PHYSICAL REVIEW E 84, 036101 (2011)

Structural control of reaction-diffusion networks
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Recent studies revealed that reaction-diffusion (RD) dynamics can be significantly influenced by the structure
of the underlying network. In this paper, a framework is established to study a closely related problem, i.e., to
control the proportion of active particles in an RD process by adjusting the structure of the underlying diffusion
network. Both distributed and centralized rewiring and reweighting control schemes are proposed for unweighted
and weighted networks, respectively. Simulations show that the proportion of active particles can indeed be
controlled to a certain extent even when the distributed control mechanism is totally random, while quite high
precision can be achieved by centralized control schemes. More interestingly, it is found that the reactants
in heterogeneous networks have wider controllable ranges than those in homogeneous networks with similar
numbers of nodes and links, if only the weights of links are changed with a fixed bound. Therefore, it is believed
that heterogeneous networks fit the changeable environment better, which provides another explanation for some
common observations on many heterogeneous real-world networks.
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I. INTRODUCTION

The term “reaction-diffusion (RD) process” refers to a
group of particles which locally react with each other and
globally diffuse in space. The RD process was first intro-
duced by Turing [1] to account for the main phenomena of
morphogenesis. In fact, many dynamics, such as chemical
reactions [2], population evolution [3], biological pattern
formation [4], epidemics [5], and computer virus spreading [6],
can be modeled by RD processes, where the particles are
molecules, organisms, cells, people, or documents, and spaces
are normal Euclidean spaces or discrete network spaces. Since
a discrete Euclidean space can always be represented by a
lattice of the same dimension [7,8], it is quite useful for
studying RD processes in complex networks especially for
computer simulations.

Recall that many real-world biological [9], social [10], and
technological [11] networks possess heterogeneous structures.
Because such structures can be characterized by a power-law
degree distribution, this type of network is classified as scale-
free (SF), as introduced by Barabdasi and Albert (BA) in their pi-
oneering work [12]. The study of RD processes in SF networks
provides many interesting results. For example, in studying
annihilation reactions, Gallos and Argyrakis [13] found that
the generation of a depletion zone and the segregation of the
reactants formed in a normal Euclidean space did not occur
in SF networks; in studying susceptible-infected-susceptible
(SIS) dynamics, Colizza et al. [14] found that in SF networks
the reaction activity was still sustained even in the limit of a
vanishing density of particles, which had not been investigated
in normal Euclidean spaces before. These results suggest that
the spatial distributions of different kinds of particles produced
by RD processes are not only determined by the reaction
equations but also significantly influenced by the topological
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structures of the underlying networks in which the diffusion
takes place.

Generally, an RD process is controlled by tuning the rates
of the reactions involved. For example, in consideration of re-
versible chemical reactions, the forward and reverse reactions
are competing with each other and they differ in reaction rates,
and therefore, in some situations the equilibrium point can be
shifted to a desired side by changing temperature or pressure;
when epidemic spreading is considered, the infected rate can
be decreased by encouraging people to receive vaccination or
wear respirators. However, far less attention has been paid to
another control mechanism: control of the RD processes by
adjusting the structures of the underlying diffusion networks,
which may be especially useful in situations where some
macroscopic measurements, such as temperature and pressure,
must remain unchanged throughout the process. This is partly
attributed to the lack of knowledge about the structure and
functioning of complex networks.

This control mechanism seems feasible today. In fact, as
nano-technologies have developed [15,16], physical chemists
are now able to build nanofluidic devices such as lipid
nanotube-vesicle networks using soft-matter materials, where
transport, mixing, and shape changes can be achieved at or near
thermal energy levels, and their kinetics can be controlled by
shape and volume changes [17]. In addition, with the current
advance in complex networks theory, our recent work [18]
also proved that, by adopting the SIS model, epidemics can
be statistically controlled by a distributed random rewiring
process in the diffusion network. Here, “distributed control”
[19] means that each node is a subsystem with a controller
to partly control its own state by changing its local structure
with or without communication with others, while “centralized
control” [20] means that the overall system has only one
controller (like the brain) to control the state of the system by
changing the global structure of the network. Since these two
different control schemes each have advantages in different
situations, both of them will be adopted here to control RD
processes.
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In this paper, a theoretical framework is introduced for
controlling RD processes by adjusting the structures of the
underlying networks, where a network structural property,
i.e., heterogeneity, is correlated to the steady-state density
of active particles. In order to be self-contained, part of our
earlier work [18] will be reviewed. In this framework, by
considering each node as an agent [21,22], which can rearrange
its neighbors when it senses differences between its own state
and the external requirement, statistically distributed rewiring
and reweighting schemes are proposed for unweighted and
weighted diffusion networks, respectively. It is found that
the RD dynamics can be controlled to a certain extent
via a local and random mechanism, as reflected by the
proportion of active particles existing in the network nodes.
Moreover, this study suggests that the emergence of common
heterogeneous structures of many biological networks [9,23]
may be attributed to their interior microscopic dynamics rather
than the ordinary connecting rules. On the other hand, in
situations where the proportion of active particles in a network
can be estimated in real time, some centralized control schemes
are proposed, which turn out to be far more efficient than
the distributed ones, and thus may be more useful in future
microfabrication industries [24,25], wherever global control
is feasible. Interestingly, when the network topology is fixed
and only the weights of links can be changed with a fixed
bound, it is found that the proportion of active particles in
heterogeneous networks can be controlled in wider ranges than
those in homogeneous ones with similar numbers of nodes and
links. In other words, by comparison, heterogeneous networks
have stronger plasticity and thus are more likely to survive in
cruel natural competitions.

