such as in transport, leisure, the supermarket,
etc. Using empirical evidence points (i) and (ii), we will assume
that this probability is determined by the structure of the social
network, in particular by the probability of establishing a new
link between both nodes. Now we are going to use point (iii) to
determine the probability εij for non-nearest neighbors. That
is, we assume that the two nodes will have casual contacts in
a way that is proportional to the establishment of a new link
between them. They will see the establishment of this new link
as an investment in which its future value will determine their
decision of forming a new tie. We consider such a process
like the one in which the time value of money, in particular the
future value of a growing annuity, is determined in quantitative
finance. Here, instead of money, we generalize the process
by considering that a node lends a piece of information to
another node. This information has a future value FV that is
determined, according to the quantitative finance theory, by its
present value PV , the interest rate r , and the number of time
periods t at which the information is lent. That is [46],

FV = PV (1 + r)t . (1)

Here we assume that if the node i lends some information
to node j , the information flows through the shortest path
connecting both nodes (or one of them if more than one exists)
according to empirical evidence point (ii). The information is
passed using a discrete time in which every step in the path is
considered to have a unit time. That is, the number of periods
for which the information is borrowed is assumed here to be
equal to the shortest path separation of the two nodes. Then,
let us consider the shortest paths between the two nodes as
a directed chain from the lender to the borrower. We assume
that the chain has length l and that the nodes are numbered
in consecutive order starting with 1. In a process of lending
information from node v1 to node vl+1, the information is first
transferred to node v2 with a value A and an interest rate r .
The present value of the information in the hands of node
v2 is A/(1 + r). Then node v2 enriched this information by a
given value g, which we will designate as the growth rate of the
information [46]. When node v2 lends this information to node
v3 with the same interest and growth rates, the information will
have a value A(1 + g)/(1 + r)2 in the hands of node v3. As
every node in the chain lends the information to its nearest
neighbor with interest r and growth rate g, the information
in the hands of borrower node vl+1 will have a value of
A(1 + g)l−1/(1 + r)l . The cumulative present value of the
information in this process is given by the sum of all the
values at the nodes of the chain [46]:

PV = A/(1 + r) + A(1 + g)/(1 + r)2

+ · · · + A(1 + g)l−1/(1 + r)l . (2)

If the growth and interest rates are the same, i.e., g = r , the
present value of the information is simplified to

PV = Al/(1 + r). (3)

Then, the future value of the information is given as [46]

FV = Al(1 + r)l−1. (4)

We will consider here that A ≡ 1 for the sake of simplicity.
Then, because in a connected network any two nodes i and
j are separated by a shortest-path distance dij , the expression
for the future value of the information transmitted from i to j

is given by

FV = dij x
dij −1, (5)

where x = 1 + r = 1 + g.
We consider here that lending information is carried out

with a negative gain g. That is, every node will appropriate
some part of the information they receive before lending
to its nearest neighbor. Due to this, a node prefers to lend
information to its closest neighbors than to far strangers.
We also consider that the maximum benefit that a node can
have is by lending information to its nearest neighbor. As
a consequence, the values of the parameter x are bounded as
0 � x < 0.5. The value x = 0 represents the situation in which
no long-range transmission is allowed, which corresponds to
the case in which only close contacts take place. When x →
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FIG. 2. (Color online) Average age of the nearest neighbor nodes
in different age groups (see text) by using the WS model with node
ages in which the rewiring probability depends explicitly on the
internode distance. The ages are organized in groups as in Fig. 1.

0.5, the nodes are allowed to transmit information directly to
their non-nearest neighbors. This situation represents scenarios
in which a substantial proportion of transmission is due to
casual contacts. Note that the bound is strictly smaller than
0.5 to avoid the future value of nodes separated at distance 2
becoming equal to unity.

In closing,

εij = FV = dij x
dij −1,

which means that the maximum social contacts is obtained
for the nearest neighbors and it decreases with the increase of
the social distance between the two nodes. This simple model
agrees with the three groups of empirical evidence analyzed
in the previous section. In addition it also agrees with the
empirical observation that most of the transmission usually
occurs through close contacts rather than through casual ones
[39]. At this point it is straightforward to propose a matrix
representation for the social contacts among all nodes in a
network. We designate this by �(G,x) [47], which is a square
matrix whose entries are defined by

�(G,x) =
⎧⎨
⎩

1 if i ∼ j,

dij x
dij −1 if i �= j and i �∼ j,

0 if i = j.

