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Human diseases spread over networks of contacts between individuals and a substantial body of recent research
has focused on the dynamics of the spreading process. Here we examine a model of two competing diseases
spreading over the same network at the same time, where infection with either disease gives an individual
subsequent immunity to both. Using a combination of analytic and numerical methods, we derive the phase
diagram of the system and estimates of the expected final numbers of individuals infected with each disease. The
system shows an unusual dynamical transition between dominance of one disease and dominance of the other as
a function of their relative rates of growth. Close to this transition the final outcomes show strong dependence
on stochastic fluctuations in the early stages of growth, dependence that decreases with increasing network size,
but does so sufficiently slowly as still to be easily visible in systems with millions or billions of individuals. In
most regions of the phase diagram we find that one disease eventually dominates while the other reaches only
a vanishing fraction of the network, but the system also displays a significant coexistence regime in which both
diseases reach epidemic proportions and infect an extensive fraction of the network.
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I. INTRODUCTION

Diseases spread over networks of contacts between indi-
viduals, and a full understanding of their nature and behavior
requires an understanding of the relevant network structure
and the effects that structure has on the spreading process.
Traditional theories of disease propagation largely ignore
network effects [1,2], but there has been a significant volume
of research in recent years aimed at building an understanding
of the role that networks play [3–8]. Network epidemiology
ideas have also been applied to cultural transmission processes,
such as the spread of ideas, rumors, fashions, or opinions,
which may occur by mechanisms qualitatively similar in some
respects to the spread of biological disease [9].

One of the most fundamental and important theoretical
models of disease spreading is the susceptible-infected-
recovered (SIR) model, in which initially susceptible indi-
viduals catch the disease of interest from infected individu-
als, becoming infected themselves and possibly passing the
disease to others, before recovering and acquiring permanent
immunity so that each individual catches the disease at most
once. As well as being a reasonably accurate, if simplified,
representation of the dynamics of many real-world diseases,
the SIR model is important to network epidemiology from
a theoretical viewpoint because it is closely related to bond
percolation on a given contact network [6,8,10–12]. The
mapping is a straightforward one: edges in the network
are occupied with independent probability T , equal to the
time-integrated probability that a neighbor of an infected
individual will become infected. The value of T is a property
both of the disease and of individuals’ behavior, and is called
the transmissibility or infectivity. The occupied edges of the
network form connected percolation clusters and the members
of a cluster represent the set of vertices that will become
infected in the limit of long time if any vertex in the cluster
is initially infected. In general the clusters are small for low
values of the transmissibility, consisting of only few vertices
each, but as the transmissibility increases they become larger

and eventually an extensive giant cluster forms, corresponding
to a potential epidemic outbreak of the disease in which a
non-negligible fraction of the population becomes infected.
The point at which the giant cluster forms is a continuous phase
transition and is referred to in the epidemiology literature as
the epidemic threshold.

In this paper we study the behavior of two SIR-type diseases
competing for the same population of hosts and spreading
over the same contact network. In some cases a pair of
diseases—or two strains of the same disease, such as two
strains of influenza—spread through the same population and
interact through cross immunity: infection with and recovery
from either strain imparts subsequent immunity to both so that
each individual can catch at most one of the two strains. The
question we address is whether and how far the two strains will
spread under such circumstances, as a function of parameters
such as transmissibility and network structure.

A simple case of this problem was studied previously
by Newman [13] using the mapping to bond percolation
described above. In that work it was assumed that the spread
of one disease begins only after the other has entirely run
its course. The first disease can then be regarded as effectively
removing from the population all individuals it infects, leaving
a pared-down remnant of the original network, referred to as
the residual network, for the second disease to spread on. If
the first disease spreads too readily and consumes too large a
portion of the network, then the residual network will be too
sparse to support the spread of the second disease. Thus there
is an upper limit on the transmissibility of the first disease
if the second is to spread, which was dubbed the coexistence
threshold in Ref. [13].

In this paper, we study the more general—and more
realistic—case in which the two diseases spread concurrently.
Although this appears to be a harder problem it turns out, as we
will show, that many of the results of the earlier analysis can be
applied or adapted to the more general situation. (A different
generalization to the case in which one disease confers only
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partial immunity to the other has been studied by Funk and
Jansen [14]. The case of full cross immunity for concurrent
diseases following a susceptible-infected-susceptible (SIS)
dynamics has also been studied [15], but the results are not
directly applicable to the case we study because the SIS model
does not map to bond percolation.)

When studying diseases spreading at well separated times,
the precise dynamics of the diseases is not important for
predicting the final outbreak sizes. The mapping to percolation
tells us everything we need to know and details like whether
one disease spreads faster than the other have no effect. When
considering the concurrent spread of diseases, however, such
details are important and we must specify what dynamics we
are considering. In this paper we adopt one of the simplest and
best known of dynamical frameworks for SIR diseases, the
Reed-Frost model. This model uses a discrete time step for its
evolution and on each step susceptible individuals have a fixed
probability, equal to the transmissibility T , of being infected by
each of their infected network neighbors, so that a susceptible
individual with k infected neighbors remains susceptible with
probability (1 − T )k . Infected individuals remain infected for
exactly one time step and then recover, becoming immune and
remaining in the immune state indefinitely thereafter. Thus the
model has just two parameters, the length of the time step
and the transmissibility. (The other common choice for SIR
dynamics, the Kermack-McKendrick model, uses continuous
time and stochastically constant rates of infection and recovery,
but again has just two parameters, equal to the two rates. The
Kermack-McKendrick model can also be mapped to a bond
percolation process, but on a directed, rather than undirected,
network, which makes its analysis less transparent, and it is in
part for this reason that we use the Reed-Frost model in this
paper.)

In our studies we make use of a two-disease generalization
of the Reed-Frost model as follows. The two diseases, which
we label red and blue, each start from a single, randomly
chosen, infected vertex. In the simplest case the two diseases
are assumed to start at the same instant, although we will relax
this condition later. The diseases have transmissibilities Tr

and Tb, for red and blue, respectively. We also allow their time
steps to be different, so that one spreads on a faster clock than
the other. Only the ratio of the time steps is important for our
results, not the overall time scale, so we fix the time step for the
blue disease to be 1 and vary the time step for the red disease,
which we denote α. Without loss of generality we assume that
0 � α � 1, meaning that red always spreads faster than (or at
the same speed as) blue. Thus there are three parameters in
this two-disease model, Tr , Tb, and α, as opposed to two in the
one-disease version.

