
PHYSICAL REVIEW E 84, 036103 (2011)

Efficient and principled method for detecting communities in networks

Brian Ball,1 Brian Karrer,1 and M. E. J. Newman1,2

1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 27 April 2011; revised manuscript received 11 July 2011; published 8 September 2011)

A fundamental problem in the analysis of network data is the detection of network communities, groups of
densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding
overlapping communities based on a principled statistical approach using generative network models. We show
how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows
us to analyze networks of millions of nodes in reasonable running times. We test the method both on real-world
networks and on synthetic benchmarks and find that it gives results competitive with previous methods. We also
show that the same approach can be used to extract nonoverlapping community divisions via a relaxation method,
and demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.

DOI: 10.1103/PhysRevE.84.036103 PACS number(s): 89.75.Hc, 02.10.Ox, 02.50.−r

I. INTRODUCTION

Many networked systems, including biological and social
networks, are found to divide naturally into modules or com-
munities, groups of vertices with relatively dense connections
within groups but sparser connections between them [1,2].
Depending on context, the groups may be disjoint or overlap-
ping. A fundamental problem in the theory of networks, and
one that has attracted substantial interest among researchers in
the last decade, is how to detect such communities in empirical
network data [2,3]. There are a number of desirable properties
that a good community detection scheme should have. First,
it should be effective, meaning it should be able to accurately
detect community structure when it is present. There are, for
instance, many examples of networks, both naturally occurring
and synthetic, for which the community structure is widely
agreed upon, and a successful detection method should be able
to find the accepted structure in such cases. Second, methods
based on sound theoretical principles are preferable over those
that are not. A method based on a mere hunch that something
might work is inherently less trustworthy than one based on
a provable result or fundamental mathematical insight. Third,
when implemented as a computer algorithm, a method should
ideally be fast and scale well with the size of the network
analyzed. Many of the networks studied by current science are
large, with millions or even billions of vertices, so a community
detection algorithm whose running time scales, say, linearly
with the size of the network is enormously preferred over one
that scales as size squared or cubed.

In this paper we derive and demonstrate an algorithm for
community detection in undirected, unweighted networks that
can find either overlapping or nonoverlapping communities
and satisfies all of the demands above. On standard benchmark
tests the algorithm has performance similar to the best
previous algorithms in detecting known community structure.
The algorithm is based on established methods of statistical
inference, namely, maximum likelihood and the expectation-
maximization (EM) algorithm. And the algorithm is fast.
In its simplest form it consists of the iteration of just two
sets of equations, each iteration taking an amount of time
that increases only linearly with system size. In practice
the algorithm can handle networks with millions of vertices

and edges in reasonable running times on a typical desktop
computer: for the largest network we have analyzed, which
has over 4 million vertices and 40 million edges, a single run
of the algorithm takes less than an hour.

We approach the problem of community detection first as
a problem of finding overlapping communities. Early efforts
at community detection, going back to the 1970s, assumed
nonoverlapping or disjoint communities [1,4,5], but as many
researchers have argued in the last few years, it is common in
practical situations for communities to overlap [6]. In social
networks, for example, people often belong to more than one
circle of acquaintances, e.g., family, friends, co-workers, and
so forth, and hence those circles should properly be considered
as overlapping since they have at least one common member.
In biological networks too vertices can belong to more than
one group. Metabolites in a metabolic network can play a
role in more than one metabolic process or cycle; species in
a food web can fall on the border between two otherwise
noninteracting subcommunities and play a role in both of
them. Thus the most general formulation of the community
detection problem should allow for the possibility of overlap.
Our approach is to develop a solution to this general problem
first, then show how a variant of the same approach can be
applied to nonoverlapping communities as well.

We tackle the detection of overlapping communities by
fitting a stochastic generative model of network structure to
observed network data. This approach, which applies methods
of statistical inference to networks, has been explored by a
number of authors for the nonoverlapping case, including some
work that goes back several decades [5,7–9]. Extending the
same approach to the overlapping case, however, has proved
nontrivial. The crucial step is to devise a generative model
that produces networks with overlapping community structure
similar to that seen in real networks. The models used in
most previous work are “mixed membership” models [10],
in which, typically, vertices can belong to multiple groups
and two vertices are more likely to be connected if they have
more than one group in common. This, however, implies that
the area of overlap between two communities should have
a higher average density of edges than an area that falls in
just a single community. It is unclear whether this reflects the

036103-11539-3755/2011/84(3)/036103(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.036103

BRIAN BALL, BRIAN KARRER, AND M. E. J. NEWMAN PHYSICAL REVIEW E 84, 036103 (2011)

behavior of real-world networks accurately, but it is certainly
possible to construct networks that do not have this type of
structure. Ideally we would prefer a less restrictive model that
makes fewer assumptions about the structure of community
overlaps.

Another set of approaches to the detection of overlapping
communities are those based on local community structure
[11]. Rather than splitting an entire network into communities
in one step, these methods instead look for local groups
within the network, based on analysis of local connection
patterns. Methods of this kind give rise naturally to over-
lapping communities when one generates a large number
of independent local communities throughout the network.
Moreover, the communities tend to be compact and connected
subgraphs, a requirement not always met by other methods.
On the other hand, global detection methods can capture
large-scale network structure better and are more appropriate
when particular constraints, such as constraints on the number
of communities, must be satisfied.

In this paper we develop a global statistical method for
detecting overlapping communities based on the idea of link
communities, which has been proposed independently by a
number of authors both in the physics literature [12,13] and
in machine learning [14,15]. The idea is that communities
arise when there are different types of edges in a network.
In a social network, for instance, there are links representing
family ties, friendship, professional relationships, and so forth.
If we can identify the types of the edges, i.e., if we can
group not the vertices in a network but the edges, then we
can deduce the communities of vertices after the fact from
the types of edges connected to them. This approach has the
nice feature of matching our intuitive idea of the origin and
nature of community structure while giving rise to overlapping
communities in a natural way: a vertex belongs to more than
one community if it has more than one type of edge.

Previous approaches to the discovery of link communities
have made use of heuristic quality functions optimized over
possible partitions of a network’s edges [12,13]. Such quality
functions, particularly the so-called modularity function [16],
have been used in the past for nonoverlapping communities,
but while in practice these functions often give reasonable
results, they also have some deficiencies: the modularity, for
instance, can not be used to find very small communities
[17], may not have a unique optimum [18], and is somewhat
unsatisfactory from a formal viewpoint [19,20]. Recent results
of Bickel and Chen [20] suggest that these deficiencies can
be remedied by abandoning the quality function approach
and instead fitting a generative model to the data. This is
the approach we take, but the definition of a model for link
communities entails some subtlety. In generative models for
vertex communities, such as the mixed membership models
mentioned above, one can assign vertices to groups first and
then place edges based on that assignment. But for a model of
link communities, where it is the edges that are partitioned, one
can not assign edges to groups until the edges exist, so the edges
and their groupings have to be generated simultaneously. We
describe in detail how we achieve this in the following section.
Once we have the model, the goal will be to determine the
values of its parameters that best fit the observed network and
from those to determine the overlapping vertex communities.

The outline of the paper is as follows. First, we define
our model and then demonstrate how the best-fit values of
its parameters can be calculated using a maximum likeli-
hood algorithm. We also discuss how the algorithm can be
implemented to optimize speed and memory requirements,
allowing applications to large networks. We give example
applications to numerous real-world networks, as well as tests
against synthetic networks that demonstrate that the algorithm
can discover known overlapping community structure in such
networks.