The rest of the paper is organized as follows. In Sec. II,
some theoretical analysis is reviewed for the SIS model
on a network, and the structural control framework for
RD processes is formulated. In Sec. III, some distributed
rewiring and reweighting control schemes are introduced, for
unweighted and weighted networks, respectively, while some
centralized control schemes are presented in Sec. IV. The work
is finally concluded in Sec. V.

II. THEORETICAL FRAMEWORK

Throughout this paper, the diffusion space is represented
by a network where different kinds of particles in each node
react with each other, while they diffuse to neighboring nodes
simultaneously.

In this section, first, the micromechanism of the well-known
SIS model, which has been studied in physics [26] and
mathematical epidemiology [27], is investigated, and then
the relationship between structural properties of the diffusion
network and the outputs of the SIS model is discussed
by adopting the mean-field (MF) theory [14,18]. Finally, a
feedback structural control scheme is proposed.

The micromechanism of the SIS model on a network of V
nodes is composed of the following two reactions:

p— a (1)
a+ B —28. 2)
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Egs. (1) and (2) ensure that the total number of particles does
not change in the process. Here, B particles are identified
as active particles because « particles cannot spontaneously
generate 8 particles [14]. Next, the parameters involved are
introduced before the theoretical analysis is provided. The
reaction rates of Eqgs. (1) and (2) are denoted by u; and u,,
and the diffusion rates of o and § particles are denoted by 74
and ng, respectively. For each node i, i = 1,2,...,V, in the
network, its neighbor set and degree are denoted by 7; and k;,
respectively. Moreover, if weighted networks are considered,
its weighted degree is denoted by w; = ) jem ij» Where w;;
is the weight of the link connecting nodes i and j. At the
same time, the weighted degree distribution is denoted by
P(w), and the average degree and average weighted degree
are represented by (k) and (w), respectively. In addition, the
numbers of o and S particles in the network are denoted
by N, and Ng, respectively, and thus the total number of
particles is N = N, + Ng. Then, the densities of o, 8, and
total particles are defined by p, = No/V, pg = Ng/V, and
p = N/V, respectively.

Based on these parameters and supposing that there are
ng,i(t) a particles and ng ;(t) B particles in node i at present,
after reactions, the numbers of o and 8 particles in node i are
changed to

Mai(t) = Ng,i(t) + wing,i(t) — palNi (1), 3)
ngi(t) = (1 — pong(t) + u2Ii (@), @

where the reaction kernel I';(¢) takes the form of I';(¢) =
Ng,i(t)ng,;(t). Then, in the diffusion process, differing from
[14,18], when weighted networks are considered, with prob-
ability nyw;j/w; or ngw;j/w;, an a or a B particle in node i
jumps to one of its neighbors j. That is, the diffusion process
is determined not only by the diffusion rates by also by the
weighted links. As a result, after one round of the RD process,
the total numbers of o and § particles in node i are statistically
recalculated as

- ;T (1)
Rt + 1) = (1= )i () 10 Y, =25, (5)
JET; J

npit + 1) = (1= np)ipi0) +np Y %’“) ©)

JET; J

respectively. From Eqgs. (3)—(6), it follows that the dynamical
RD equations in each node i can be represented by

anw
5y = e + (1 = n)lpuing; +ng; — pual'y]
wij(ing j + ne,j — Hal'j)
| Y R ()
JET @j
8nﬁ,,-
o = T + A =0l — wng; + n2I']
wii[(1 — pung ; + ual'y]
+n,3 Z J B.Jj J , (8)