The model is straightforward to implement numerically.
The blue disease spreads at integer times t , while the red
disease spreads every integer multiple of α. If a vertex happens
to get infected with both diseases at the exact same time we
choose at random which disease will be successful, though in
practice this situation can be avoided by choosing a suitable
value of α such that its multiples never coincide with integers
during the course of a simulation. Despite the simplicity of
the model, we will see that it displays some complex and
interesting behaviors.

II. PRINCIPAL RESULTS

The behavior of the system we study is, as we have said,
quite complex, so we begin in this section with a nontechnical
summary. Detailed arguments and numerical results are given
in the following sections.

Initially we consider the results in the limit of large network
size, for which the behavior of the system is relatively simple.
As we will show, however, networks must, in some parameter
ranges, be very large indeed to be considered “large” in this
sense, and real contact networks—even networks of billions
of people—are not large enough. Thus finite-size effects can
be important under real-world conditions, and so we give an
analysis of these also.

Consider then the behavior of the system on a contact
network of n vertices, in the limit of large n. In order to
take the limit we need to specify how our contact network
is defined for given n. The analytic and numerical results in
this paper are all calculated using the so-called configuration
model [16,17], i.e., a random graph with a specified degree
distribution, and the limit of large network size is taken as the
limit of this model with the degree distribution held fixed [18].
Qualitatively, the results we report should apply to other
networks as well, subject to some relatively mild conditions,
but our quantitative results are all for the configuration model
using degree distributions with finite first and second moment.

For given values of the three parameters Tr , Tb, and α,
we consider the fate of our two diseases as they each spread
from a single randomly chosen initial disease carrier. Let us
suppose that the epidemic threshold for our network—the
position of the percolation transition, as discussed in the
introduction—falls at a critical bond probability φc. For
instance, on configuration model networks it is known that

φc = 〈k〉
〈k2〉 − 〈k〉 , (1)

where 〈k〉 and 〈k2〉 represent the mean and mean-square
degrees respectively [19,20]. If the transmissibility of either of
our diseases falls below this value the disease will not spread,
reaching only O(1) vertices before dying out, in which case that
disease can be ignored and the outcome for the other disease is
given by standard single-disease results. For nontrivial results,
therefore, we require Tr,Tb > φc.

Even for transmissibility above the epidemic threshold it is
not guaranteed that a disease will spread. A disease starting
from a single initial carrier can still die out, either because
it starts in a small component of the network (not the giant
component) or just because of stochastic fluctuations in the
spreading process. Again, however, this gives trivial behavior,
and so we limit our discussion to cases in which both diseases
“take off,” meaning that both would, in the absence of the other
disease, ultimately reach epidemic proportions, infecting an
extensive fraction of the network in the limit of large size.

With these assumptions, both diseases spread exponentially
at first: each is surrounded by a sea of susceptible individuals
to infect—a naive population in the epidemiology jargon—and
on an arbitrarily large network the two diseases start arbitrarily
far apart and hence do not initially interfere with one another.
The rate of exponential growth for the blue disease depends
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on Tb and for the red disease on Tr and α. We will shortly
calculate what these rates are, but for the moment suppose that
we know the rates and that the ratio of the rate for red to the
rate for blue is β. Then on average the number of individuals
infected by blue goes as Nb = ert for some rate r (with the
overall multiplier fixed by the condition that Nb = 1 at t = 0)
and the number infected by red goes as Nr = eβrt = N

β

b .
Now suppose that β < 1, meaning that red grows slower

and blue grows faster, and let us wait a certain amount of
time until blue grows to fill O(n) vertices, meaning that
Nb = cn for some constant c. In the same amount of time
red infects Nr = N

β

b = (cn)β vertices, which is a fraction
(cn)β/n = cβ/n1−β of the entire network, i.e., a vanishing
fraction in the limit of large n since β < 1. Thus as far as the
blue disease is concerned, red is irrelevant—cross immunity
of individuals previously infected with the red disease is a
negligible impediment to blue’s spread, and blue’s dynamics
will be the same as if it were the only disease. We can make
a similar argument for the case where β > 1 and red grows
faster, showing that in the time red takes to reach O(n) vertices
blue reaches only O(n1/β), or a fraction O(1/n1−1/β ), which
is again negligible in the limit of large n.

This insight is important because it allows us to treat
our concurrent diseases as if they were in fact spreading
nonconcurrently, one after the other. The faster disease spreads
to the entire network, infecting essentially everyone it was
going to infect, before the slower disease rises beyond the
level of insignificance. This means that, in the limit of large
n, the eventual outcome for the two diseases can be predicted
using static percolation arguments of the type employed for
time-separated diseases in the work of Newman [13] discussed
in the introduction.

The value β = 1 at which the growth rates of the two
diseases are equal forms a surface in the three-dimensional
parameter space (Tr,Tb,α) of the model. On one side of this
surface the blue disease grows faster and is equivalent to the
first disease in the time-separated picture of Ref. [13], while
the red disease plays the role of the second disease. On the
other side of the surface the roles are reversed.

Figure 1 shows a two-dimensional slice of the parameter
space for fixed Tb and varying values of Tr and α. The surface
β = 1 is represented by the diagonal curve. If we are in the
regime β > 1 to the right of this curve then the red disease will
always produce an epidemic. When red has run its course and
finished spreading (but blue has still reached only a vanishing
fraction of the network), it leaves behind it a residual network,
as described earlier, and blue will spread further only if that
residual network is sufficiently dense that the threshold for
bond percolation on it falls below Tb. Just as before, this places
an upper limit on the value of Tr if both diseases are to spread,
which we call the coexistence threshold and denote φx . If
Tr < φx then blue can spread and cause its own epidemic; if
not, then blue only ever infects O(n1/β ) vertices. The value
Tr = φx constitutes another surface in the parameter space,
which appears as a vertical straight line in Fig. 1, separating
the coexistence regime (to the left of the line) from the regime
where there is only one epidemic (to the right). Note that
the value of φx depends on the transmissibility Tb of the blue
disease—a more virulent blue disease may spread on a residual

FIG. 1. (Color online) A two-dimensional slice through the phase
diagram of the system, with Tb held constant while Tr and α vary. The
colors of the regions represent the dominant disease in each phase,
while the symbols give the leading-order scaling of the expected
number of individuals infected by the blue (top) and red (bottom)
diseases respectively.

network where a less virulent one would fail—so the position
of the vertical line will shift as we take different slices through
the parameter space [21].