This matrix, of course, generalizes the adjacency matrix
A(G) of the network. Note that �(G,x = 0) = A(G) [47].
From here on we will call the parameter x the conductance as
it controls the way in which casual contacts are allowed in a
network. In a zero conductance network only close contacts
are allowed, which can be the case for the transmission in
sexually transmitted diseases or computer viruses.

One expected characteristic of the current model is that it
reproduces the age assortativity observed by Mossong et al.
[30] in the social contacts in real networks. Then, we consider a
modification of the age-WS model used in the previous section
in which casual contacts depend on the social distance between
individuals. Then, instead of considering a random rewiring

such as in the age-WS model we consider that for nodes i

and j , with dij > 1, the probability that i has a link with j is
given by pij = dij x

dij−1. That is, the rewiring is carried out
here on the basis of the “social distance” that separates two
individuals. The details of this process will be given in a future
presentation [48]. Using exactly the same age assignation
to nodes as in the previous section, we obtained the results
illustrated in Fig. 2. As can be seen, the age-WS model with
distance-based rewiring displays strong age assortativity for
all values of the conductance. In the case of the two extreme
age groups, i.e., 0–5 and 70+, there is a larger difference in
the average age of the nearest neighbors between x = 0.0 and
x = 0.5, which is about 18 years. We remark again that in
these groups it has been observed “experimentally” that there
is a larger outbreeding than in the rest of age groups [30].
For the nodes in each of the other groups of ages analyzed
in the previous section the increase of age does not exceed
10 years even for a high conductivity of x = 0.5, in complete
agreement with the empirical evidence provided by the work
of Mossong et al. [30]. For instance, for the same age group
analyzed previously (10–15 years), the average age of nearest
neighbors changes from 12.5 at x = 0.0 to 18.1 at x = 0.5.
For the nodes with ages between 5 and 24 years analyzed
by Mossong et al. [30] the average age of nearest neighbors
changed only by 6 years when the conductance changed from
0.0 to 0.5. These results clearly point out the fact that the
consideration of social distance as a director for casual social
contacts is of relevance for studying the spread of infections in
the real world. This characteristic has not long been reproduced
by existing models that account for casual contacts as random
long-range interactions among individuals.

IV. INFECTION SPREADING IN NETWORKS WITH
LR INTERACTIONS

Here we use our model of social contacts to extend
the idea of a discrete-time formulation of the problem of
contact-based epidemic spreading in networks. Our approach
consists in extending a model independently developed by
Chakrabarti et al. [49] and Gómez et al. [50,51] on the basis
of susceptible-infected-susceptible (SIS) epidemic models.
However, our model of social contacts can be implemented in
any other epidemic spreading strategy. The model considered
was first developed by Chakrabarti et al. [49] as a nonlinear
dynamical system (NLDS) in order to explain the propagation
of viruses in computer networks. More recently, Gómez et al.
[50,51] have proposed a similar microscopic Markov-chain
approach (MMCA), which uses the same principles as in
NLDS but has concentrated on the probability of infection
of individuals rather than on the common heterogeneous
mean-field approach. We clarify beforehand that our interest
here, as in the precedent papers [49–51], is in networks of
large size with any kind of topology. For obvious reasons we
propose to call this model NLDS-MMCA.

In the NLDS-MMCA model [49–51], a node i remains
healthy at time t in a network if it does not receive an
infection from its nearest neighbors at a previous time step,
t − 1. In addition, if the node has been infected, it can recover
and become healthy again with a certain probability. Then,
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the probability 1 − pi,t that the node remains healthy in the
network is given by

1 − pi,t = (1 − pi,t−1)ξi,t + δpi,t−1ξi,t , (6)

where pi,t is the probability that node i is infected at time t ,
ξi,t is the probability that it does not receive an infection from
its nearest neighbors at time t , and δ is the rate at which it
can recover from infection. The probability that a node does
not receive an infection from its nearest neighbors is assumed
to be determined by the product of individual probabilities
(independence assumption), which is determined by pj,t−1 for
all nearest neighbors of i and by the universal birth rate of the
infection β [49–51]. That is,

ξi,t =
∏
j∼i

(1 − βpj,t−1), (7)

where j ∼ i indicates that j is directly connected to i. As
shown in [49], the epidemic threshold τ for an undirected
network is

τ = 1

λ1,A

, (8)

where λ1,A is the largest eigenvalue of the adjacency matrix A
of the network.