Finally, we show how our method can be used also to
detect nonoverlapping communities by assigning each vertex
solely to the community to which it most strongly belongs in
the overlapping division. We demonstrate that this intuitive
heuristic can be justified rigorously by regarding the link
community model as a relaxation of a stochastic blockmodel
for disjoint communities [21]. Algorithms have been proposed
previously for fitting this blockmodel, but their running time
was typically at least quadratic in the number of vertices, which
limited their application to smaller networks. The algorithm
proposed here is significantly faster and hence can be applied
to the detection of disjoint communities in very large networks.

II. A GENERATIVE MODEL FOR LINK COMMUNITIES

Our first step is to define the generative network model
that we will use. The model generates networks with a given
number n of vertices and undirected edges divided among a
given number K of communities. It is convenient to think of
the edges as being colored with K different colors to represent
the communities to which they belong. Then the model is
parametrized by a set of parameters θiz, which represent the
propensity of vertex i to have edges of color z. Specifically,
θizθjz is the expected number of edges of color z that lie
between vertices i and j , the exact number being Poisson
distributed about this mean value. Note that this means the
network is technically a multigraph: it can have more than one
edge between a pair of vertices. Some real-world networks
contain such multiedges: in network representations of the
World Wide Web, for instance, a single web page can contain
several hyperlinks to the same other page. Most networks,
however, have single edges only, and in this sense the model
is unrealistic. However, allowing multiedges makes the model
enormously simpler to treat and in practice the number of
multiedges tends to be small, so the error introduced is also
small, typically vanishing as 1/n in the limit of large network
size. Multiedges are also allowed in most other random graph
models of networks, such as the widely studied configuration
model [22,23], and are neglected there for the same reasons.
Our model also allows self-edges, edges that connect to the
same vertex at both ends, with expected number 1

2θizθiz,
the extra factor of a half being convenient for consistency
with later results. Again, the appearance of self-edges, while
unrealistic in some cases, greatly simplifies the mathematical
developments and introduces only a small error.

In the model defined here, the link communities arise
implicitly as the network is generated, as discussed in the
introduction, rather than being spelled out explicitly. Two
vertices i,j that have large values of θiz and θjz for some
value of z have a high probability of being connected by an

036103-2

EFFICIENT AND PRINCIPLED METHOD FOR DETECTING . . . PHYSICAL REVIEW E 84, 036103 (2011)

edge of color z, and hence groups of such vertices will tend
to be connected by relatively dense webs of color-z edges,
precisely the structure we expect to see in a network with link
communities.

III. DETECTING OVERLAPPING COMMUNITIES

Given the model defined above, it is now straightforward to
write down the probability with which any particular network
is generated. Recalling that a sum of independent Poisson-
distributed random variables is also a Poisson-distributed
random variable, the expected total number of edges of all
colors between two vertices i and j is simply

∑
z θizθjz (or

1
2

∑
z θizθiz for self-edges), and the actual number is Poisson

distributed with this mean. Thus the probability of generating
a graph G with adjacency matrix elements Aij is

P (G|θ) =
∏
i<j

(∑
z θizθjz

)Aij

Aij !
exp

(
−

∑
z

θizθjz

)

×
∏

i

(
1
2

∑
z θizθiz

)Aii/2

(Aii/2)!
exp

(
− 1

2

∑
z

θizθiz

)
. (1)

(Recall that the adjacency matrix element Aij , by convention,
takes the value Aij = 1 if there is an edge between distinct
vertices i and j , but Aii = 2 for a self-edge—hence the
additional factors of 1

2 in the second product.)
We fit the model to an observed network by maximizing this

probability with respect to the parameters θiz, or equivalently
(and more conveniently) maximizing its logarithm. Taking
the log of Eq. (1), rearranging, and dropping additive and
multiplicative constants (which have no effect on the position
of the maximum), we derive the log likelihood

log P (G|θ) =
∑
ij

Aij log

(∑
z

θizθjz

)
−

∑
ijz

θizθjz. (2)

Direct maximization of this expression by differentiating leads
to a set of nonlinear implicit equations for θiz that are hard to
solve, even numerically. An easier approach is the following.
We apply Jensen’s inequality in the form [24]

log

(∑
z

xz

)
�

∑
z

qz log
xz

qz

, (3)

where the xz are any set of positive numbers and the qz are any
probabilities satisfying

∑
z qz = 1. Note that the exact equality

can always be achieved by making the particular choice qz =
xz/

∑
z xz. Applying Eq. (3) to Eq. (2) gives

log P (G|θ) �
∑
ijz

[
Aijqij (z) log

θizθjz

qij (z)
− θizθjz

]
, (4)

where the probabilities qij (z) can be chosen in any way we
please provided they satisfy

∑
z qij (z) = 1. Notice that the

qij (z) are only defined for vertex pairs i,j that are actually
connected by an edge in the network (so that Aij = 1), and
hence there are only as many of them as there are observed
edges.

Since, as noted, the exact equality in this expression can
always be achieved by a suitable choice of qij (z), it follows

that the double maximization of the right-hand side of (4) with
respect to both the qij (z) and the θiz is equivalent to maximizing
the original log likelihood [Eq. (2)] with respect to the θiz

alone. It may appear that this does not make our optimization
problem any simpler: we have succeeded only in turning a
single optimization into a double one, which one might well
imagine was a more difficult problem. Delightfully, however,
it is not; the double optimization is actually very simple. Given
the true optimal values of θiz, the optimal values of qij (z) are
given by

qij (z) = θizθjz∑
z θizθjz

, (5)

since these are the values that make our inequality an exact
equality. But, given the optimal values of the qij (z), the optimal
θiz can be found by differentiating (4), which gives

θiz =
∑

j Aij qij (z)∑
i θiz

. (6)

Summing this expression over i and rearranging gives us(∑
i

θiz

)2

=
∑
ij

Aij qij (z), (7)

and combining with (6) again then gives

θiz =
∑

j Aij qij (z)√∑
ij Aij qij (z)

. (8)

Maximizing the log likelihood is now simply a matter of
simultaneously solving Eqs. (5) and (8), which can be done
iteratively by choosing a random set of initial values and
alternating back and forth between the two equations. This
type of approach is known as an expectation-maximization
or EM algorithm and it can be proved that the log likelihood
increases monotonically under the iteration, although it does
not necessarily converge to the global maximum. To guard
against the possibility of getting stuck at a local maximum, we
repeat the entire calculation a number of times with random
initial conditions and choose the result that gives the highest
final log likelihood. In the work presented here, we found good
results with numbers of repetitions in the range from 10 to 100.

The value of qij (z) in Eq. (5) has a simple physical
interpretation: it is the probability that an edge between i and
j has color z, which is precisely the quantity we need in order
to infer link communities in the network. Notice that qij (z) is
symmetric in i,j , as it should be for an undirected network.

The calculation presented here is mathematically closely
related to methods developed in the machine learning com-
munity for the analysis of text documents. Specifically, the
model we fit can be regarded as a variant of a model used in
probabilistic latent semantic analysis (PLSA), a technique for
automated detection of topics in a corpus of text, adapted
to the present context of link communities. Connections
between text analysis and community detection have been
explored by several previous authors. Of particular interest
is the work of Psorakis et al. [25], which, although it does
not focus on link communities, uses another variant of the
PLSA model, coupling it with an iterative fitting algorithm
called nonnegative matrix factorization to find overlapping

036103-3

BRIAN BALL, BRIAN KARRER, AND M. E. J. NEWMAN PHYSICAL REVIEW E 84, 036103 (2011)

communities in directed networks. Also of note is the work
of Parkinnen et al. [14], who consider link communities as
we do, but take a contrasting algorithmic approach based
on a Bayesian generative model and Markov chain Monte
Carlo techniques. A detailed description of the interesting
connections between text processing and network analysis
would take us some way from the primary purpose of this
paper, but for the interested reader, we give a discussion and
references in Appendix A.