One might imagine that one would see a similar behavior on
the other (left-hand) side of the curve in Fig. 1. On this side the
blue disease spreads faster and will always cause an epidemic,
but if its transmissibility is sufficiently low, one might argue,
then it could leave behind a residual network dense enough to
allow the red disease to subsequently spread and also cause
an epidemic. It turns out, however, that this does not occur.
As we will show, a necessary condition for coexistence of the
slower red disease in this case is that Tr > Tb. However, given
that α � 1, it turns out that we also require Tb > Tr if blue is
to be the faster disease in the first place, and hence we have a
contradiction and coexistence is not possible. Thus there is no
coexistence region to the left of the curve.

Figure 1 is completed by a third line, again vertical,
representing the point at which Tr falls below the percolation
threshold φc. To the left of this line, the red disease does not
cause an epidemic under any circumstances, infecting only
O(1) individuals.

The complete figure constitutes a phase diagram for this
system and has four regions; in one we have coexistence of the
two diseases, while in each of the others one disease dominates
and the other disease reaches only a vanishing fraction
of the network. Note that the percolation and coexistence
thresholds, which were identified previously [13], correspond
to continuous phase transitions in the sizes of the epidemics,
but the curved β = 1 boundary marks a different kind of
transition at which the sizes jump discontinuously. This
transition, which is a purely dynamical phenomenon driven
by the differing exponential growth rates of the diseases, was
not present in previous studies.
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An interesting feature of the phase diagram is that there can
be a maximum value of α above which coexistence does not
occur—note that the purple coexistence region extends only up
to a certain value of α and not beyond. Thus, for instance, for
a random graph with a Poisson degree distribution, it turns out
that coexistence requires α � 1

2 , meaning that the red disease
must spread at least twice as fast as the blue disease.

While still treating the large-size limit, we can consider
other variants of our model. In particular, the assumption that
both diseases start spreading at the same moment is unrealistic
and can be relaxed. In most real-world cases one disease (or
one strain of disease) starts spreading before the other, which is
equivalent to having both start at t = 0 but having one disease
start with more than one carrier while the other starts with
just one. As long as the number of initial carriers for both
diseases is held constant, however, this makes no difference
in the limit of large network size because the disease with
the larger exponential growth rate will always win in the
end. Asymptotically therefore the phase diagram and other
properties are unchanged.

The picture changes, however, when we consider a network
of finite size. For diseases that start at the same moment
we can make the same argument as before: in the time it
takes for the faster-growing disease to spread to O(n) vertices
the slower-growing one spreads to O(nβ) or O(n1/β), as
appropriate. Close to the β = 1 boundary, however, O(nβ)
could be a large number, so there will be some rounding of the
previously discontinuous transition as we cross the boundary.
(In this sense the transition is unlike a traditional first-order
phase transition, which remains discontinuous in a finite-sized
system but shows fluctuations in its position. In the present
model the position of the transition is unchanged but it is
no longer discontinuous.) The other transitions, which are
continuous phase transitions, will also show rounding, as is
typical of such transitions in finite systems.

A more dramatic difference appears if, as above, we
allow the diseases to start their spread at different times,
or equivalently give one disease a larger number of initial
carriers than the other. In particular, if we give a head start
to the disease with the slower exponential growth rate then,
depending on the size of that head start and the difference in
rates, it is possible that the slower disease will, on the finite
network, reach a significant fraction of the vertices in advance
of the faster disease. The faster disease simply does not
have enough time to overtake the slower one’s lead and exclude
it from the network. In this case it is possible for the slower
disease to actually exclude the faster one, imparting immunity
upon a sufficiently large fraction of individuals as to prevent
an epidemic of the faster disease, a complete reversal of the
behavior in the infinite-size limit.

Suppose for example that the blue disease is faster, meaning
that β < 1. As before, the blue disease starts with a single
carrier at t = 0 and the number grows as Nb = ert on average
for some constant r . But let us now suppose that red has
A > 1 infected carriers at t = 0, so that its number of cases is
not eβrt but Nr = Aeβrt = AN

β

b . The faster blue disease will
catch up to the slower red one at the point where Nb = Nr

or equivalently Nb = AN
β

b , which can be rearranged to give
Nb = A1/(1−β). If blue is to catch up to red, this point must
fall well before we reach the size n of the entire network and

the exponential growth of the diseases is exhausted. In other
words, blue catches up only if

n � A1/(1−β). (2)

We can make a similar argument if β > 1 and red is the faster
disease. The result is the same but with β replaced by 1/β.

But note that if the growth rates of the two diseases are
similar, so that β is close to 1, then the exponent in Eq. (2)
becomes large, meaning that the network needs to be very large
to prevent the slower disease from dominating. With β = 0.9,
for instance, and a modest value of A = 10, we would need
n � 1010, which is several orders of magnitude larger than the
population of the Earth. Thus the finite-size effects can be very
much noticeable for populations of realistic sizes.

Moreover, we have throughout this argument ignored
stochastic fluctuations in the growth process. In the early
stages of development of an epidemic, when only a handful of
individuals are infected, fluctuations can be large as a fraction
of epidemic size—easily a factor of 2 or more—and this can
either increase or decrease the lead that one disease has over
another, or create a lead where none existed previously. Even
if our two diseases start spreading at exactly the same moment,
a lead gained by the slower disease, by virtue of chance
fluctuations early in the process, can be enough, particularly
when β is close to 1, to allow it to dominate, or at least
coexist with, the other disease, in defiance of the predictions
of the infinite-n theory. This behavior means that the outcome
is broadly undetermined for random initial conditions on
finite-sized networks within certain regions of the parameter
space. (We note that this is quite different from the behavior of
a single disease modeled with the SIR model, for which initial
fluctuations have no effect whatsoever on the final fraction of
individuals infected, assuming that the disease does not die
out.)