The size of the infected population in the network is given
by

η(t) =
n∑

i=1

pi,t . (9)

Here we are interested in considering the case in which an
infection is transmitted from one infected node to its close and
casual contacts with certain probability. Obviously, the nearest
neighbors, representing close contacts in the social network,
of that infected node are at the highest risk to be infected.
However, we consider here that every node in that network
can be infected directly from that infected node as they can be
casually proximal to it at a certain stage. Our assumption is that
these casual contacts depend on the shortest-path distance at
which these nodes are from the infected node. Then, �(G,x)
is a natural substitution for the adjacency matrix in NLDS-
MMCA, which transforms this model into a generalized one
(GNLDS-MMCA), where the probability 1 − pi,t that the
node remains healthy in the network is given by

1 − pi,t = (1 − pi,t−1)ξG
i,t + δpi,t−1ξ

G
i,t , (10)

and now the generalized probability that a node does not
receive an infection at time t , ξG

i,t , is given by

ξG
i,t =

∏
j∼i

(1 − βpj,t−1)
∏
j �∼i

(1 − dij x
dij −1βpj,t−1). (11)

The first term in this expression, which corresponds to ξi,t ,
represents the probability that a node is not infected by close
contacts in the social network. The second term accounts for
the probability that a node does not receive an infection from its

casual contacts. Obviously, as x → 0, ξG
i,t → ξi,t and �(G,x =

0) → A(G), which means that GNLDS-MMCA is reduced
to the NLDS-MMCA model. In this context, the parameter
x controls the feasibility that an infected node can transmit
an infection in only one step to others that are not its close
contacts.

For the GNLDS-MMCA model the epidemic threshold τ

for an undirected network is determined [as in (8)] by the
largest eigenvalue of the generalized network matrix �(G,x),
that is, τ = 1

λ1,�(x)
(see the Appendix).

V. APPLICATIONS OF THE GNLDS-MMCA MODEL

We start by analyzing the accuracy of the GNLDS-MMCA
model by comparing it with the results obtained from sim-
ulations in random networks. We generate random networks
with Poisson degree distribution using the Erdős-Rényi (ER)
model [52] as well as random networks with power-law degree
distributions according to the Barabási-Albert (BA) model
[53]. These networks were generated by using NETWORKX

[54] in PYTHON. In addition, we also generate scale-free
networks having power-law degree distribution of the form
p(k) ∼ k−γ for a given power exponent 1.89 � γ � 3, which
were generated using the algorithm described in [55]. For
the simulations we use the average of at least 100 individual
runs that begins with a set of randomly chosen infected
nodes (usually between 2.0% and 2.5% of the total number
of nodes) and fixed values of parameters β and δ and the
conductance x. Simulations evolve in steps of one time unit.
During each step, an infected node i attempts to infect
its nearest neighbors j with probability β and also nodes
that are far away with probability dij x

dij −1β. Every infected
node is cured with probability δ. An infection attempt on
an already infected node has no effect. Simulations as well
GNLDS-MMCA were implemented in C, and the programs
are available on request. In Fig. 3 we illustrate the results
of the exact GNLDS-MMCA and the simulations for the
ER and BA random networks at different values of the
conductance.

First of all, it can be seen that the GNLDS-MMCA
reproduces very well the results obtained by simulating the
infection spread in both types of networks. The second, and
more important observation, is related to the relationship
between the structure of these networks and the dynamics
of the epidemic spreading. By keeping all other topological
parameters identical, we can compare the effect of the degree
distribution of a network on the propagation of an infection.
It can be seen that the initial rate of propagation is faster in
scale-free BA networks than in Poissonian ER ones. This is
true for any values of the conductance studied. For instance,
let t1/2 be the time needed by an infection to infect 50% of
the population in a given network. Then, for x = 0, t1/2 ≈ 50
for ER networks with 1000 nodes and k = 6, while it is only
t1/2 ≈ 35 for BA networks of the same size and average degree.
As soon as we allow for casual contacts, the time needed
to infect 50% of the population reduces dramatically, and it
continues to be smaller for BA than for ER networks. For
instance, a very small increase in the conductance to x = 0.03
drops this time to t1/2 ≈ 30 in ER networks and to t1/2 ≈ 15 in
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FIG. 3. (Color online) Results of the simulations (dashed lines) and the exact GNLDS-MMCA (solid lines) for (left) ER and (right) BA
networks having n = 1000 nodes, k̄ ≈ 6, with β = 0.02 and δ = 0.12, and for different values of the parameter x. The results are the average
of 250 realizations. The values of conductivity parameters are, from bottom to top, 0.0, 0.03, 0.06, 0.09, and 0.13.

BA ones. As x → 0.5, the number of infected nodes on both
networks tends to saturation.