IV. IMPLEMENTATION

The method outlined above can be implemented directly
as a computer algorithm for finding overlapping communities,
and works well for networks of moderate size, up to tens of
thousands of vertices. For larger networks both memory usage
and run time become substantial and prevent the application
of the method to the largest systems, but both can be improved
by using a more sophisticated implementation, which makes
applications to networks of millions of vertices possible.

The algorithm’s memory use is determined by the space
required to store the parameters: the θiz require O(nK) space
while the qij (z) require O(mK), where n and m are the
numbers of vertices and edges in the network. Since m is
usually substantially larger than n, this means that memory
use is dominated by the qij (z). We can reduce memory use
by reorganizing the algorithm in such a way that the qij (z)
are never stored. Rather than focusing on the θiz, we work
instead with the average number kiz of ends of edges of color
z connected to vertex i:

kiz =
∑

j

Aij qij (z). (9)

Given the values of these quantities on a given iteration of the
algorithm, the calculation of the values at the next iteration is
then as follows. First, we define a new set of quantities k′

iz that
will store the new values of the kiz. Initially we set all of them
to zero. We also calculate the average number κz of edges of
color z summed over all vertices

κz =
∑

i

kiz (10)

in terms of which the original θiz parameters are

θiz = kiz√
κz

, (11)

where we have used Eq. (8). Next we go through each edge
(i,j) in the network in turn and calculate the denominator of
Eq. (5) for that i and j from the values of the kiz, thus:

D =
∑

z

θizθjz =
∑

z

kizkjz

κz

. (12)

Armed with this value, we can calculate the value of qij (z) for
this i,j and all z from Eq. (5):

qij (z) = θizθjz∑
z θizθjz

= kizkjz

Dκz

. (13)

Now we add this value onto the quantities k′
iz and k′

jz, discard
the values of D and qij (z), and repeat for the next edge in the
network. When we have gone through all edges in this manner,

the quantities k′
iz will be equal to the sum in Eq. (9), and hence

will be the correct new values of kiz.
This method requires us to store only the old and new

values of kiz, for a total of 2nK quantities, and not the values
of qij (z). Depending on the values of m and n, this can result
in substantial memory savings.

As for the running time, the algorithm as we have described
it has a computational complexity of O(mK) operations per
iteration of the equations, where m is again the number of
edges in the network, but this too can be improved. In a typical
application of the algorithm to a network, the end result is
that each vertex belongs to only a subset of the K possible
communities. To put that another way, we expect that many
of the parameters kiz will tend to zero under the EM iteration.
It is straightforward to see from the equations above that if
a particular kiz ever becomes zero, then it must remain so
for all future iterations, which means that it no longer need
be updated and we can save ourselves time by excluding it
from our calculations. This leads to two useful strategies for
pruning our set of variables. In the first, we set to zero any
kiz that falls below a predetermined threshold δ. Once a kiz

has been set to zero, the corresponding values of the qij (z) on
all the adjacent edges are also zero and therefore need not be
calculated. Thus, for each edge, we need only calculate the
values of qij (z) for those colors z for which both kiz and kjz

are nonzero, i.e., for the intersection of the sets of colors at
vertices i and j . This strategy leads to speed increases when the
number of communities K � 4. For smaller values of K the
speed savings are outweighed by the additional computational
overhead and it is more efficient to simply calculate all qij (z),
but we nonetheless still set the values of the kiz to zero below
the threshold δ because it makes possible our second pruning
strategy.

Our second strategy, which can be used in tandem with the
first and gives significant speed improvements for all values
of K , is motivated by the observation that if all but one of
the kiz for a particular vertex are set to zero, then the color
of the vertex, meaning the group to which it belongs, is fixed
at a single value and will no longer change at all. If both
vertices at the ends of an edge (i,j) have this property, if both
of them have converged to a single color and are no longer
changing, then the edge connecting them no longer has any
effect on the calculation and can be deleted entirely from the
network.

By the use of these two strategies, the speed of our
calculations is improved markedly. We find in practice that the
numbers of parameters kiz and edges both shrink rapidly and
substantially with the progress of the calculation, so that the
majority of the iterations involve only a subset, typically those
associated with the vertices whose community identification
is most ambiguous. If the value of the threshold δ is set to zero,
then the pruned algorithm is exactly equivalent to the original
EM algorithm and the results are identical, yet even with this
choice we find substantial speed improvements. If δ is chosen
small but nonzero (we use δ = 0.001 in our calculations) then
we introduce an approximation into the calculation, which
means the results will be different in general from the original
algorithm. In practice, however, the difference is small, and
the nonzero δ gives us an additional and substantial speed

036103-4

EFFICIENT AND PRINCIPLED METHOD FOR DETECTING . . . PHYSICAL REVIEW E 84, 036103 (2011)

0 5 10 15 20
<k>

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 v
er

ti
ce

s

Ja

cc
ar

d
in

de
x

5000 6000 7000 8000 9000 10000
Size of larger group

0 1000 2000 3000 4000 5000
Size of overlap

FIG. 1. (Color online) Results from the three sets of synthetic tests described in the text. Each data point is averaged over 100 networks.
Twenty random initializations of the variables were used for each network and the run giving the highest value of the log likelihood was taken
as the final result. In each panel the black curve shows the fraction of vertices assigned to the correct communities by the algorithm, while the
lighter curve is the Jaccard index for the vertices in the overlap. Error bars are smaller than the points in all cases.

improvement. (In our experiments we find a variation of about
1% or less in the final log likelihood for values of δ anywhere
from 0 to 0.1. Note, however, that if the value of δ is greater
than 1/K , then it is possible inadvertently to prune all of the
colors from a vertex, leaving it in no community at all. To
avoid this, one must choose δ < 1/K .)

A detailed comparison of results and run times for the
original and pruned versions of the algorithm is given in
Appendix B for a range of networks. Unless stated otherwise,
all calculations presented in the remainder of the paper are
done with the faster version of the algorithm.

V. RESULTS

We have tested the performance of the algorithm described
above using both synthetic (computer-generated) networks and
a range of real-world examples. The synthetic networks allow
us to test the algorithm’s ability to detect known, planted
community structure under controlled conditions, while the
real networks allow us to observe performance under practical,
real-world conditions.

A. Synthetic networks

Our synthetic network examples take the form of a classic
consistency test. We generate networks using the same stochas-
tic model that the algorithm itself is based on and measure the
algorithm’s ability to recover the known community divisions
for various values of the parameters. One can vary the values to
create networks with stark community structure (which should
make detection easy) or no community structure at all (which
makes it impossible), and everything in between, and we can
thereby vary the difficulty of the challenge we pose to the
algorithm.

The networks we use for our tests have n = 10 000 vertices
each, divided into two overlapping communities. We place
x vertices in the first community only, meaning they have
connections only to others in that community, y vertices
in the second community only, and the remaining z = n −
x − y vertices in both communities, with equal numbers of
connections to vertices in either group on average. We fix the
expected degree of all vertices to take the same value k.

We perform three sets of tests. In the first, we fix the size
of the overlap between the communities at z = 500, divide
the remaining vertices evenly x = y = 4750, and observe
the behavior of the algorithm as we vary the value of k.

When k → 0 there are no edges in the network and hence
no community structure, and we expect the algorithm (or any
algorithm) to fail. When k is large, on the other hand, it should
be straightforward to work out where the communities are.

For our second set of tests, we again set the overlap at
z = 500, but this time we fix k = 10 and vary the balance of
vertices between x and y. Finally, for our third set of tests, we
set k = 10 and constrain x and y to be equal, but allow the
size z of the overlap to vary.