; w;
JET; ‘
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where the time indices ¢ are dropped for simplicity. Supposing
N« = Ng = 1, denoting the total number of particles in node i
by n; = ny,; + ng,;, and summing Egs. (7) and (8), one has

3?’[,’

_ wijn;
=] ©)

Y
JETi /

Denoting ¢; = n;/w;, Eq. (9) becomes

0¢;

wia_(i =1 Zwij¢j —wid;i | . (10)
JET;

Assume that the RD process takes place in the SIS model
on a connected network of V nodes, defined by a weighted
adjacency matrix W with elements having values w;; if nodes
i and j are connected or O otherwise. Then, Eq. (10) can be
put in the matrix form

9 _
o, = ~1ATILe, (11)

where ¢ = [¢1,¢2, ...,¢v]T, A = diag(w;,w,, ... ,wy), and
L = A — W is the Laplacian matrix of the weighted network
[28]. Equation (11) has a steady solution ¢ = [c,c, ... 1’
under the condition Z;V=1 w;¢; = cV{(w) = N. Then one has
¢ = p/{w), so that a steady solution of Eq. (9) can be obtained
as

Wi
nj=—p. (12)
(@)
This means that a node of a larger weighted degree always
attracts more particles to pass through it.

Suppose that there are V,, nodes possessing a weighted
degree w in the network, and denote by N, ., and Ng,, the
numbers of « and B particles, respectively, located in these
nodes. Then the quantities

Na,w _ N/S,a)
v, T,

Pa,w = ( 1 3)
represent the densities of o and B particles, respectively, in
each node with weighted degree w. Then, by the MF theory and
under the assumption of having no weighted degree correlation
between any two linked nodes [14,18], Egs. (7) and (8) become

00,0

5, = Pao + (1 = n)l1Pg,0 + Pao — U282]
+ 2 1 0p + o — 12921, (14)
(w)
ﬂgﬁz-wmAwl—wnﬂ—u0mw+uﬂ%]
+ L2101 — p1)op + 129, (as)

(@)

with p, = Zw P(0) 04,0 Pp = Zw P(w)pﬁ,wa and Q=
Zw P(w)2,, where the reaction kernel now takes the form
of Q, = Pa,wPB,w-

When 5, = ng = 1, which means that all the particles in
a node at time  — 1 will jump to its neighbors at time ¢, the
stationary states can be obtained by considering 9,04, = 0
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and 9; pg , = 0, resulting in the following equations:

w
Paw = —[110g + pu — U282], (16)
(w)
w
Ppo = (1 — pn1)pg + 1221 (I7)
Multiplying Eq. (17) by P(w) and then summing it over w,
one gets

ps = 220 (18)
1231
Then, by using Eq. (18), Eqs. (16) and (17) can be further
simplified to
w

Paw = 7 Pas PBo =

2 (19)
(@) LB

(w)
with
“2 2
Po=p——R, pg=—Q. (20)
231 1

From Eqgs. (19) and (20) and the definition of €2, when the
dynamics are statistically steady, one can get the average
densities of « and B particles in the network, respectively, as

w1 {w)?
=1 pp = = 21
P = @y P 112 (@) @D

where (0?) = Ziv:l wlz / V. It should be noted here that, when

different kinds of particles have different diffusion rates, i.e.,
ng=1and 0 <n, <1, a similar result can be obtained;
the RD results for more values of the diffusion rates were
introduced in [14]. In the rest of this paper, however, we will
only focus on the situation when n, = ng = 1 for simplicity.
In Eq. (21), one can see that the steady-state density of «
or 8 particles in the network is not only determined by the
reaction parameters, such as ;| and w,, but also influenced by
a weighted-degree-related structural property of the network,
(w)?/{w?), the value of which is typically used to define the
heterogeneity of a weighted network, i.e.,

2
H= u (22)

(w)?

In particular, when considering an unweighted diffusion

_ o)

network, i.e., there is no difference in diffusion rates between
any two links, Eq. (21) becomes

_

1% — 57 P, —ﬂ(mz
Ty

1 (k%)
with (k%) = ZV k?/ V. Accordingly the heterogeneity of the

i=1"

(23)

unweighted diffusion network is calculated by

2
H= @ (24)
(k)

Since the final density of o or S particles is directly
associated with the heterogeneity of the diffusion network, as
represented by Egs. (21)—(24), it is possible to control the RD
process by adjusting the structure of the diffusion network
dynamically. In the following, two distinct control themes
are proposed based on distributed [19] and centralized [20]
structural controls, by rewiring and reweighting processes for
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FIG. 1. (Color online) The structural control framework of the RD
process with the SIS model. Here, « and 8 particles diffuse between
neighboring nodes, and inside each node they react with each other.
For distributed structural control, once a node senses that the ratio of
o to B particles in it does not meet the external (natural or artificial)
requirement, it rearranges its neighbors immediately by a rewiring or
reweighting process for unweighted and weighted diffusion networks.
Thus, the network evolves adaptively as the external requirements
change. For centralized structural control, it is supposed that the
overall proportion of o or 8 particles in the whole network can
be estimated. Thus, the network undergos a centralized rewiring or
reweighting process when the density does not meet the external
requirement.

unweighted and weighted networks, respectively, as shown in
Fig. 1.