Let us now introduce some results that relate network
structure to infection dynamics in general networks. The first of
these results is related to the epidemic threshold. The epidemic
threshold determines whether the outbreaks will die out or
spread and become epidemic. Let G be a connected undirected
network with generalized contact matrix �(G,x). Let λ1(x) �
λ2(x) � · · · � λn(x) be the eigenvalues of �(G,x). Then,
the epidemic threshold for this network by considering a
conductance equal to x is uniquely determined by τ = 1/λ1(x)
(see the Appendix). If the ratio between the birth and death
rates of the infection is larger than the inverse of the largest
eigenvalue of the generalized matrix, β/δ > 1/λ1(x), the
infection survives and becomes epidemic. Otherwise, the
infection dies out over time. In addition, we have also proved
mathematically that if β/δ > 1/λ1(xc), the infection survives
and becomes epidemic for any x � xc (see the Appendix).
Obviously, if β/δ > 1/λ1(xc = 0), the infection will become
epidemic for any value of the conductance. In a similar way,
if β/δ < 1/λ1(xc), the infection dies out for any value of
conductance x � xc. That is, if β/δ < 1/λ1(xc = 0.5) the
infection will die out for any value of conductance smaller
than 0.5. In a network with a star topology having n nodes
we illustrate the dependence of the epidemic threshold with
the conductance [Fig. 4(a)] as well as the progress of an
infection [Fig. 4(b)]. Note that for any 0 � x � 0.5, we have
�(G,x) � 
(G,0) = A, and

λ1(x) = x(n − 2) +
√

x2(n − 2)2 + (n − 1)

�
√

n − 1 = λ1,A = λ1(0).

Thus, when β/δ > 1/λ1(x = 0), the infection survives for
any value of the conductance, and the number of infected nodes
saturates for relatively small times as x → 0.5 [Fig. 4(b),
left]. On the other hand, when β/δ < 1/λ1(x = 0.5) the
infection dies out [right in Fig. 4(b)]. We can see that as

the conductance parameter is increased, the network is more
resistant to the elimination of the infection. That is, when
there is no conductance, about 10% of nodes remain infected
at time t = 100. However, for x = 0.13 this percentage is
about 30%.

We turn now our attention to the influence of the network
heterogeneity on the rate of epidemic spreading. Concretely,
we consider the variation of the power-law exponent in
the degree distribution of scale-free networks. That is, we
consider networks with 1000 nodes having power-law degree
distribution of the form p(k) ∼ k−γ , 1.89 � γ � 3. In Fig. 5
we illustrate the results obtained for two of these networks
having γ = 1.89 and γ = 1.98. We explore different values
of the conductance parameter, both by using our simulation
strategy and by using the GNLDS-MMCA model. As can be
seen for x = 0, there are no significant differences between
the epidemics spreading in both networks. However, even
for relatively low values of the conductance the differences
between the spreading in both kinds of networks are quite sig-
nificant. For instance, the networks with power-law coefficient
γ = 1.98 have about 20% more nodes infected for x = 0.03
than when x = 0. A small drop of the power-law exponent to
γ = 1.89 almost doubles the percentage of infected nodes for
x = 0.03 in comparison with the network having γ = 1.98.

In general, as can be seen in Fig. 6, the rate of epidemic
spreading measured by t1/2 increases very fast with the increase
of the power-law exponent γ and decreases with the increases
of the conductance x. The value of t1/2 scales as a negative
exponential of the parameter x and as a power law of the
exponent γ : t1/2 ≈ 24.36 exp(−13.58x) + 0.44γ 3.38 − 10.56.
In other words, an epidemic spreads much faster in a network
with high heterogeneous degree distribution than in one
with more regularity, i.e., for small values of γ . This rate
of spreading is significantly increased if casual contacts
(LR interactions) are present, in which case the rate of
spreading is exponentially affected by small variations of the
conductance parameter. The term dij x

dij −1influences directly
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FIG. 4. (Color online) (a) Evolution of the epidemic threshold for a star graph with n = 1000 nodes as a function of x. (b). Results of the
simulations (dashed lines) and the exact GNLDS-MMCA (solid lines) for a star graph with n = 1000 nodes, where τ = 1/

√
999 ≈ 0.0316.