On the other hand, as we will see, if we wait some time
until one disease has grown to fill a small fraction of the
network and the period of gross initial fluctuations has ended,
then it is possible to predict the final outcome quite accurately
from arguments such as those above. One would not be far
off the mark if one where to assume the dynamics to be
governed by a deterministic growth process after waiting a
suitable initial period for the fluctuations to become small. In
this regard, our results agree with recent work by Marceau
et al. [22], who consider a deterministic differential equation
model of competing diseases and show that it is able to predict
final outcomes with some accuracy, but only given an initial
condition that specifies the fraction of individuals infected
with each disease at a time after fluctuations have become
negligible. Thus a deterministic approximation does seem to
work in this regime, although it also misses some of the
most interesting phenomena exhibited by the system. In the
following sections we discuss the results above in more detail,
giving a combination of analytic derivations and numerical
results to motivate our conclusions.

III. EPIDEMIC GROWTH RATES

Our first step in demonstrating the results summarized in
Sec. II is to derive the exponential growth of each of the
two diseases in the absence of the other. In the epidemiology
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literature the growth of diseases is usually parametrized by the
basic reproductive ratio R0, which is the average number of
additional infections caused by a newly infected individual.
Consider a vertex in our network model that is infected by a
disease with transmissibility T and suppose the vertex has k

network neighbors excluding the one that gave it the disease
in the first place (which is obviously already infected)—k is
the so-called excess degree. At early times the neighbors will,
with high probability, all be susceptible and each becomes
infected with independent probability T , so that the expected
number of infectees is T k. The value of R0 is the average of
this quantity over the excess degree k.

Let pk be the degree distribution of the network, i.e., pk

is the fraction of vertices with degree k. The excess degree,
however, is distributed not according to this distribution, but
according to its own excess degree distribution [17],

qk = (k + 1)pk+1

〈k〉 , (3)

where 〈k〉 = ∑
k kpk is, as before, the mean degree in the

network. Performing the average over the excess degree, the
basic reproductive ratio is now given by

R0 = T

∞∑

k=0

kqk = T

〈k〉
∞∑

k=0

k(k − 1)pk

= T
〈k2〉 − 〈k〉

〈k〉 . (4)

The epidemic threshold, which separates the regime in which
the disease dies out from the regime in which it grows
exponentially, is the point at which R0 = 1, or equivalently
the point at which T = φc = 〈k〉/(〈k2〉 − 〈k〉), as in Eq. (1).

In the Reed-Frost model in a naive population, each infected
individual infects, on average, R0 susceptibles on each time
step, then recovers and is no longer infectious. Thus R0 is
precisely the average factor by which the number of infected
individuals changes on each step. If we define

Rb = Tb

〈k2〉 − 〈k〉
〈k〉 = Tb

φc

(5)

to be the reproductive number for the blue disease in our two-
disease system, and recall that the blue disease by hypothesis
executes exactly one time step per unit time, then in a naive
population the average number of individuals infected with the
blue disease at early times t is

Nb = Rt
b = et ln Rb , (6)

where the outbreak is assumed to start from a single infected
carrier at t = 0 [23].

Similarly for the red disease we can define

Rr = Tr

〈k2〉 − 〈k〉
〈k〉 = Tr

φc

. (7)

But recall that the red disease executes one time step every
α units of time, which means that the average number of
individuals infected with red at early times is

Nr = Rt/α
r = e(t/α) ln Rr . (8)

Thus both diseases display exponential growth but with
different growth rates: ln Rb for blue and α−1 ln Rr for red.
Note that these rates are both positive provided both diseases
are above the epidemic threshold, so that Rb,Rr > 1.

We define β as before to be the ratio of the exponential
growth rates of the two diseases:

β = ln Rr

α ln Rb

= ln(Tr/φc)

α ln(Tb/φc)
, (9)

which we can calculate explicitly given the values of Tb, Tr ,
α, and the degree distribution of the network. Now, by the
argument given in Sec. II, we can show that for a network
of n vertices with n large, the faster-growing disease will fill
a fraction O(n) of the network before the slower one has a
chance to fill more than a vanishing fraction. Therefore the
faster disease can be treated as if the slower one did not exist
and the analysis for nonconcurrent diseases, spreading one
after another, applies. (As we pointed out in Sec. II, other
behaviors are possible on finite networks, but for the moment
let us focus on the large-n limit.)

Equation (9) allows us to calculate the position of the
diagonal curve in Fig. 1, which we call the growth-rate
boundary, separating the region where the blue disease
dominates from the region where the red one does. This
boundary corresponds, as we have seen, to β = 1, and hence
is given by

α = ln(Tr/φc)

ln(Tb/φc)
. (10)

Note that this implies that the boundary meets the α = 0 axis at
the epidemic threshold Tr = φc for the red disease, as depicted
in Fig. 1.

IV. PERCOLATION ANALYSIS

Given that the two diseases can be treated as being well
separated in time, we can now apply a bond percolation
analysis to derive a number of useful results concerning the
transmissibilities and the positions of the various transitions
depicted in the phase diagram of Fig. 1. Such an analysis was
described previously in Ref. [13], whose results we review and
extend in this section.

Consider our two diseases spreading on a configuration
model network with degree distribution pk and n vertices,
where n is again large, and let us suppose, for the sake of
argument, that the red disease has the faster rate of growth, so
that it can be treated as running its course first, to be followed
later by the blue disease. (The case where blue grows faster can
be treated by similar arguments, but with the colors reversed.)
We thus consider a bond percolation process on our network
with bond occupation probability equal to the transmissibility
Tr of the red disease. The size of an epidemic outbreak of
the disease, the number of people affected by the disease in
the limit of long time, is then equal to the size of the giant
percolation cluster, as described in the Introduction.