III. DISTRIBUTED STRUCTURAL CONTROL

For natural systems, nodes in a network are often considered
as selfish agents. That is, once a node senses the difference
between its state and the external requirement, it rearranges
its associations with neighbors immediately without much
consultation with the others, so as to increase its own
advantages and benefit in natural competitions. It is quite
interesting to study whether a heterogeneous structure can
emerge from the external requirement that encourages more
o or B particles, through a random rewiring or reweighting
strategy, such that the differences between the states of nodes
and the external requirement are gradually eliminated. In the
following, two distributed structural control mechanisms, i.e.,
distributed rewiring and reweighting strategies, are proposed
for unweighted and weighted networks respectively, which
will be applied totally at random.

A. Distributed rewiring control

Without loss of generality, suppose that the external
condition or requirement for each node i is set to be the same,
to encourage the active particles 8, as formulated by

0g; = Mg >0, (25)
with 6 € [0,1). When the initial diffusion network is set to be a
two-dimensional unweighted lattice, the distributed structural
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control scheme is implemented by a random local rewiring
process consisting of the following five steps [18]:

(1) Initialization. Numbers N,(0) of « particles and Ng(0)
of B particles are randomly distributed in an L x L two-
dimensional lattice containing V = L? nodes. Set y =0;
this will be used to judge whether the network structure
is statistically stable and thus the rewiring process can be
terminated.

(2) Reaction. At each time ¢, numbers n,;(t — 1) of «
particles and ng;(t — 1) of B particles in each node i react
with each other according to Egs. (1) and (2). That is,
each B particle in a node is transformed to « particle with
probability n; and the reverse takes place with probability
1 — (1 — o)™~V [14]. Here, ng;(t — 1)and ng ;(t — 1) can
be any nonnegative integers including zero whena bosonic RD
process is considered [29].

(3) Diffusion. After reactions, the particles diffuse in the
network by random walks. That is, every particle in each node
of degree k jumps into one of its neighbors with the same
probability 1/ k. It should be noted that, when 1, < 1 orng <
1, every « or § particle is selected with probability 7, or ng to
perform the above diffusion operation. Then, after a round of
the RD process, the numbers of « particles and 8 particles in
node i are updated to be ny ;(¢) and ng (), respectively.

(4) Rewiring. When the RD process in the network is
relatively steady, i.e., t > T (T is a large number), in every t
(T > 1) time steps, denote by rif the total times that the state of
eachnode i fails to meet the external condition. If node i always
fails, i.e., T[-f /T > & with & being the tolerance degree, it seeks
structural changes and is added into a rewiring candidate set
R. And if none of the nodes seeks structural changes in these t
rounds of RD processes, i.e., R = (J,sety = y + 1;otherwise,
randomly select a candidate from the set R, denoted by a, and
let it undergo local structural changes by a rewiring step as
follows: Select one of its neighbors, denoted by b, release the
link between them, and then create a new link between node
a and one randomly chosen neighbor of node b, denoted by
¢, as shown in Fig. 1, “Rewiring process.” It should be noted
that self-loops and multiple edges are not allowed, that is,
the network remains unchanged and the rewiring operation is
canceled if node a and node ¢ were already connected. Set
R =0,y =0, and turn to step 2. This local rewiring strategy
can ensure network connectivity and retain the average degree
of the network.

(5) Termination. If none of the nodes in the network
seeks structural changes in 77 x 7 successive rounds of RD
processes, i.e., y = T, we consider that the network structure
is statistically stable and the rewiring process is terminated. It
should be noted that if the above condition cannot be achieved,
the program is also stopped when ¢ = T5. In this case, we
think that the network structure cannot be stable under such a
rigorous external requirement.