Parameters in the left plot are β = 0.002, δ = 0.01 and starting with about 20% nodes infected; since β/δ = 0.01 > τ , the infection will
become epidemic for any value of the conductance x. Parameters in the right plot are β = 0.0002, δ = 0.024; thus β/δ = 0.0083 < τ , and
even starting with all nodes infected, the epidemic dies out for all values of the parameter x. The results are the average of 100 realizations.
The values of conductivity parameter are, from bottom to top, 0.0, 0.03, 0.06, 0.09, 0.13, 0.20, 0.30, and 0.50.

the probability with which an infection spreads through
casual contacts in a network. In order to understand the basic
differences between the consideration of casual contacts in the
spread of epidemics in networks with Poissonian and scale-free
degree distributions we start by considering how distances
are distributed in both types of networks as a function of the
node degrees. In Fig. 7 we illustrate the plot of the probability
of infection (infectability) d(k)xd(k)−1β versus k for networks
with Poissonian and scale-free degree distributions. Here

d(k) is the average shortest-path distance for nodes having
degree k, and we use a fixed value of the parameter β. Nodes
with large degree tend to have small average shortest-path
distance, which means that they are closer to the rest of the
nodes than nodes with low degree. Then, for a given value
of 0 < x < 0.5 the term d(k)xd(k)−1β is larger for smaller
distances and decreases as the distance separating a pair of
nodes increases. Consequently, the most connected nodes in
the network display the largest infectability, which means
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FIG. 5. (Color online) Results of the simulations (dashed lines) and the exact GNLDS-MMCA (solid lines) for networks with power-law
degree distributions p(k) ∼ k−γ with (left) γ = 1.89 and (right) γ = 1.98. The results are the average of 100 realizations for networks with
n = 1000 nodes, β = 0.02, and δ = 0.12 and for different values of the parameter x. The values of conductivity parameter are, from bottom
to top, 0.0, 0.03, 0.06, 0.09, 0.13, 0.15, and 0.20.

that the probability that they are infected through casual
contacts is very high. In networks with power-law degree
distributions there are nodes with much higher degree than in
Poissonian networks of the same size and density. Thus, these
nodes are very susceptible to being infected through casual
encounter transmission, and once they are infected, they can
spread the infection in a very effective way, both by close and
casual contact transmission. As the value of the conductance
increases, the infectability is also increased (see Fig. 7), which

FIG. 6. (Color online) Rate of epidemic spreading measured by
t1/2, i.e., the time needed to infect 50% of the whole population, for
different values of the power-law exponent γ and for different values
of the conductance x.

explains why in scale-free networks the infection spreads so
fast when the conductance increases.

The situation occurring here can be illustrated by
considering the degrees of every node in a scale-free (SF)
network. In Fig. 8(a) we illustrate the typical values for a
BA network in which we simply represent the nodes in the
abscissa and the degree of the nodes in the ordinate for x = 0.
This plot looks like any typical distribution of the degrees
in a SF network, with very few nodes of high degree and
many of low degree. Now, if we explore what happens when

FIG. 7. (Color online) Probability of infection d̄(k)xd̄(k)−1 for
different values of the conductance x for BA and ER networks having
the same number of nodes, n = 1000, and the same average degree.
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FIG. 8. (Color online) Illustration of the evolution of the degree of the nodes in a network created with the BA model as the values of the
conductance change. Here for a BA network with n = 1000 and k̄ ≈ 6 we represent the values of the generalized degree k(x) for every node
for different values of x. Notice that there is an inversion of the centrality of the nodes as the values of the conductance increases.

the values of x increase, the results are very appealing [see
Figs. 8(b)–8(d)]. As can be seen, there is an inversion in the
population of high and low degree nodes in the network. After
a certain value of x the original hubs of the network become
the poorest connected in terms of the generalized degree
ki(x) = ∑n

j=1 �ij (x). We allow for a while that x takes values
up to 1. At the same time all nodes with low degree k(x = 0)
are now among the most central ones in the network according
to k(x = 1). This inversion is a direct consequence of the fact
that ki(x = 1) = ∑n

j=1 dij is the sum of all distances from
node i to the rest of the nodes in the network. Then, in Fig. 8(d)
we observe the distribution of the distance sum for every
node in the network. It has been shown that the node-node
distribution of distances in SF network have Poisson-like
shapes [56]. Then, as illustrated in Fig. 9, where we plot the
cumulative generalized degree distributions for a BA network,
as soon as we depart from the value of x = 0, the distributions
become Poisson-like even for small values of the conductivity.