In Fig. 1 we show the measured fraction of vertices
classified correctly (black curve) in each of these three sets of
tests (the three separate panels), averaged over 100 networks
for each point. To be considered correctly classified, a vertex’s
membership (or lack of membership) in both groups must
be reported correctly by the algorithm, and the algorithm
considers any vertex to be a member of a group if, on
average, it has at least one edge of the appropriate color
when the maximum likelihood fitting procedure is complete.
In mathematical terms, a vertex belongs to community z if its
expected degree with respect to color z, given by

∑
j Aij qij (z),

is greater than one.
As the figure shows, there are substantial parameter ranges

for all three tests for which the algorithm performs well,
correctly classifying most of the vertices in the network. As
expected, the accuracy in the first test increases with increasing
k and for values of k greater than about 10, a figure easily
attained by many real-world networks, the algorithm identifies
the known community structure essentially perfectly. In the
other two tests accuracy declines as either the asymmetry of the
two groups or the size of the overlap increases, but approaches
100% when either is small.

To probe in more detail the algorithm’s ability to identify
overlapping communities, we have also measured, for the same
test networks, a Jaccard index: if S is the set of vertices in the
true overlap and V is the set the algorithm identifies as being
in the overlap, then the Jaccard index is J = |S ∩ V |/|S ∪ V |.
This index is a standard measure of similarity between sets that
rewards accurate identification of the overlap while penalizing
both false positives and false negatives. The values of the index
are shown as the lighter curves in Fig. 1 and, as we can see,
the general shape of the curves is similar to the overall fraction
of correctly identified vertices. In particular, we note that for
networks with sufficiently high average degree k the value of
J tends to 1, implying that the overlap is identified essentially
perfectly.

036103-5

BRIAN BALL, BRIAN KARRER, AND M. E. J. NEWMAN PHYSICAL REVIEW E 84, 036103 (2011)

B. Real networks

We have also tested our method on numerous real-world
networks. In this section, we give detailed results for four
specific examples. Summary results for a number of additional
examples are given in Appendix B.

Our first example is one that has become virtually obligatory
in tests of community detection, Zachary’s “karate club” net-
work, which represents friendship patterns between members
of a university sports club, deduced from an observational
study [26]. The network is interesting because the club split in
two during the study, as a result of an internal dispute, and it
has been found repeatedly that one can deduce the lines of the
split from a knowledge of the network structure alone [1,2].

Figure 2(a) shows the decomposition of the karate club
network into two overlapping groups as found by our al-
gorithm. The colors in the figure show both the division of
the vertices and the division of the edges. The split between
the two groups in the club is clearly evident in the results

(a)

(b)

FIG. 2. (Color online) Overlapping communities in (a) the karate
club network of [26] and (b) the network of characters from Les
Misérables [27], as calculated using the algorithm described in this
paper. The edge colors correspond to the highest value of qij (z) for the
given edge, while vertex colors indicate the fraction of incident edges
that fall in each community. Vertices in more than one community
are drawn larger for clarity and divided into pie charts representing
their division among communities.

and corresponds well with the acknowledged “ground truth,”
but in addition the algorithm assigns several vertices to both
groups. The individuals represented by these overlap vertices,
being by definition those who have friends in both camps,
might be supposed to have had some difficulty deciding which
side of the dispute to come down on, and indeed Zachary’s
original discussion of the split includes some indications that
this was the case [26]. Note also that, in addition to identifying
overlapping vertices, our method can assign to each a fraction
by which it belongs to one community or the other, represented
in the figure by the pie-chart coloring of the vertices in the
overlap. The fraction is calculated as the expected fraction of
edges of each color incident on the vertex.

Our second example is another social network and again
one whose community structure has been studied previously.
This network, compiled by Knuth [27], represents the patterns
of interactions between the fictional characters in the novel Les
Misérables by Victor Hugo. In this network two characters are
connected by an edge if they appear in the same chapter of
the book. Figure 2(b) shows our algorithm’s partition of the
network into six overlapping communities, and the partition
accords roughly with social divisions and subplots in the
plotline of the novel. But what is particularly interesting in this
case is the role played by the hubs in the network, the major
characters who are represented by vertices of especially high
degree. It is common to find high-degree hubs in networks
of many kinds, vertices with so many connections that they
have links to every part of the network, and their presence
causes problems for traditional, nonoverlapping community
detection schemes because they do not fit comfortably in any
community: no matter where we place a hub, it is going
to have many connections to vertices in other communities.
Overlapping communities provide an elegant solution to this
problem because we can place the hubs in the overlaps. As
Fig. 2(b) shows, our algorithm does exactly this, placing many
of the hubs in the network in two or more communities. Such
an assignment is in this case also realistic in terms of the plot
of the novel: the major characters represented by the hubs are
precisely those that appear in more than one of the book’s
subplots.

A similar behavior can be seen in our third example, which
is a transportation network, the network of passenger airline
flights between airports in the United States. In this network,
based on data for flights in 2004, the vertices represent airports
and an edge between airports indicates a regular scheduled
direct flight. Spatial networks, those in which, as here, the
vertices have well-defined positions in geographic space, are
often found to have higher probability of connection for
vertex pairs located closer together [28,29], which suggests
that communities, if they exist, should be regional, consisting
principally of blocks of nearby vertices. The communities
detected by our algorithm in the airline network follow this
pattern, as shown in Fig. 3. The three-way split shown divides
the network into east and west coast groups and a group for
Alaska. The overlaps are composed partly of vertices that
lie along the geographic boundaries between the groups, but
again include hubs as well, which tend to be placed in the
overlaps even when they do not lie on boundaries. As with
the previous example, this placement gives the algorithm a
solution to the otherwise difficult problem of assigning to any

036103-6

EFFICIENT AND PRINCIPLED METHOD FOR DETECTING . . . PHYSICAL REVIEW E 84, 036103 (2011)

Guam

American Samoa

Hawaii Puerto Rico

FIG. 3. (Color online) Overlapping communities in the network of US passenger air transportation. The three communities produced by
the calculation correspond roughly to the east and west coasts of the country and Alaska.

one group a hub that has connections to all parts of the network.
But, it also makes intuitive sense. Hubs are the “brokers”
of the airline network, the vertices that connect different
communities together, since they are precisely the airports that
passengers pass through in traveling between distant locations.
Thus it is appropriate that hubs be considered members of more
than one group. In most cases the hubs belong most strongly
to the community in which they are geographically located,
and less strongly to other communities.

For our fourth example, we examine a network of coau-
thorships between researchers publishing on network science.
In this network, which was previously published in [30],
vertices represent scientists and unweighted edges connect
pairs of scientists who have coauthored at least one paper
together. Figure 4(a) shows the division of the network’s
largest component as found by our algorithm for K = 12
communities.

The figure reveals a new phenomenon not present in our
previous examples: some of the communities found by the
algorithm are not contiguous; they are divided into two or
more separate parts with no edges connecting the parts. This
seems unsatisfactory. Intuitively, one expects communities to
be connected.

The explanation for this behavior is that in this case the
algorithm has found a local optimum of the likelihood, rather
than a global one, and the local optimum contains disconnected
communities. To address this issue, we adopt the following
procedure. After the communities are calculated with the
EM algorithm we find all their connected clusters, then work
through them in order from smallest to largest. Each cluster
is added to the neighboring cluster (of any community) with
which it has the most connections, unless it is the only cluster
in its community, in which case we reverse the process and add
the neighboring cluster to it. The only exception is when all

neighboring clusters are the only cluster in their community, in
which case we do nothing. Then we move on to the next largest
cluster, bearing in mind that cluster sizes may have changed
in the process. When we have gone through all clusters in
this manner we are left with K communities, each of which
is connected, consisting of a single cluster, and any connected
pair of vertices that were originally assigned to the same cluster
by the EM algorithm will still be in the same cluster.