Consider any vertex in the network and let u be the
probability that it is not connected to the giant cluster by
a particular one of its edges. This can happen in either of
two ways. First, the edge could be unoccupied, which occurs
with probability 1 − Tr . Second, the edge could be occupied
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(probability Tr ) but the vertex at its other end does not belong
to the giant cluster. The latter happens if and only if none of
that vertex’s other edges connect it to the giant cluster, which
occurs with probability uk , where k is the number of other
edges, the quantity we call the excess degree. Thus the total
probability is 1 − Tr + Tru

k . Now we average this expression
over the distribution qk of the excess degree, Eq. (3), to get a
complete expression for u thus:

u =
∞∑

k=0

qk(1 − Tr + Tru
k) = 1 − Tr + TrF1(u), (11)

where F1(z) = ∑
k qkz

k is the probability generating function
for the excess degree distribution and we have made use of the
normalization condition

∑
k qk = 1.

If we can solve Eq. (11) for u, we can use the result to
calculate the size of the giant cluster. A randomly chosen
vertex of (total) degree k is not in the giant cluster if none
of its edges connect it to that cluster, which happens with
probability uk again. Now, however, k is distributed according
to the total degree distribution pk , so the average probability
of being outside the giant cluster is

∑
k pku

k = F0(u) and the
probability of being in the giant cluster is

S = 1 − F0(u), (12)

where F0(z) = ∑
k pkz

k is the generating function for the
degree distribution. But this probability is also equal to the
expected fraction of the network occupied by the giant cluster,
and hence S gives us the size of the giant cluster as a fraction
of n.

The portion of the network not in the giant cluster, which
may include more than one network component, is the portion
we previously called the residual network. It is the portion
not infected by the red disease and hence not immune to
subsequent infection by the blue disease. To find out whether
the blue disease will cause a second epidemic, and if so how
many individuals it will infect, we must now perform a second
bond percolation calculation on this residual network.

It is straightforward to show that the residual network
itself constitutes another configuration model network, i.e., a
random graph with a given degree distribution, but the degree
distribution is different in general from that of the original
network because in removing the vertices infected by the red
disease we reduce the degrees of their uninfected neighbors.
The degree distribution of the residual network cannot be
expressed simply in closed form but, as shown in [13], its
generating function, which we denote G0(z), can:

G0(z) = F0[u + (z − 1)F1(u)]

F0(u)
, (13)

where F0, F1, and u are defined as previously. Similarly, the
generating function for the excess degree distribution of the
residual network is

G1(z) = F1[u + (z − 1)F1(u)]

F1(u)
. (14)

Given these expressions the percolation properties of the
residual network are straightforward to calculate. Consider
a bond percolation process on a configuration model having
the degree distribution implied by Eqs. (13) and (14), with

bond occupation probability Tb. We consider any vertex in the
network and let v be the probability that it is not connected to
the giant cluster of the new percolation process by a particular
one of its edges. Then, by the same argument as before, v is a
solution of

v = 1 − Tb + TbG1(v), (15)

and the fraction C of the residual network filled by the giant
cluster is

C = 1 − G0(v). (16)

Since the residual network is itself a fraction 1 − S of the
original network, the giant cluster of the second percolation
process fills a fraction C(1 − S) of the original n vertices.

We can also calculate the positions of the epidemic
thresholds for the two diseases. They are given by Eq. (1) with
the degree averages calculated for the entire network or the
residual network, as appropriate. Alternatively, the thresholds
can be expressed in terms of the generating functions. The
basic reproductive ratio is given by Eq. (4) to be

Rr = Tr

∞∑

k=0

kqk = TrF
′
1(1), (17)

where the prime indicates a derivative. The epidemic threshold
corresponds to the point Rr = 1, i.e., the point where Tr is
equal to 1/F ′

1(1). [It is straightforward to show that this gives
the same result as Eq. (1).] Similarly the threshold for the blue
disease on the residual network is

φb = 1

G′
1(1)

= 1

F ′
1(u)

, (18)

where we have used Eq. (14). Note that the value of u depends
on Tr via Eq. (11) and hence so does the value of φb. Thus
Eq. (18) also implicitly defines the coexistence threshold φx

as the value of Tr at which φb = Tb and the blue disease
fails to spread. That is, the coexistence threshold is the value
φx such that Tb = 1/F ′

1(u) when u is the solution of u =
1 − φx + φxF1(u). Rearranging both expressions, we could
alternatively write

φx = 1 − u

1 − F1(u)
, (19)

where u satisfies F ′
1(u) = 1/Tb.

In [13] it was shown always to be the case that φb > φc—the
threshold for the second disease to spread is greater than the
threshold for the first. However, a stronger result also holds,
which will be important for our work: it turns out that φb must
be greater also than Tr . To see this, we first rearrange Eq. (11)
to give an expression for Tr thus:

Tr = 1 − u

1 − F1(u)
(20)

[which is similar to Eq. (19), except that u may now take any
value, where in (19) it takes the value that satisfies F ′

1(u) =
1/Tb].

Recall that u represents the probability that an edge
connects to a vertex not in the giant cluster of the red disease,
and this probability can only decrease (or stay the same) when
Tr increases, which implies that dTr/du � 0. Performing the
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derivative, we then find that F1(u) − 1 + (1 − u)F ′
1(u) � 0,

and rearranging this expression we have

Tr = 1 − u

1 − F1(u)
� 1

F ′
1(u)

= φb. (21)

Since Tb > φb for the second disease to spread, this result
implies that Tb > Tr also. Thus the second disease must have
a higher transmissibility than the first for coexistence to occur.
This means, for instance, that we cannot have coexistence of
two diseases with the same transmissibility.

We can make similar arguments if the roles of red and
blue diseases are reversed. If blue is the faster growing then
it spreads first and red spreads subsequently over the residual
network blue leaves behind. The same equations apply for the
sizes of the epidemics and the thresholds, and we can show that
Tr > Tb is a necessary condition for red to spread extensively.
In this regime, however, the quantity β, Eq. (9), is by definition
less than unity and hence:

ln Tr/φc < α ln Tb/φc � ln Tb/φc, (22)

and hence Tr < Tb. Thus it is never the case in this regime
that Tr > Tb and so, as claimed in Sec. II, coexistence is not
possible when blue is the faster growing disease.