The results illustrated in Fig. 8 indicate that if we obtain
the rank correlation between ki(x = 0) versus ki(x �= 0) for

all nodes i in the network, we will observe a point in which
the initially positive correlation becomes negative. This is
exactly what we observe in Fig. 10(a), where we plot the
values of the rank correlation coefficient, measured by the
Kendall ρ index, versus the values of the conductivity for
networks with different values of the power-law exponent γ .
It is interesting to note that the value of x at which the sign
inversion occurs increases with the value of γ . That is, the
more heterogeneous networks make the inversion of the rank
correlation for smaller values of x than the more homogenous
one. The value of x at which the inversion of rank correlation
occurs (inversion point) changes as a sigmoid function with
the power-law exponent [see Fig. 10(b)]. More exactly, it can
be expressed as xinv ≈ 0.099 tanh(3.123γ − 7.357) + 0.736.
All in all, these results indicate that heterogeneous networks
are very sensitive to the changes of the conductivity and
consequently to increase dramatically the spread of infections
when casual contacts are included.

We turn now our attention to the real world, where not
only diseases can propagate in a network through close and
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FIG. 9. Illustration of the evolution of the cumulative degree
distribution of the nodes for the network studied in Fig. 8 for (a) x = 0,
(b) x = 0.3, (c) x = 0.5, and (d) x = 1. Notice that there is change
in the distribution from a power law at x = 0 to Poissonian-like
distributions as x increases.

casual contacts but also attitudes, fads, fashion styles, and
tendencies of a different nature can use similar mechanisms
of propagation. We consider here a couple of real-world
networks from two different scenarios. The first one is a
network of collaboration between 1265 jazz musicians in
which two nodes are linked if the respective musicians have
collaborated in the same band [57]. The total number of
such collaborations in this network is 32 358. The second
network represents 1586 corporate directors of the 500 top
corporations in the United States [58]. Here two nodes are
connected if the corresponding directors share a position on
the board of at least one corporation. In the first scenario

we can think about the propagation of musical tendencies
and styles in jazz, which can be diffused through the direct
collaboration between musicians. In addition, two musicians
that have not collaborated directly in a band can influence each
other simply if they have listened or studied their respective
music. In the second scenario we can be interested in the
analysis of how strategic decisions taken in one corporation
can be adopted by others. Such strategies can be transmitted
by those directors who share positions on the board of more
than one corporation, but they can also be propagated by
casual encounters of the directors. In this case casual contacts
can account for the way in which some directors analyze,
copy, and adapt what other directors are doing in corporations
where the first are not members of the direction board. For
the network of jazz musicians, taking β = 0.02, δ = 0.12,
and null conductance, the infection propagates in a very
fast way, infecting about 70% of the whole population for
t � 20. This network has a large average degree, k = 50.6,
and a fat-tail degree distribution. Consequently, an infection
propagates through close contacts in a very effective way due
to the density of the network and the fact that each time one
of the high degree nodes is infected, the infection is able to
propagate to a large number of other nodes. The consideration
of long-range interactions does not have a big impact in the
infection spreading in this network. Here t1/2 < 5 for x = 0,
and it is impossible to have a dramatic increase in the rate of
propagation due to an increase in the conductance. However,
as can be seen in Fig. 11, the consideration of a conductance
of x = 0.13 increases the percentage of infected population to
about 90%, and saturation is reached with small increases of
this parameter. The situation is quite different for the network
of the US corporate elite. First of all, the time at which 50%
of the population is infected drops from t1/2 ≈ 40 for x = 0
to t1/2 ≈ 7 for x = 0.13. This represents a dramatic increase
in the rate of propagation of attitudes among directors of the

FIG. 10. (Color online) (a) Change of the rank correlation between ki(x = 0) and ki(x �= 0) as a function of the conductance x for scale-free
(SF) networks with different exponents of the power law. (b) Scaling of the conductance at which an inversion in the rank correlation occurs
as a function of the exponent of the power law in SF networks (see text for explanations).
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FIG. 11. (Color online) Results of the simulations and GNLDS-MMCA for the networks of collaboration among (left) jazz musicians and
(right) for the corporate directors of the top 500 corporations in the United States. The results are the average of 250 realizations with β = 0.02,
δ = 0.12 and for different values of the conductance parameter x. The values of conductivity parameter are, from bottom to top, 0.0, 0.03, 0.06,
0.09, 0.13, and 0.20.

corporate elite in the United States if relatively small chances
for casual contacts are allowed. In fact, the increase of the
conductance up to x = 0.13 produces an increase of about 30%
in the infected population in comparison with the consideration
of direct contagion only.

VI. CONCLUSIONS

We have proposed here a way for accounting for the social
contacts among individuals by considering that casual contacts
can be inferred from the network of close contacts. We based
our model on a series of empirical observations made in
the epidemiological and social science literature. We model
such casual contacts by means of the probability that two
nonconnected individuals in a close contact social network
have of creating a new link between them. Then, we use the
principle that new social ties are created on the basis of the
future value of this relationship to infer the casual contacts
among individuals. In this model casual contacts are created
on the basis of long-range interactions as a function of the
social distance between two individuals, while close contacts
are assumed to be determined by the links in the social network.