This procedure requires very little additional effort to
perform, and in our experiments we find that it always increases
the likelihood of the community assignment, indicating that
indeed the original EM algorithm found a local likelihood
maximum. Figure 4(b) shows the result of applying the
procedure to our coauthorship network and, as the figure
shows, the communities found are now connected [31].

VI. NONOVERLAPPING COMMUNITIES

As we have described it, our algorithm is an algorithm
for finding overlapping communities in networks, but it can
be used to find nonoverlapping communities as well. As
pointed out by a number of previous authors [25,32,33], any
algorithm that calculates proportional membership of vertices
in communities can be adapted to the nonoverlapping case
by assigning each vertex to the single community to which
it belongs most strongly. In our case, this means assigning
vertices to the community for which the value of kiz/κz

is largest. It turns out that this procedure can be justified
rigorously by regarding the link community model as a
relaxation of a nonoverlapping degree-corrected stochastic
blockmodel. The details are given in Appendix C. Here we
give some example applications to show how the approach
works in practice.

036103-7

BRIAN BALL, BRIAN KARRER, AND M. E. J. NEWMAN PHYSICAL REVIEW E 84, 036103 (2011)

(a)

(b)

FIG. 4. (Color online) Overlapping communities in the collabo-
ration network of network scientists as calculated by the algorithm of
Sec. IV (a) without the post-processing step that ensures connected
communities and (b) with the post processing. Each community is
represented as a shape and color combination, except for overlapping
vertices, which are always drawn as circles.

As with the overlapping case, we test the method on both
synthetic and real-world networks. For the synthetic case,
we use a standard test, the Lancichinetti-Fortunato-Radicchi
or LFR benchmark for unweighted undirected networks
with planted community structure [34,35]. To make possible
comparisons with the previous study of Ref. [35] we use the

same parameters, with networks of 1000 and 5000 vertices,
average degree 20, maximum degree 50, degree exponent −2,
and community exponent −1. We also use the same two ranges
of community sizes, with communities of 10 to 50 vertices for
one set of tests (labeled S for “small” in our figures) and 20 to
100 vertices for the other set (labeled B for “big”). The value
of K for the detection algorithm was set equal to the number
of communities in the benchmark network (which, because of
the nature of the benchmark, is not a constant but varies from
one network to another).

To quantify our algorithm’s success at detecting the known
communities in the benchmark networks we use the variant
normalized mutual information measure proposed in [35]. We
note that this measure is different, and in general returns
different results, from the normalized mutual information
measure most often used to evaluate community structure [3],
but using it allows us to make direct comparisons with the
results for other algorithms given in [35].

In our benchmark tests we find that the method described
above for finding nonoverlapping communities, i.e., just
choosing the community with the highest value of kiz/κz,
returns only average performance when compared with the
other algorithms tested in Ref. [35]. However, a simple modi-
fication of the algorithm produces significantly better results:
after generating a candidate division into communities using
the rounding method, we then apply a further optimization
step in which move each vertex to the community that gives
the largest value of the log likelihood of the division under the
stochastic blockmodel, and repeat this exercise until no further
such moves exist. This process, which is reminiscent of the
well-known Kernighan-Lin algorithm for graph partitioning
[36], is easy to implement and carries little computational cost
when compared to the calculation of the initial division, but it
improves our results dramatically.

The results of our tests are shown in Fig. 5. The top
panel shows the performance of the algorithm without the
additional optimization step and the results fall in the middle
of the pack when compared to previous algorithms, better
than some methods but not as good as others. The bottom
panel shows the results with the additional optimization step
added, and now the algorithm performs about as well as, or
better than, the algorithms analyzed in Ref. [35]. The general
shape of the mutual information curve is similar to that of the
best competing methods, falling off around the same place,
although the mutual information values are somewhat lower
for low values of the mixing parameter, indicating that the
method is not getting the community structure exactly correct
in this regime. Examining the communities in detail reveals
that the method occasionally splits or merges communities. It is
possible that performance could be improved further by a less
simple-minded post-processing step for optimizing the likeli-
hood. In particular, by contrast with the overlapping groups
of the preceding section, we made no effort to ensure that the
communities in the present tests consisted of only a single
cluster, and doing so might potentially improve the results.

We also give, in Fig. 6, an example of a test of the method
against a real-world network, in this case the much studied
college football network of Ref. [1]. In this network the vertices
represent university teams in American football and the edges
represent the schedule of games for the year 2000 football

036103-8

EFFICIENT AND PRINCIPLED METHOD FOR DETECTING . . . PHYSICAL REVIEW E 84, 036103 (2011)

FIG. 5. (Color online) Performance of the nonoverlapping
community algorithm described in the text when applied to synthetic
networks generated using the LFR benchmark model of Lancichinetti
et al. [35]. Parameters used are the same as in Ref. [35] and (S) and (B)
denote networks with the “small” and “big” community sizes used by
the same authors. The top and bottom panels, respectively, show the
results without and with post processing to optimize the value of the
log likelihood. Ten random initializations of the variables were used
for each network and each point is an average over 100 networks.

season, two teams being connected if they played a game.
It has been found in repeated analyses that a clustering of
this network into communities can retrieve the organizational
units of US college sports, called “conferences,” into which
universities are divided for the purposes of competition. In
2000 there were 11 conferences among the Division I-A teams
that make up the network, as well as 8 teams independent of any
conference. As Fig. 6 shows, every single team that belongs in
a conference is placed correctly by our algorithm.

VII. CONCLUSION

In this paper we have described a method for detecting com-
munities, either overlapping or not, in undirected networks.
The method has a rigorous mathematical foundation, being
based on a probabilistic model of link communities, is easy to
implement, fast enough for networks of millions of vertices,
and gives results competitive with other algorithms.

Nonetheless, the method is not perfect. Its main current
drawback is that it offers no criterion for determining the value
of the parameter we call K , the number of communities in a
network. This is a perennial problem for community detection
methods of all kinds. Some methods, such as modularity
maximization, do offer a solution to the problem, but that
solution is known to give biased answers or be inconsistent
under at least some circumstances [17,20]. More rigorous
approaches, such as the Bayesian information criterion [37]
and the Akaike information criterion [38], are unfortunately
not applicable here because many of the model parameters are
zero, putting them on the boundary of the parameter space,
which invalidates the assumptions made in deriving these
criteria.

Another approach to choosing the value of K is to
perform the calculations with a large value and regularize

FIG. 6. Nonoverlapping communities found in the US college
football network of Ref. [1]. The clusters of vertices represent the
communities found by the algorithm, while the vertex shape and color
combination represents the “conferences” into which the colleges are
formally divided. As we can see, the algorithm in this case extracts
the known conference structure perfectly. (The square black vertices
represent independent colleges that belong to no conference.)

the parameters in a manner such that some communities
disappear, meaning that zero edges are associated with those
communities. For example, Psorakis et al. [25], in studies using
their matrix factorization algorithm, used priors that penalized
their model for including too many nonzero parameter values
and hence created a balance between numbers of communities
and goodness of fit to the network data. Unfortunately, the
priors themselves contain undetermined parameters whose
values can influence the number of communities and hence
the problem is not completely solved by this approach.

We believe that statistical model selection methods applied
to generative models should in principle be able to find
the number of communities in a consistent and satisfactory
manner. We have performed some initial experiments with
such methods and the quality of the results seems promising,
but the methods are at present too computationally demanding
to be applied to any but the smallest of networks. It is an open
question whether a reliable method can be developed that runs
in reasonable time on the large networks of interest to today’s
scientists.

ACKNOWLEDGMENTS

The authors thank Q. Mei, C. Moore, and L. Zdeborova
for useful conversations. This work was funded in part by the
National Science Foundation under Grant No. DMS–0804778
and by the James S. McDonnell Foundation.