When the parameters are set to be u; = 0.2, up, = 0.05,
p = Swith pg(0)/pp(0) = Nu(0)/Ng(0) = 1,V = L? = 625,
£E=09,T, = 10%, t = 100, 73 = 200, and 75 = 107, exam-
ples of the diffusion network at different stages with different
values of 6 are shown in Fig. 2. Note that, based on Eq. (23),
the reaction rates must satisfy w;/u, < p in order to produce
B particles in a two-dimensional lattice where (k?) &~ (k).
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FIG. 2. (Color online) The initial two-dimensional lattice as well
as some examples of the diffusion network in different stages with
6 = 0.3,0.4,0.6,0.8, under distributed rewiring control. In each scene,
the node size is proportional to the node degree; the links between
the nodes with degree not smaller than 10 are plotted by thick blue
lines, while those between the nodes with degree smaller than 10 are
plotted by solid green lines, and the remaining links are plotted by
dashed red lines.

Here, we set wi/uy =4, a little smaller than p; thus we
can investigate the change of the proportion of S particles
in a wide interval in the rewiring process. Next, the RD
process in different network scenarios obtained under different
external conditions is reconsidered. Define the average ratio of
B particles over all the nodes and the proportion of § particles
in the whole network by

1
o = v Zit108i (26)
Yol
Xp = f 27)

respectively. It is found that, with the values chosen for the
reaction rates, the proportion of « or 8 particles in the whole
network changes steadily in a large range as the network
evolves, as shown in Fig. 3. Intuitively, when 6 increases, the
adaptive network is becoming more and more heterogeneous,
so that most nodes in the network possess relatively higher
ratios of active particles 8. Moreover, from Egs. (23), (24),
and (27), one can get the theoretical average proportion of S
particles in the whole network, as follows:

p=1-1L (28)

When the parameters are set to be p =5, u; = 0.2, and
o = 0.05, Eq. (28) can be simplified to yg =1—0.8/H.
Then, for each network scenario with fixed structure, we
calculate the analytic xg, which is also shown in Fig. 3
for comparison. The difference between the controlled and
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FIG. 3. (Color online) The controlled and analytic proportions
of particles in the network as well as the expected values at different
stages of evolution under distributed rewiring control. In each network
stage, the RD process is parallel implemented 10* times after the early
time transients and then the corresponding results are recorded (the
same method is used for the figures below).

analytic xg may be attributed to the degree correlations
between pairwise-linked nodes in the diffusion network, which
violates the assumption in adopting the MF theory, as was
carefully discussed in our previous work [18]. In addition, in
the rewiring process introduced here, a node seeks structural
changes only when it fails 90 times to meet the external
condition in 100 time steps, i.e., £ = 0.9; as a result, the
average proportions of 8 particles in the network scenarios
(controlled results) are a little smaller than the expected
values denoted by xg(8) > 6, as is shown in Fig. 3, although
the network structure is stable, i.e., the rewiring process is
terminated when y = T, in most cases (the only exception is
when 6 = 0.8). Certainly, one can reduce these gaps by simply
increasing the value of the tolerance degree &, but (every coin
has two sides) it may also produce with a higher probability
an unstable network structure in the process.

B. Distributed reweighting control

The RD process can also be controlled, to a certain
extent, by adjusting the flows through the links, as described
by Egs. (21) and (22). Naturally, it seems much easier to
redistribute the weights of links than to make a topological
change. Here, distributed reweighting control is studied on a
two-dimensional lattice and a BA SF network, respectively,
with the topological structures of the networks being kept
unchanged. The reweighting process also consists of five steps:

(1) Initialization. Numbers N, (0) of « particles and Ng(0)
of B particles are randomly distributed in a weighted network
with V nodes. The weights of all links are set to be the same,
denoted by w. Set y = 0.

(2) Reaction. At each time ¢, each g particle in a node is
transformed to an « particle with probability 1| and the reverse
takes place with probability 1 — (1 — pp)"#¢=D,

(3) Diffusion. After reactions, every particle in each node i
with weighted degree w; jumps to one of its neighbors, node
J» with probability w;;/w;, proportional to the weight of the
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link between them. Then the numbers of « and § particles in
each node i are updated to n,,;(¢) and ng ;(t), respectively.

(4) Reweighting. Similarly, when the RD process in the
network is relatively steady, i.e., t > T for a large Ty, in every
T (t > 1) time steps, count the total times rl.f that the state
of each node i does not meet the external condition. Once
rif /T > &, node i is added into a reweighting candidate set
R. If R=(, set y = y + 1; otherwise, randomly select a
candidate from the set R, denoted by b, and let it undergo local
structural changes by a reweighting step as follows: Select one
of its neighbors, denoted by a, increase the weight of the link
between them by Awy(¢), and then decrease the weight of the
link between node b and another randomly chosen neighbor
¢, by Awy(t), as shown in Fig. 1 “Reweighting process.”
Here, if node b has only one neighbor, a, the network remains
unchanged and the reweighting operation is canceled. At the
same time, in order to ensure that the weight of each link is
larger than 0, it is necessary that 0 < Awp(¢) < wpc(t), where
wpe(t) 1s the weight of the link between nodes b and ¢ at
present. Set R =, y =0, and turn to step 2. Such a local
reweighting strategy can ensure the network connectivity and
retain the average weighted degree of the network. The external
requirement is set to be the same, i.e., to encourage the active
particles 8, as formulated by Eq. (25).