Thus one is left with slightly contrary criteria for coexis-
tence. On the one hand we must be in the regime where red
is the faster growing disease, but on the other hand blue must
have the higher probability of transmission. It is possible that
this type of behavior may not be common for real diseases—it
seems reasonable that the disease with higher transmissibility
would grow faster, not slower—and hence it may be that the
conditions for coexistence of competing diseases in a single
population are met rather rarely.

As a concrete example of the results of this section, consider
a faster red disease and a slower blue one spreading on a
network with the Poisson degree distribution pk = e−cck/k!.
In this case F0(z) = F1(z) = ec(z−1)—so the degree and excess
degree distributions are the same—and φc = 1/F ′

1(1) = 1/c.
The coexistence threshold φx is then given by Eq. (19) where
u is the solution of F ′

1(u) = 1/Tb, or

u = 1 − 1

c
ln cTb. (23)

Substituting this value into (19) gives

φx = Tb ln cTb

cTb − 1
. (24)

We can also use the results of this section to find the
maximum value of α beyond which coexistence does not
occur. Referring to Fig. 1, we see that the maximum falls
on the growth-rate boundary defined by Eq. (10), at the point
where Tr = φx . For the Poisson degree distribution above, for
example, Eq. (10) becomes

α = ln cTr

ln cTb

, (25)

and substitution from Eq. (24) then gives

αmax = 1 − ln(cTb − 1) − ln ln cTb

ln cTb

. (26)

This is a monotone decreasing function of Tb and has a
maximum value of 1

2 as Tb → 1/c from above. (The blue
disease cannot have a transmissibility Tb smaller than 1/c

and still spread, since 1/c is the percolation threshold for this
network.) Thus for the Poisson degree distribution, coexistence
requires the red disease to transmit at least twice as fast as the
blue disease—or faster for larger Tb or c. Similar calculations
can be performed for other degree distributions too, although
they require more effort and closed-form expressions are not
always possible.

V. NUMERICAL RESULTS

The results above apply to the case of infinite system size
but, as we argued in Sec. II, finite-size effects can be important
in this system even for the largest networks that occur in
real-world situations. To investigate the behavior of the system
on networks of finite size and compare with the heuristic
arguments of Sec. II, we have performed extensive numerical
simulations of the model. For these simulations we again use
random graphs with Poisson degree distributions and fix the
mean degree at c = 3 in all cases. (Small values of c make
the coexistence region larger and thus more easily visible.) As
with our analytic calculations, we start each disease with a
single infected carrier chosen uniformly at random, all other
vertices being initially susceptible. The diseases start at the
same instant and spread according to the Reed-Frost dynamics
defined in Sec. I. Instances in which one or both of the diseases
die out are discarded [24] and we collect statistics for the final
number of individuals infected with each disease for a range of
values of the parameters and for network sizes up to a million
vertices.

Figure 2 shows the scaling of the numbers of infected
individuals with network size for two different values of the
parameter α (top and bottom panels in the figure). The red and
blue points indicate the numerical results for the red and blue
diseases, averaged over a thousand networks each, while the
dashed lines represent the expected slope of the scaling in the
large-n limit. As we can see, in most cases the numerical results
appear to converge to the expected slope as n becomes large,
confirming our analytic calculations. For parameter values that
fall close to the growth-rate boundary, however, the agreement
is poorer (lines of slope 0.70 and 0.66 in the upper panel
and 0.76 in the lower panel). We interpret this as an effect
of the early-time fluctuations discussed in Sec. II. When we
are close to the boundary, fluctuations in the early growth of
one or both diseases can give the slower-growing disease a
lead over the faster one large enough that the faster one never
catches up. As a result the slower disease achieves O(n) scaling
where normally it would have the lesser O(nβ) [or O(n1/β )].
When averaged over many simulations, this means that the
apparent scaling of the number of infected individuals will lie
somewhere between the expected O(nβ) and the steeper O(n),
which is what we see in Fig. 2.

In this regime, therefore, the observed behavior is a result
of initial fluctuations coupled with finite-size effects. It should
be possible to reduce the magnitude of the effect either by
increasing the system size (so as to reduce finite-size effects)
or by increasing the number of initial carriers of the disease
(to reduce fluctuations). As we argued in Sec. II, however,
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FIG. 2. (Color online) Simulation results for the number of
vertices infected with each disease as a function of network size for
various values of the parameters. Red circles indicate values for the
red disease, blue squares for the blue disease. Each point represents
an average over 1000 networks. In the top panel α = 0.3, Tb = 1,
and Tr is 0.37, 0.42, 0.50, 0.55, and 0.75 for the various data sets
shown. These parameter values are all outside the coexistence region,
in the regime where one disease or the other always dominates. In
the lower panel α = 0.7, Tb = 1, and Tr is 0.4, 0.5, 0.6, 0.8, and 1.
These parameters include parts of the coexistence region, where both
diseases can infect an extensive number of vertices. The dotted lines
represent the scaling expected from the arguments given in the text.

one may have to increase the system size enormously—far
beyond our ability to perform the simulations—in order to
make a significant difference. And reducing early fluctuations
by increasing the number of initial carriers has the undesirable
result of increasing the finite-size effects, since it reduces the
length of the exponential growth phase for both diseases, and
therefore again requires us to increase the system size to get
comparable results. In practice, therefore, there is no easy way
to reach the asymptotic scaling regime when we are close to
the growth-rate boundary.

In Fig. 3 we show results for the final fraction of individuals
infected with each disease as a function of α for fixed Tb and
Tr . The value of Tr is chosen to fall above the coexistence
threshold φx , so that we are in the regime on the right of
the phase diagram, Fig. 1, where one disease, either red or
blue, always wins and the other reaches a negligible fraction

FIG. 3. (Color online) Simulation results for the average fraction
of vertices infected with red (circles) and blue (squares) diseases
as a function of α for the case Tr = 0.6, Tb = 0.8. The red (solid)
and blue (dashed) lines represent the analytic predictions for the
same parameter values. The parameters fall outside the coexistence
region for all values of α, so one disease or the other should always
dominate, at least in the limit of large n, and there should be a single
discontinuous transition as we cross the growth-rate boundary. The
shades of the data points indicate network sizes of n = 103, 104, 105,
and 106 (lightest points to darkest). Each point is an average over at
least 100 networks.

of vertices. The points on the plot represent the numerical
results, while the red (solid) and blue (dashed) lines show our
analytic predictions from Eqs. (11) and (12). The lines are
horizontal because the sizes of the epidemics depend only on
the transmissibilities (which are fixed) and not on α, except at
the growth-rate boundary, which is clearly visible as the step
where the dominant disease switches from red to blue.