APPENDIX A: COMMUNITY DETECTION AND
STATISTICAL TEXT ANALYSIS

As mentioned in the main text, the generative model we use
is the network equivalent of a model used in the text analysis
technique called probabilistic latent semantic analysis (PLSA)

036103-9

BRIAN BALL, BRIAN KARRER, AND M. E. J. NEWMAN PHYSICAL REVIEW E 84, 036103 (2011)

[39–41], modified somewhat for the particular problem we are
addressing. In this appendix we describe PLSA and related
methods and models and their relationship to the community
detection problem.

A classic problem in text analysis, which is addressed by
the PLSA method, is that of analyzing a “corpus” of text
documents to find sets of words that all (or mostly) occur
in the same documents. The assumption is that these sets of
words correspond to topics or themes that can be used to
group documents according to content. The PLSA approach
regards documents as a so-called “bag of words,” meaning
one considers only the number of times each word occurs in a
document and not the order in which words occur. (Also, one
often considers only a subset of words of interest, rather than
all words that appear in the corpus.)

Mathematically, a corpus of D documents and W words
of interest is represented by a matrix A having elements Awd

equal to the number of times word w appears in document d. To
make the connection to networks, this matrix can be thought of
as the incidence matrix of a weighted bipartite network having
one set of vertices for the documents, another for the words,
and edges connecting words to the documents in which they
appear with weight equal to their frequency of occurrence.

In PLSA each word-document pair (an edge in the corre-
sponding network picture) is associated with an unobserved
variable z which denotes one of K topical groups. Each
edge is assumed to be placed independently at random in
the bipartite graph, with the probability that an edge falls
between word w and document d being broken down in the
form

∑
z P (w|z)P (d|z)P (z), where P (z) is the probability

that the edge belongs to topic z, P (w|z) is the probability that
an edge with topic z connects to word w, and P (d|z) is the
probability that an edge with topic z connects to document
d. Note that, given the topic, the document and word ends of
each edge are placed independently. (Hofmann [39] calls this
parametrization a “symmetric” one, meaning that the word and
the document play equivalent roles mathematically, but in the
networks jargon, this would not be considered a symmetric
formulation: the network is bipartite and the incidence matrix
is not symmetric, nor even, in general, square.)

An alternative description of the model, which is useful
for actually generating the incidence matrix and which
corresponds with our formulation of the equivalent network
problem, is that each matrix element Awd takes a random value
drawn independently from a Poisson distribution with mean∑

z P (w|z)P (d|z) ωz. In the language of networks, each edge
is placed with independent probability

∑
z P (w|z)P (d|z)P (z),

where P (z) = ωz/
∑

z′ ωz′ . In our work, where we focus
on one-mode networks and a symmetric adjacency matrix
instead of an incidence matrix, the parameter ωz is redundant
and we omit it.

PLSA involves using the edge probability above to calculate
a likelihood for the entire word-document distribution, then
maximizing with respect to the unknown probabilities P (w|z),
P (d|z), and P (z). The resulting probabilities give one a
measure of how strongly each word or document is associated
with a particular topic z, but since the topics are arbitrary,
this is effectively the same as simply grouping the words
and documents into “communities.” Alternatively, one can use
the probabilities to divide the edges of the bipartite graph

among the topical groups, giving the text equivalent of the
“link communities” that are the focus of our calculations.

A number of methods have been explored for maximizing
the likelihood. Mathematically the one most closely related to
our approach is the expectation-maximization (EM) algorithm
of Hofmann [39–41], although the correspondence is not
exact. Hofmann’s work focuses solely on text processing—
the connection to networks was not made until later—and
because of its inherently asymmetric form the method can not
be translated directly for applications to standard one-mode
networks. Instead we must reformulate the problem using a
symmetric model, which leads to the approach described in this
paper. The symmetric formulation and the corresponding EM
algorithm have not, to our knowledge, been used previously for
community detection in networks, but several other related ap-
proaches have, including ones based on the techniques known
as non-negative matrix factorization (NMF) [42,43] and latent
Dirichlet allocation (LDA) [44,45]. These formulations have
similar goals to ours, but are typically asymmetric (and hence
unsuitable for undirected networks) and use different algo-
rithmic approaches for maximizing the likelihood. The NMF
formulation is similar in style to an EM algorithm, using an
iterative maximization scheme, but the specific iteration equa-
tions are different. Several papers have recently proposed using
NMF to find overlapping communities [25,32,33], and in par-
ticular the work of Psorakis et al. [25] mentioned in the main
text uses NMF with the PLSA model, although again in an
asymmetric formulation, and not applied to link communities.

Recent work by Parkinnen et al. [14] and Gyenge et al.
[15] does consider link communities, in an asymmetric
formulation, but uses algorithmic approaches that are different
again. For instance, Parkinnen et al. [14] use a model that
attaches conjugate priors to the parameters and then samples
the posterior distribution of link communities with a collapsed
Gibbs sampler.

LDA [44,45] offers an alternative but related approach that
also attaches priors to the parameters, but in a specific way that
relies on the asymmetric formulation of the model. In [46] and
[47] LDA is adapted to networks by treating vertex-edge pairs
as analogous to word-document pairs and then associating
communities with the vertex-edge pairs. This is an interesting
approach but differs substantially from the others discussed
here, including our own, in which vertex-vertex pairs (i.e.,
edges) are the quantity analogous to word-document pairs.

Finally, in Appendix C we show that our model can be
used to find nonoverlapping communities by viewing it as
a relaxation of a nonoverlapping stochastic blockmodel. A
corresponding relaxation has been noted previously for a
version of NMF and was shown to be related to spectral
clustering [48,49].

APPENDIX B: RESULTS FOR RUNNING TIME

As discussed in Sec. IV, a naive implementation of the EM
equations gives an algorithm that is only moderately fast—not
fast enough for very large networks. We described a more
sophisticated implementation that prunes unneeded variables
from the iteration and achieves significantly greater speed. In
this appendix, we give a comparison of the performance of the
two versions of the algorithm on a set of test networks.

036103-10

EFFICIENT AND PRINCIPLED METHOD FOR DETECTING . . . PHYSICAL REVIEW E 84, 036103 (2011)

TABLE I. Example networks and running times for each of the
three versions of the overlapping communities algorithm described
in the text. The designations “fast” and “naive” refer to the algorithm
with and without pruning, respectively. “Iterations” refer to the total
number of iterations for the entire run, not the average number for one
random initialization. “Time” is similarly the total running time for all
initializations. Directed networks were symmetrized for these tests.
All networks were run with 100 random initializations, except for the
LiveJournal network, which was run with 10 random initializations.
Calculations were run on one core of a four-core 3.2-GHz Intel Core
i5 CPU with 4 GB memory under the Red Hat Enterprise Linux
operating system. Running times do not include the additional cluster
aggregation process described in Sec. V B, but in practice the extra
time for this process is negligible.