This approach is then integrated in an epidemic spreading
model such as the NLDS-MMCA model. In this case we
observe that there are two main factors influencing the
rate of propagation of an epidemic in a complex network
when both close and casual interactions are considered. The
first one is the conductance parameter, which controls how
feasible casual contacts are by means of LR interactions.
If this conductance is set to zero, there is no possibility of
contagion through casual contacts, and everything happens
only by means of the close contacts among individuals, such
as in the case of sexually transmitted diseases or computer
viruses. As the conductance parameter increases, the rate of
propagation increases dramatically, and the infection is less
likely to die out. In these cases the number of infected nodes
saturates in relatively short times after the initiation of the
propagation. The second factor influencing the propagation is

the heterogeneity of the network. It has been observed that
epidemics are propagated much faster in scale-free networks
than in more regular ones. Furthermore, in scale-free networks
the influence of the conductance parameter to the propagation
is significantly more marked than in networks with Poissonian
degree distributions. All in all, an infection propagates very fast
in heterogeneous networks when the number of casual contacts
is large, making the infections easily become epidemics with
high resistance to dying out. As we have shown here, GNLDS-
MMCA can be a useful tool for understanding important
problems in modern societies, ranging from viral epidemics
to the propagation of attitudes and consumer styles.
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APPENDIX: ANALYTIC RESULTS ON GNLDS-MMCA

Theorem 1. Let G be a connected undirected network with
generalized matrix �(G,x). Let λ1(x) � λ2(x) � · · · � λn(x)
be the eigenvalues of �(G,x). Then, the epidemic threshold
for this network by considering a conductance equal to x (0 �
x � 0.5) is uniquely determined by τ = 1/λ1(x).

Proof. The proof follows similar lines as in Ref. [49]. In the
GNLDS-MMCA model, the probability 1 − pi,t that the node
remains healthy in the network is given by

1 − pi,t = (1 − pi,t−1)ξG
i,t + δpi,t−1ξ

G
i,t , (A1)
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where the generalized probability that a node does not receive
infection at time t , ξG

i,t , is given by

ξG
i,t =

∏
j∼i

(1 − βpj,t−1)
∏
j �∼i

(1 − dij x
dij −1βpj,t−1). (A2)

Note that (A1) can be expressed as

pt = F (pt−1),

with

Fi(pt−1) = 1 − (1 − pi,t−1)ξG
i,t + δpi,t−1ξ

G
i,t. (A3)

The infection dies out when pi = 0 for all i. If pi,t−1 = 0 for
all i, it follows from (A1) and (A2) that pi,t = 0 and therefore
p = 0 is a fixed point of the system (A3). Thus, we need
to see if p = 0 is a fixed point asymptotically stable in the
dynamical system (A3) and, proceeding as in [49], we will use
the following lemma.

Lemma 1 (asymptotic stability). The system is asymptoti-
cally stable at p = 0 if the eigenvalues of ∇F (0) are less than
1 in absolute value, where [∇F (0)]i,j = ∂Fi

∂pj
|p=0.

From (A3) we have

[∇F (0)]i,j =
⎧⎨
⎩

β

βdij x
dij −1

1 − δ

for dij = 1,

for j �= i,dij �= 1,

for j = i,

(A4)

and by the definition of the generalized network matrix �(G,x)
in section 2,

[∇F (0)]i,j =
{

β
ij

1 − δ

for j �= i,

for j = i.
(A5)

Thus, we can obtain the system matrix S

S(x) = ∇F (0) = (1 − δ)I + β�(G,x), (A6)

which describes the behavior of the virus when it is about to
die. As in Lemma 2 in [49], it can be easily shown that the
eigenvalues of S(x) are given by

λi,S(x) = 1 − δ + βλi,�( x), (A7)

where λi,
( x) denote the eigenvalues of �(G,x), and the
eigenvectors of S (x) are the same as those for �(G,x). Hence,
by Lemma 1, the system is asymptotically stable when

|λi,S(x)| < 1 ∀i,∀x (A8)