(5) Termination. When y = T) or t = T, the process is
terminated.

When the parameters are set to be u; = 0.5, u, = 0.05,
p =20 with p,(0)/0p(0) = Ny (0)/Ng(0) =1,V =64, w =
10, £ =009, T, = 10°, T =100, T; =200, 7> = 107, and
Awpc(t) = 10.56wpc(1)] with 6 € (0,1) being a random value,
and at each time a newly added node is linked to two different
existing nodes in the BA SF network, the scenarios for the
two-dimensional lattice and the BA SF network in different
stages with different values of 8 are shown in Fig. 4, top
and bottom, respectively. Here, Awp.(f) > 0 is an integer,
which means that the weight of each link can only be adjusted

0.5 0.52

0.55
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0.6

0.55

0.45

- Controlled results (Lattice)
—— Controlled results (SF Network)
- - - Expected values

0.52 0.54 0.56 0.58 0.6

FIG. 5. (Color online) The controlled proportions of particles in
the lattice and SF networks as well as the expected values at different
stages of evolution under distributed reweighting control.

discretely. Intuitively, in order to produce more active particles,
the weights of most links associated with the nodes of large
degree are strengthened while those associated with the nodes
of small degree are weakened, all by self-organization. The
controlled yg in the scenarios of a two-dimensional lattice and
a BA SF network are shown in Fig. 5. As can be seen, the
average proportions of B particles in the network scenarios are
also a little smaller than the expected values under a relatively
large tolerance degree, i.e., & = 0.9.

Note that here the analytic xg for each network scene can
also be calculated by Eq. (28) with H = (w?)/(w)?, which is
found to be larger than 0.8 in most cases, and thus the gaps
between the analytic and controlled results or the expected
values are much larger than those of the rewiring scheme
shown in Fig. 3. The reasons may be that, on one hand, the
smaller network size produces a larger variance in predicting
the values of xg by the MF theory, while on the other hand,

0.58 0.6

FIG. 4. (Color online) Different scenarios in two diffusion networks, i.e., two-dimensional lattice (above) and BA SF network (below), at
different stages with 6 = 0.5,0.52,0.55,0.58,0.6, under distributed reweighting control. In each scenario, the node size is proportional to its

degree, and the link width is proportional to its weight.
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the weighted degrees of two linked nodes are more likely to be
correlated with each other because they increase or decrease
synchronously when the weight of the link between them
increases or decreases. In fact, a similar deviation was reported
by Baronchelli and Pastor-Satorras [30] when they studied
diffusive dynamics on weighted networks using the MF theory.
They found that the deviation is further strengthened if the
weights of links are positively correlated with their associated
nodes, which suggests a positive correlation between weighted
degrees of linked nodes introduced here, as is shown in Fig. 4
(later evolving stages). Due to this limitation of the MF theory,
we create a feedback, rather than open-loop, framework to
control the proportions of reactants in RD networks, which can
guarantee control performance even with model uncertainties
[31]. Here, such model uncertainty is reflected by the deviation
of analytic results, described by Eq. (28), from real RD
dynamics.

IV. CENTRALIZED STRUCTURAL CONTROL

For artificial systems, when the state of the whole network,
here the proportion of B particles, can be estimated in real
time, no doubt it can be controlled more efficiently by tuning
the structure of network in a centralized fashion if the structure
can be changed at will. Here, the external requirement is
formulated by

xg =0, (29)

rather than encouraging more f particles as represented by
Eq. (25). Obviously, the external requirement Eq. (29) is
far more difficult to achieve than Eq. (25), and is almost
impossible by the two distributed control schemes intro-
duced above. Accordingly, two different centralized control
strategies, i.e., centralized rewiring and reweighting controls,
are introduced below for unweighted and weighted diffusion
networks, respectively.

A. Centralized rewiring control

When an unweighted diffusion network is considered, on
average the proportion of B particles can be estimated by
Eq. (28), with H = (k?)/(k)?. Consequently,
w1 AH
pap H?'
where AH < H. Considering the same rewiring process
as shown in Fig. 1 and denoting by k,, k;, and k. the

degrees of nodes a, b, and c, respectively, the variation of
the heterogeneity after a rewiring step can be calculated by

I i L Vi A
V(k)?