Running conditions Time (s) Iterations Log likelihood

US air transportation, n = 709, m = 3327, K = 3
Naive, δ = 0 15.71 55 719 −8924.58
Fast, δ = 0 14.67 55 719 −8924.58
Fast, δ = 0.001 2.17 26 063 −9074.21

Network science collaborations [30], n = 379, m = 914, K = 3
Naive, δ = 0 0.93 13 165 −3564.74
Fast, δ = 0 0.82 13 165 −3564.74
Fast, δ = 0.001 0.13 10 747 −3577.85

Network science collaborations, n = 379, m = 914, K = 10
Naive, δ = 0 3.19 18 246 −2602.15
Fast, δ = 0 3.15 18 246 −2602.15
Fast, δ = 0.001 0.49 12 933 −2611.96

Network science collaborations, n = 379, m = 914, K = 20
Naive, δ = 0 6.16 19 821 −2046.95
Fast, δ = 0 6.09 19 821 −2046.95
Fast, δ = 0.001 0.94 14 010 −2094.85

Political blogs [50], n = 1490, m = 16 778, K = 2
Naive, δ = 0 11.42 13 773 −48761.1
Fast, δ = 0 11.46 13 773 −48761.1
Fast, δ = 0.001 4.14 13 861 −48765.6

Physics collaborations [51], n = 40 421, m = 175 693, K = 2
Naive, δ = 0 4339.57 424 077 −1.367 × 106

Fast, δ = 0 2557.91 424 077 −1.367 × 106

Fast, δ = 0.001 253.41 61 665 −1.378 × 106

Amazon copurchasing [52], n = 403 394, m = 2 443 408, K = 2
Naive, δ = 0 170 646.9 1 222 937 −2.521 × 107

Fast, δ = 0 105 042.3 1 222 937 −2.521 × 107

Fast, δ = 0.001 11 635.0 120 612 −2.538 × 107

LiveJournal [53,54], n = 4 847 571, m = 42 851 237, K = 2
Fast, δ = 0 333 230 278 707 −4.611 × 108

Fast, δ = 0.001 33 924 19 257 −4.642 × 108

The results are summarized in Table I, which gives the CPU
time in seconds taken to complete the overlapping community
detection calculation on a standard desktop computer for
each of the test networks. In these tests we use 100 random
initializations of the variables and take as our final result the
run that gives the highest value of the log likelihood. For each
network we give the results of three different calculations:
(1) the calculation performed using the naive EM algorithm;
(2) the calculation using the pruned algorithm with the
threshold parameter δ set to zero, meaning the algorithm gives

results identical to the naive algorithm except for numerical
rounding, but runs faster; and (3) the calculation performed
using the pruned algorithm with δ = 0.001, which introduces
an additional approximation that typically results in a slightly
poorer final value of the log likelihood, but gives a significant
additional boost in speed.

The largest network studied, which is a network of links
in the online community LiveJournal, is an exception to the
pattern: for this network, which contains over 40 million edges,
we performed runs with only 10 random initializations each,
using the pruned algorithm with δ = 0.001 and with δ = 0.
Each randomly initialized run took about 50 min to complete
for δ = 0.001 and about 9 h for δ = 0.

While the algorithm described is fast by comparison with
most other community detection methods, it is possible that
its speed could be improved further (or that the quality of
the results could be improved while keeping the speed the
same). Two potential improvements are suggested by the text
processing literature discussed in Appendix A. The first, from
Hofmann [41], is to use the so-called tempered EM algorithm.
The second, from Ding et al. [43], is to alternate between
the EM algorithm and a non-negative matrix factorization
algorithm, exploiting the fact that both maximize the same
objective function but in different ways.

APPENDIX C: NONOVERLAPPING COMMUNITIES

In Sec. VI we described a procedure for extracting
nonoverlapping community assignments from network data
by first finding overlapping ones and then assigning each
vertex to the community to which it belongs most strongly.
This procedure was presented as a heuristic strategy for the
nonoverlapping problem, but in this appendix we show that
it can be derived in a principled manner as an approximation
method for fitting the data to a degree-corrected stochastic
blockmodel.

Methods have been proposed for discovering nonover-
lapping communities in networks by fitting to the class of
models known as stochastic blockmodels. As discussed in
Ref. [21], it turns out to be crucial that the blockmodel
used incorporate knowledge of the degree sequence of the
network if it is to produce useful results, and this leads us
to consider the so-called degree-corrected blockmodel, which
can be formulated as follows. We consider a network of n

vertices, with each vertex belonging to exactly one community.
The community assignments are represented by an indicator
variable Sir which takes the value 1 if vertex i belongs to
community r and zero otherwise. To generate the network, we
place a Poisson-distributed number of edges between each pair
of vertices i,j , such that the expected value of the adjacency
matrix element Aij is θiωrsθj if vertex i belongs to group
r and vertex j belongs to group s, where θi and ωrs are
parameters of the model. To put this another way, the expected
value of the adjacency matrix element is θi(

∑
rs SirωrsSjs)θj

for every vertex pair. The normalization of the parameters
is arbitrary since we can rescale all θi by the same constant
if we simultaneously rescale all ωrs . In our calculations we
fix the normalization so that the θi sum to unity within each
community:

∑
i θiSir = 1 for all r .

036103-11

BRIAN BALL, BRIAN KARRER, AND M. E. J. NEWMAN PHYSICAL REVIEW E 84, 036103 (2011)

Now one can fit this model to an observed network by
writing the probability of generation of the network as a
product of Poisson probabilities for each (multi)edge, then
maximizing with respect to the parameters θi and ωrs and
the community assignments Sir . Unfortunately, while the
maximization with respect to the continuous parameters θi

and ωrs is a simple matter of differentiation, the maximization
with respect to the discrete variables Sir is much harder. A
common way around such problems is to “relax” the discrete
variables, allowing them to take on continuous real values,
so that the optimization can be performed by differentiation.
In the present case, we allow the Sir to take on arbitrary
non-negative values, subject to the constraint that

∑
r Sir = 1.

In effect, Sir now represents the fraction by which vertex
i belongs to group r , with the constraint ensuring that the
fractions add correctly to 1.

With this relaxation, we can now absorb the parameters
θi into the Sir , defining θir = θiSir with

∑
i θir = 1, and the

mean number of edges between vertices i and j becomes∑
rs θirωrsθjs . This is an extended form of the overlapping

communities model studied in this paper, generalized to
include the extra K × K matrix ωrs . In the language of link
communities, this generalization gives us a model in which
the two ends of an edge can belong to different communities.
One can think of each end of the edge as being colored with
its own color, instead of the whole edge taking only a single
color. If ωrs is constrained to be diagonal then we recover the
single-color version of the model again.

We can fit the general (nondiagonal) model to an observed
network using an expectation-maximization algorithm, just as
before. Defining a probability qij (r,s) that an edge between i

and j has colors r and s, the EM equations are now

qij (r,s) = θirωrsθjs∑
rs θirωrsθjs

(C1)

and

θir =
∑

js Aij qij (r,s)∑
ijs Aij qij (r,s)

, ωrs =
∑
ij

Aij qij (r,s). (C2)

By iterating these equations we can find a solution for the
parameters θir . But θir = θiSir and, summing both sides over
r , we get

∑
r θir = θi since

∑
r Sir = 1. Hence,

Sir = θir

θi

= θir∑
r θir

. (C3)

Thus we can calculate the values of Sir and once we have these
we can then reverse the relaxation of the model by rounding
the values to zero or one, which is equivalent to assigning
each vertex i to the community r for which Sir is largest, or
equivalently the community for which θir is largest.

Thus the final algorithm for dividing the network is simply
to iterate the EM equations to convergence and then assign
each vertex to the community for which θir is largest. In
the language of Sec. VI, this is equivalent to looking for the
largest value of kiz/κz, and hence this algorithm is the same
as the algorithm that we described in that section, except that
the model is generalized to include the matrix ωrs , where
in our original calculations this matrix was absent, which is
equivalent to assuming it to be diagonal. In our experiments,
however, we have found that even when we allow ωrs to
be nondiagonal, the algorithm usually chooses a diagonal
value anyway, which implies that the output of our original
algorithm and the generalized algorithm should be the same.
(We note that in practice the diagonal version of the algorithm
runs faster, while both are substantially faster than the vertex
moving heuristic proposed for the stochastic blockmodel in
Ref. [21].)