Now, since �(G,x) is a real symmetric matrix, its eigenval-
ues are real, and by (A7), the eigenvalues of S (x) are real too.
Also, since G is connected, �(G,x) represents the adjacency
matrix of a weighted complete graph, and therefore it is
irreducible. Thus, �(G,x) is a real, symmetric, non-negative,
irreducible, and square matrix. Under these conditions, the
Perron-Frobenius theorem states that the largest eigenvalue
λ1,
(x) [called the Perron root of �(G,x)] is positive and
simple. Thus

λ1,�( x) = |λ1,�(x)| > λi,�(x) ∀i > 1, (A9)

and

λ1,S(x) = |λ1,S(x)| > |λi,S(x)| ∀i > 1,∀x. (A10)

Using (A7) and (A8),

λ1,S(x) = 1 − δ + βλ1,�( x) < 1. (A11)

Thus, if the epidemic dies out, we must have

β

δ
< τ = 1

λ1,�( x)
. (A12)

In order to complete the proof of Theorem 1, we need to see
that if β

δ
< τ = 1

λ1,�( x)
, then the epidemic will die out over time

(sufficiency of epidemic threshold).
In (A2), since all terms β, pj,t−1, and dij x

dij −1 are non-
negative and not greater than 1,∏

j∼i

(1 − βpj,t−1) � 1 − β
∑
j∼i

pj,t−1,

and∏
j �∼i

(1 − dij x
dij −1βpj,t−1) � 1 − β

∑
j �∼i

dij x
dij −1pj,t−1.

Thus,

ξG
i,t �

(
1 − β

∑
j∼i

pj,t−1

)(
1 − β

∑
j �∼i

dij x
dij −1pj,t−1

)

= 1 − β
∑
j∼i

pj,t−1 − β
∑
j �∼i

dij x
dij −1pj,t−1

+β2

⎛
⎝∑

j∼i

pj,t−1

⎞
⎠

⎛
⎝∑

j �∼i

dij x
dij −1pj,t−1

⎞
⎠ ,

and since

β2

(∑
j∼i

pj,t−1

)(∑
j �∼i

dij x
dij −1pj,t−1

)
� 0,

ξG
i,t � 1 − β

∑
j∼i

pj,t−1 − β
∑
j �∼i

dij x
dij −1pj,t−1

= 1 − β

(∑
j∼i

pj,t−1 +
∑
j �∼i

dij x
dij −1pj,t−1

)

= 1 − β
∑

j


ijpj,t−1. (A13)

Thus, from (A1)

1 − pi,t = (1 − pi,t−1)ξG
i,t + δpi,t−1ξ

G
i,t � (1 − (1 − δ)pi,t−1)

×
(

1 − β
∑

j


ijpj,t−1

)
= 1 − (1 − δ) pi,t−1

−β
∑

j


ijpj,t−1 + (1 − δ) pi,t−1β
∑

j


ijpj,t−1,

and then

pi,t � (1 − δ) pi,t−1 + β
∑

j


ijpj,t−1

− (1 − δ) pi,t−1β
∑

j


ijpj,t−1

� (1 − δ) pi,t−1 + β
∑

j


ijpj,t−1, (A14)
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which can be expressed in matrix form as

pt � [(1 − δ)I + β�(G,x)]pt−1, (A15)

which uses the same system matrix as (A6),

pt � S (x) pt−1 � S2 (x) pt−2 � · · · � St (x) p0

�
∑

i

λt
i,S(x)ui,Su′

i,Sp0,

where the last inequality is the spectral decomposition of St .
By (A7), when β

δ
< 1

λ1,�( x)
, then λi,S(x) < 1 and λt

i,S(x) ≈ 0 for
all i and large t , which makes pt ≈ 0 as t increases, implying
that the infection dies out over time.

Finally, we make use of the following Theorem which
states the monotonicity property of the Perron root for

nonnegative and irreducible square matrices (see Theorem 1.3
in [59]).

Theorem 2. Let A and B be non-negative matrices of order
n � 1. If A � B, then the Perron roots of A and B satisfy the
inequality λ1,A � λ1,B . Furthermore, if B is irreducible and
A �= B, then the inequality holds strictly: λ1,A < λ1,B.

Corollary. If β/δ > 1/λ1,�( xc), the infection survives and
becomes epidemic for any x � xc. And if β/δ < 1/λ1,�( xc),
the infection dies out for any value of the conductance
x � xc.

Proof. Let 0 � x1 � x2; if dij = 1, then 
ij (x1) =

ij (x2) = 1, and if dij > 1, then 
ij (x1) = dij x

dij −1
1 <


ij (x2) = dij x
dij −1
2 . Thus 
ij (x1) � 
ij (x2) and �(G,x1) �

�(G,x2), and the result is a direct consequence of
Theorem 2.
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