As we can see from the figure the agreement between
analytic and numerical results is good away from the growth-
rate boundary, as we expect. Away from the boundary
finite-size effects are small and fluctuations should have
a negligible impact on outcomes. Closer to the boundary
agreement is poorer because, once again, the plotted points
represent averages over many simulations and in some of those
simulations the “wrong” disease dominates because of chance
fluctuations (or merely fails to be vanishingly small), moving
the average away from the infinite-n prediction. Moreover,
in this regime convergence to the analytic prediction with
increasing n appears slow (represented by the varying shades
of gray among the points), which accords qualitatively with
our expectations from Eq. (2) and the accompanying argument.

In Fig. 4 we show two further plots of epidemic size, this
time with α fixed and either Tr (upper panel) or Tb (lower
panel) varying. Both plots include parameter ranges that fall
within the coexistence regime and in each we can see both
the discontinuous growth-rate transition and the continuous
coexistence transition. As expected we see some finite-size
rounding of the coexistence transition, particularly for smaller
system sizes, and considerably more dramatic deviations from
the analytic predictions around the growth-rate boundary, as
in Fig. 3.
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FIG. 4. (Color online) Top: simulation results for the average
fraction of vertices infected with red (circles) and blue (squares) as a
function of Tr for the case α = 0.1, Tb = 1. Bottom: corresponding
plot as a function of Tb for Tr = 0.4, α = 0.2. The red (solid) and
blue (dashed) lines represent the analytic predictions. The parameter
ranges in each case were chosen to overlap the coexistence region
so that two transitions are visible in each panel, the discontinuous
transition at the growth-rate boundary and the continuous transition
at the coexistence threshold. In the central region of each panel the
two diseases coexist. As in Fig. 3, the shades of the data points
indicate network sizes of n = 103, 104, 105, and 106 (lightest points
to darkest). Each point is an average over at least 100 networks.

VI. EPIDEMIC SIZES CLOSE TO THE GROWTH-RATE
BOUNDARY

The numerical results of Sec. V agree well with our analytic
predictions, except in the region close to the growth-rate
boundary, where, as we have seen, the combination of finite-
size effects and fluctuations in the early stages of the growth
process can produce significant deviations from the expected
behavior. In this regime the large-n theory breaks down. We
can, however, still derive some useful analytic results. As we
show in this section, even though it is not possible to predict the

final size of either of the two epidemics close to the growth-rate
boundary, the sizes are still related to one another, one being
large whenever the other is small, and we can derive constraints
on the particular combinations of sizes allowed.

Again our calculations are for the configuration model.
We consider a vertex anywhere in the network and one of
the edges connected to that vertex, and we define w to be
the average probability that neither of the two diseases was
transmitted to the vertex down that edge. By transmission we
here mean that the pathogen was spread, but not that the vertex
necessarily became infected—a vertex that was previously
infected with either disease will not become infected again
even if the pathogen is spread to it.

The probability that the red disease was spread over
the edge in question is equal to the probability, denoted
qr , that the vertex at the other end was infected with red,
times the probability that transmission occurred, which is Tr

by definition, for a total probability of Trqr . Similarly the
probability for blue is Tbqb, and the total probability 1 − w

that either disease is transmitted is Trqr + Tbqb, so

w = 1 − Trqr − Tbqb. (27)

Now suppose that the vertex at the end of the edge has excess
degree k. Then the probability that it is infected with neither
red nor blue is equal to the probability that neither disease
was transmitted to it along any of its k edges, which is wk .
Averaging over the excess degree distribution qk , the vertex’s
average probability of being uninfected is thus

∑
k qkw

k =
F1(w), where F1 is the generating function for the excess
degree distribution, as previously. Then the probability that
the vertex is infected is 1 − F1(w), which is necessarily equal
to qr + qb. Thus we have

F1(w) = 1 − qr − qb. (28)

Substituting for w from Eq. (27), we then have

F1(1 − Trqr − Tbqb) = 1 − qr − qb. (29)

This equation does not uniquely determine either of the
probabilities qr or qb, and indeed, as we have seen, for
finite-size networks they are typically not determined but can
take a range of values depending on chance fluctuations. But
Eq. (29) gives us a relation between the two such that if we
know either one then we know the other.

In Fig. 5 we test Eq. (29) against the results of numerical
simulations. We again take a Poisson degree distribution,
for which, conveniently, since the degree and excess degree
distributions are identical, the probabilities qr and qb that the
vertex at the end of an edge is infected with red or blue
are equal to the overall fractions pr and pb of red and blue
vertices in the network as a whole. For four different sets
of values of the model parameters close to the growth-rate
boundary (the four rows in Fig. 5) we measure these two
fractions on 1000 different networks and in the left column of
Fig. 5 we show scatter plots of pr against pb. The solid lines
in the plots represent Eq. (29) and, as we can see, the values
of pr and pb indeed lie along these line. On any particular
run of the simulation one cannot predict where the individual
values pr and pb will fall, but if we know one then we can
predict the other, since they always fall on the line. (The lines
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FIG. 5. (Color online) Simulation results comparing the fractions of vertices infected with the red and blue diseases for four different sets
of parameter values close to the growth-rate boundary (the four rows in the figure). Left column: the fraction infected with red versus blue for
networks with n = 106. All points lie on the curves defined by Eq. (29), which are shown as the solid black lines. Middle column: box plot of
the fraction infected with each disease for various network sizes n. Right column: the fraction infected by the red (circles) and blue (squares)
diseases at the end of the simulation as a function of the ratio of the numbers infected by the faster- and slower-growing diseases measured
at the first time that either disease reaches 1

2

√
n. First row: Tb = 0.8, Tr = 0.6, α = 0.5; second row: Tb = 0.8, Tr = 0.6, α = 0.8; third row:

Tb = 1, Tr = 0.45, α = 0.25; fourth row: Tb = 1, Tr = 0.45, α = 0.4.
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appear straight in the figure, but are in fact slightly curved
for this particular choice of degree distribution and model
parameters.)