; €29

Axg = (30)

AH

_ 2(Ak+ 1)
V)2

where Ak = k. — kp, since the average degree (k) of the net-
work remains unchanged through the entire rewiring process.
Then, the relationship between A xg and Ak can be established
as

_ 2u(Ak+ 1)

 wpVH2(k)? 32

AX/S
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Based on Eq. (32), the above distributed rewiring control
scheme can be improved by changing the neighbors of nodes
with proper degrees, assuming that the difference between the
expected and the current steady proportions of 8 particles,
denoted by Axp = 6 — X4, can be estimated.

Specifically, the centralized rewiring control scheme is
composed of the following five steps:

(1) Initialization. Numbers N, (0) of o particles and Ng(0)
of B particles are randomly distributed in an L x L two-
dimensional lattice containing V = L? nodes.

(2) Estimation. After the RD process reaches its steady
state, the process is repeated T more times, and the average
proportion in these 7 rounds is calculated as an acceptable
estimation of the current steady proportion of 8 particles. Then,
the difference between the expected and estimated proportions
of B particles is calculated by

doir1 Xp(0)

Axpg=06—
XB .

(33)
The heterogeneity H given by Eq. (24) and the average degree
(k) of the current network structure are calculated. Then, the
needed variation of the node degree can be inferred from
Eq. (32) by

papV H(k)*
2

(3) Candidate selection. For each pair of linked nodes, if
Akr > 0, which means that a node of larger degree gains a
neighbor from a node of smaller degree in order to decrease
the absolute value of A g, denote by b; the node of smaller
degree and by c¢; the other node; otherwise, denote by b; the
node of larger degree and by c¢; the other one. When b; has
another neighbor which is not linked to c¢;, the pair of nodes
b; and ¢; are included in the candidate set i of rewiring node
pairs.

(4) Rewiring. Select a pair of nodes from i with the
closest difference in their degrees compared to the theoretical
| Akr|, still denoted by b; and ¢;, respectively. Randomly select
another neighbor of b;, denoted by a;, release the link between
a; and b;, and then create a new link between ¢; and c;.

(5) Termination. When the relative difference between the
expected and the estimated proportions of 8 particles satisfies
|[Axp/0| < €, the rewiring process is terminated. Here, € is
a relatively small positive number. Similarly, if the above
condition cannot be achieved, the program is also stopped
whent = T5.

It should be noted that when Aky € (—1.5, —0.5), the
heterogeneity of the network will not be changed any further
by the rewiring process. Consequently, there is a theoretical
upper bound of the control error calculated by

E. = 1251
U e VH ()

which can be inferred from Eq. (34) and suggests that higher
control accuracy can be expected in a diffusion network with
a larger average degree and a higher heterogeneity.

When the parameters are set to be u; = 0.2, u, = 0.05,
p = 5with p,(0)/ ps(0) = Ne(0)/Ny(0) = 1,V = L* = 625,
71 =10% € =10"% T, = 10°, and T, = 107, the scenes of the
diffusion network at different stages with different values of 6

Aky = Axp — 1. (34)

(35)
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FIG. 6. (Color online) The initial two-dimensional lattice as well as some scenarios of the diffusion network in different stages with
0 = 0.5,0.7,0.3,0.6, under centralized rewiring control. In each scenario, the node size is proportional to the node degree.

are shown in Fig. 6. Moreover, the controlled and analytic
proportions of B particles in different network scenes are
shown in Fig. 7. Interestingly, it is found that xz can be
controlled to different points in a certain range with quite high
accuracy by the proposed centralized rewiring mechanism,
although the theoretical results still largely deviate from the
set points. This is because, as formulated by Eq. (12), the
emergence of hub nodes in heterogeneous networks provides
a chance for o particles to meet more S particles in a
local world so as to be infected with a higher probability.
Therefore, the heterogeneity of a network is indeed statistically
related to the proportions of different reactants in it. This is the
basis of the feedback centralized control method introduced
above, where the heterogeneity is increased if the density of
B particles is lower than the expected value and is decreased
otherwise. However, since the analytic results are obtained by
the MF theory under the assumption of having no weighted
degree correlation between any two linked nodes, it is not
strange that they deviate from the real results when the
assumption cannot be guaranteed in the control process.

B. Centralized reweighting control

When a weighted diffusion network is considered, the
only difference from an unweighted one is that here H =

(@?)/{w)*.