Diagonal values are expected for networks with tradi-
tional community structure, where connections are more
dense within communities than between them. It is entirely
possible, however, that there could be networks with inter-
esting nondiagonal group structure that could be detected
using the more general model. The model including the
matrix ωrs can in principle find disassortative community
structure (structure in which connections are less common
within communities than between them) as well as the
better studied assortative structure. For example, it can detect
bipartite structure in networks, whereas the unadjusted model
can not.

[1] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA
99, 7821 (2002).

[2] S. Fortunato, Phys. Rep. 486, 75 (2010).
[3] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, J. Stat.

Mech.: Theory Exp. (2005) P09008.
[4] R. L. Breiger, S. A. Boorman, and P. Arabie, J. Math. Psychol.

12, 328 (1975).
[5] P. W. Holland, K. B. Laskey, and S. Leinhardt, Social Networks

5, 109 (1983).
[6] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature (London)

435, 814 (2005).
[7] Y. J. Wang and G. Y. Wong, J. Am. Stat. Assoc. 82, 8 (1987).
[8] T. A. Snijders and K. Nowicki, J. Class. 14, 75 (1997).
[9] A. Clauset, C. Moore, and M. E. J. Newman, Nature (London)

453, 98 (2008).
[10] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing,

J. Mach. Learn. Res. 9, 1981 (2008).

[11] J. P. Bagrow, J. Stat. Mech.: Theory Exp. (2008) P05001.
[12] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Nature (London) 466,

761 (2010).
[13] T. S. Evans and R. Lambiotte, Phys. Rev. E 80, 016105

(2009).
[14] J. Parkinnen, A. Gyenge, J. Sinkkoken, and S. Kaski, in

Proceedings of the 7th International Workshop on Mining and
Learning with Graphs (Association of Computing Machinery,
New York, 2009).

[15] A. Gyenge, J. Sinkkonen, and A. A. Benczúr, in Proceedings
of the 8th International Workshop on Mining and Learning
with Graphs (Association of Computing Machinery, New York,
2010), pp. 62–69.

[16] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
(2004).

[17] S. Fortunato and M. Barthélémy, Proc. Natl. Acad. Sci. USA
104, 36 (2007).

036103-12

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1016/0022-2496(75)90028-0
http://dx.doi.org/10.1016/0022-2496(75)90028-0
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.2307/2289119
http://dx.doi.org/10.1007/s003579900004
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1088/1742-5468/2008/05/P05001
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1103/PhysRevE.80.016105
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1073/pnas.0605965104

EFFICIENT AND PRINCIPLED METHOD FOR DETECTING . . . PHYSICAL REVIEW E 84, 036103 (2011)

[18] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Phys. Rev. E
81, 046106 (2010).

[19] X. S. Zhang, R. S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang,
and L. Chen, Europhys. Lett. 87, 38002 (2009).

[20] P. J. Bickel and A. Chen, Proc. Natl. Acad. Sci. USA 106, 21068
(2009).

[21] B. Karrer and M. E. J. Newman, Phys. Rev. E 83, 016107
(2011).

[22] M. Molloy and B. Reed, Random Struct. Algorithms 6, 161
(1995).

[23] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E
64, 026118 (2001).

[24] This is a special case of the general observation that the log of
the average of any set of numbers is never less than the average
of the log since the logarithm function is concave down. If the
numbers in question are xz/qz and the average is taken with
weights qz, this observation leads immediately to the inequality
given.

[25] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, Phys. Rev. E
83, 066114 (2011).

[26] W. W. Zachary, J. Anthropol. Res. 33, 452 (1977).
[27] D. E. Knuth, The Stanford GraphBase: A Platform for

Combinatorial Computing (Addison–Wesley, Reading, MA,
1993).

[28] M. T. Gastner and M. E. J. Newman, Eur. Phys. J. B 49, 247
(2006).

[29] M. Barthélémy, Phys. Rep. 499, 1 (2011).
[30] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[31] We have also applied the same procedure to the previous example

networks, including the synthetically generated ones, but it
produced in no significant changes to the results in those cases.

[32] M. Zarei, D. Izadi, and K. A. Samani, J. Stat. Mech.: Theory
Exp. (2009) P11013.

[33] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, Data Mining
Know. Disc. 22, 493 (2011).

[34] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78,
046110 (2008).

[35] A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 056117
(2009).

[36] B. W. Kernighan and S. Lin, Bell Syst. Tech. J. 49, 291 (1970).
[37] G. Schwarz, Ann. Stat. 6, 461 (1978).
[38] H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).

[39] T. Hofmann, in Proceedings of the 22nd Annual International
ACM Conference on Research and Development in Information
Retrieval (Association of Computing Machinery, New York,
1999), pp. 50–57.

[40] T. Hofmann, Mach. Learn. 42, 177 (2001).
[41] T. Hofmann, ACM Trans. Inf. Syst. 22, 89 (2004).
[42] D. D. Lee and H. S. Seung, Nature (London) 401, 788 (1999).
[43] C. Ding, T. Li, and W. Peng, Comput. Stat. Data Anal. 52, 3913

(2008).
[44] D. M. Blei, A. Y. Ng, and M. I. Jordan, J. Mach. Learn. Res. 3,

993 (2003).
[45] M. Girolami and A. Kabán, in Proceedings of the 26th Annual

International ACM Conference on Research and Development
in Information Retrieval (Association of Computing Machinery,
New York, 2003), pp. 433–434.

[46] K. Henderson and T. Eliassi-Rad, in Proceedings of the 2009
ACM Symposium on Applied Computing (Association of Com-
puting Machinery, New York, 2009), pp. 1456–1461.

[47] H. Zhang, B. Qiu, C. L. Giles, H. C. Foley, and J. Yen, in Pro-
ceedings of the IEEE International Conference on Intelligence
and Security Informatics (Institute of Electrical and Electronics
Engineers, New York, NY, 2007), pp. 200–207.

[48] C. Ding, X. He, and H. D. Simon, in Proceedings of the SIAM
Data Mining Conference (Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2005), pp. 606–610.

[49] C. Ding, T. Li, and M. Jordan, in Proceedings of the 8th
IEEE International Conference on Data Mining (Institute of
Electrical and Electronics Engineers, New York, NY, 2008),
pp. 183–192.

[50] L. A. Adamic and N. Glance, in Proceedings of the WWW-
2005 Workshop on the Weblogging Ecosystem (Association for
Computing Machinery, New York, NY, 2005).

[51] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404
(2001).

[52] J. Leskovec, L. A. Adamic, and B. A. Huberman, ACM Trans.
Web 1, 5 (2007).

[53] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
in Proceedings of the 7th ACM International Conference
on Knowledge Discovery and Data Mining (Association of
Computing Machinery, New York, 2006), pp. 44–54.

[54] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
e-print arXiv:0810.1355.

036103-13

http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1209/0295-5075/87/38002
http://dx.doi.org/10.1073/pnas.0907096106
http://dx.doi.org/10.1073/pnas.0907096106
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1140/epjb/e2006-00046-8
http://dx.doi.org/10.1140/epjb/e2006-00046-8
http://dx.doi.org/10.1016/j.physrep.2010.11.002
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1088/1742-5468/2009/11/P11013
http://dx.doi.org/10.1088/1742-5468/2009/11/P11013
http://dx.doi.org/10.1007/s10618-010-0181-y
http://dx.doi.org/10.1007/s10618-010-0181-y
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1023/A:1007617005950
http://dx.doi.org/10.1145/963770.963774
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1016/j.csda.2008.01.011
http://dx.doi.org/10.1016/j.csda.2008.01.011
http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1145/1232722.1232727
http://dx.doi.org/10.1145/1232722.1232727
http://arXiv.org/abs/arXiv:0810.1355