Of the four rows in the figure, the first two have the same
values of Tr and Tb, chosen to fall above the coexistence
threshold in the regime where coexistence does not occur, and
two different values of α chosen to fall a little below and a little
above the growth-rate boundary. Thus for the parameter values
in the first row the red disease is faster growing and would
dominate in the limit of large n but the blue one occasionally
wins on the finite network. The second column gives a box plot
showing the average fraction infected with each disease for a
range of system sizes n, and we can see that as n becomes larger
the dominance of red becomes progressively better defined.
In the second row of the figure blue is the faster growing
disease and the positions are reversed, blue winning more
often, particularly as n becomes large.

The third and fourth rows of Fig. 5 show similar results, but
for Tr below the coexistence threshold. Now when α is chosen
to put us below the growth-rate boundary, in the coexistence
region (third row in the figure), we see that neither red nor blue
dominates, even for large n, with both infecting significant
fractions of the network. In the fourth and final row of the
figure the value of α places us above the growth-rate boundary
again and in this regime blue dominates in the limit of large n.

These results accord well with the analysis presented earlier.
We have not, however, directly tested our hypothesis that the
deviations we observe from the infinite-n results are due to
stochastic fluctuations in the early stages of the growth process.
The third column of Fig. 5 shows a test of this hypothesis.
The test involves waiting an initial period of time for the
fluctuations to become small, then measuring the number of
individuals infected with each disease. The horizontal axis in
each panel of the third column gives the ratio of the number
of vertices infected by the disease (either red or blue) with the
slower exponential growth rate versus the number infected by
the disease with the faster, measured at the first moment that
either disease reaches 1

2

√
n infected individuals. The vertical

axis measures the final fraction of individuals infected with
each disease, once both have run their course, and the scatter
of red and blue points shows the results for each of our
simulations, for a range of different network sizes.

On the left-hand side of each graph in the third column
the ratio of slow- to fast-growing diseases is small, meaning
that the fast-growing one dominates at early times. In these
circumstances, if we assume that fluctuations are no longer
important to the fast-growing disease and that it simply grows
exponentially with the appropriate growth rate, then the final
size of its outbreak is uniquely determined, and hence so
is the final size of the outbreak of the slower disease. The
results in the figure appear to confirm this conjecture, with the
observed fractions infected with each disease being narrowly
concentrated around single values. As we move further to the
right, we enter the regime in which the slower growing disease
infects more individuals at early times. In this regime, and
particularly in the rightmost regions of the graph, the faster
growing disease only infects a small number of individuals
and hence can have significant fluctuations. These fluctuations
may give the fast-growing disease a boost sufficient to allow it
to catch up to the slower one, or a delay sufficient to ensure that

it does not. Thus in this region the outcome is not uniquely
determined and we expect to see a range of final infected
fractions. Again the numerical results shown in the figure
appear to confirm this conjecture, with a much broader scatter
of points on the right than on the left. Finally, note that the
points in the right-hand part of the figure are primarily those
for simulations on smaller networks (as indicated by the shapes
of the points), because larger systems take longer to reach the
1
2

√
n point, making the typical values of the slow-to-fast ratio

(which dwindles over time) smaller and hence pushing the
points leftward on the plot as n grows.

VII. CONCLUSION

In this paper we have studied the behavior of two competing
diseases with complete cross immunity (or two strains of a
single disease) spreading concurrently over a static network of
contacts between individuals of a single population. Using a
mixture of analytic results, heuristic arguments, and numerical
simulation, we have derived the phase diagram for the system,
which shows four distinct phases, and given calculations of
the expected number of individuals infected with each of
the diseases in the limit of large network size for networks
generated using the configuration model. Of particular interest
is the coexistence phase, a region of the parameter space in
which neither disease excludes the other and both spread
to infect an extensive fraction of the network. We have
demonstrated a number of nontrivial features of this phase,
including the fact that the disease that expands through the
population slower must nonetheless have a higher probability
of transmission if coexistence is to occur. Such behavior
is possible only if the faster growing disease has a shorter
transmission time between when an individual gets infected
and when they pass on the infection to others, and we have
shown also that there is an upper bound on the ratio of the
transmission times of the two diseases if coexistence is to
occur.

Another unusual feature of the system is the “growth-rate
boundary,” a dynamical transition between regimes in which
one disease or the other dominates. The numbers of individuals
infected by both diseases change discontinuously as we cross
this boundary, in the limit of large system size, although for
finite systems the transition is blurred by strong finite-size
effects.

A number of extensions or generalizations of our cal-
culations are possible. We have worked with the simplest
possible model of epidemic dynamics, the Reed-Frost model,
but calculations could be performed for other SIR-style
models, such as the Kermack-McKendrick model in which
infection and recovery processes take place in continuous
time with stochastically constant rates. The results should be
qualitatively similar: one expects to see a growth-rate boundary
in any model with exponential growth rates. Extending the
model further, one could introduce arbitrary distributions of
transmission and recovery times [25], but determining the
exponential growth rates will be more complicated for such
a system. Changes of this kind may alter the shape of the
growth-rate boundary but should not change the qualitative
nature of the transition.
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There are also some questions of interest concerning the
Reed-Frost model that are not answered by the calculations
presented here. Our analytic results are all derived for the
configuration model and different behaviors might be seen
on other networks. Also, close to the growth-rate boundary
we observe strong finite-size deviations from the large-n
predictions of the analytic theory, and it is unclear at present
how to calculate, for instance, the exponents characterizing
the growth of epidemics with system size in this regime.
And we have assumed in our calculations that neither disease
dies out in the early stages of the growth process; in reality
they will sometimes die out and we do not at present know
how to calculate the probabilities of certain outcomes, such

as the probability within the coexistence region that the
slower-growing disease will die out after the faster-growing
one has spread. This probability depends on the chance that
the slower disease reaches the giant component of the residual
network, a probability that does not appear to have a simple
expression in the percolation-theory language employed here.
These and other interesting questions we leave for future work.
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