0.7t
0.6
=
v& 0 5 -
x
0.4f
0.3F : —— Controlled results |
- = = Expected values
0.3 0.4 0.5 0.6 0.7

0

FIG. 7. (Color online) The controlled and analytic proportions of
particles in the network as well as the expected values at different
stages of evolution under centralized rewiring control.

Consider the same reweighting process shown in Fig. 1 and
denote by w,, wp, and w. the weighted degrees of nodes a,
b, and c, respectively. The variation of the heterogeneity after
a reweighting step, where the weight of the link between a
and b increases by § and that between b and ¢ decreases by §,
respectively, is calculated by

(@i + 8+ (0 — 8 —w) — k2
B V{w)?

_ 2(8Aw+8?)

 Viw)?

AH

(36)

where Aw = w, — w., because the average weighted degree
(w) of the network remains unchanged through the entire
reweighting process. Here, it is supposed that the weights of
links belong to a common range, denoted by [@min, ®max ], With
®min > 0, in order to keep the connectivity of the weighted
network. Therefore, it is required that

0 < 8 < min(a)bc — Wmin,®max — a)ab)- (37)

Denoting A¢ = §(Aw + §), the relationship between A x g and
A¢ can be established as

2 AL

Ayp = — 120
P apV HY ()

(38)

Based on Eq. (38), the centralized reweighting control
scheme is composed of the following five steps:

(1) Initialization. Numbers N (0) of « particles and Ng(0)
of B particles are randomly distributed in a network of N
nodes. The weights of all links are set to be the same, denoted
by w.

(2) Estimation. Estimate the difference between the ex-
pected and the current steady densities of B particles by
Eq. (33). Calculate the heterogeneity H by Eq. (22) and the
average weighted degree (w) of the current weighted network
structure. Then, from Eq. (38), one gets

_ mpVH ()’
2

(3) Candidate selection. For each ordered node triple

[ai,b;,c;], where b; is a common neighbor of g; and c;,

calculate the minimum value of &; = |§;(Aw; + §;) — ALr|

for Aw; = ws — o, and §; € [0, min(wp,c; — Omin>DOmax —

wqp;)]. Denote by s?’ the minimum value of g;, which is

Alr Axgp. (39)
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04 0.45

0.5
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0.55 0.6

FIG. 8. (Color online) Different scenarios in two diffusion networks, i.e., a two-dimensional lattice (above) and a BA SF network (below)
at different stages with 0 = 0.4,0.45,0.5,0.55,0.6, under centralized reweighting control. In each scenario, the node size is proportional to the
node degree and the link width is proportional to its weight. Note that, this figure as well as Figs. 2, 4, 6 are all ploted by Cytoscape [32].

obtained when §; = 8? . Then include the ordered node triple
[a;,b;,c;] in the candidate set i of ordered reweighting nodes.

(4) Reweighting. Select the ordered node triple in  with
a minimum 8?, still denoted by [a;,b;,c;]. Increase the weight
of the link between a; and b; by 6? and decrease that between
b; and ¢; by 7.

(5) Termination. When |Axg/0| <€ or t=T1,, the
reweighting process is terminated.

When the parameters are set to be u; = 0.5, u, = 0.05,
p = 20 with p,(0)/0p(0) = Ny (0)/Ng(0) =1,V =64, w =
10, Wmin = 1, wmax = 20, 7 = 103, e = 1074, T, = 10°, and
T» = 107, and each time a newly added node is linked to two
different existing nodes in the BA SF network, the scenarios of
diffusion networks at different stages with different values of
6 are shown in Fig. 8. The controlled and analytic proportions
of B particles in the scenarios of the two-dimensional lattice
and the BA SF network are shown in Fig. 9. As expected,
the centralized reweighting control scheme gives better results
than the distributed one. More interestingly, by comparison,
it is found that the proportion of « or § particles in hetero-
geneous networks can be controlled through the reweighting
processes in wider ranges than in homogeneous networks
with similar numbers of nodes and links, if the weights of
links have the same bound. Generally, a system with stronger
plasticity can fit a changeable environment better, which
may explain why heterogeneous networks are so common in
nature.

V. CONCLUSION

By designing distributed rewiring and reweighting control
schemes for unweighted and weighted networks, respectively,
it is found that the networks evolve to be more and more
heterogeneous in a self-organized fashion in order to satisfy the
external requirements which encourage more active particles

in the networks. Based on the relationship between the het-
erogeneity of a diffusion network and the proportion of active
particles, if the proportion of active particles can be estimated
in real time, it is possible to propose more efficient centralized
control schemes. More interestingly, it is revealed that the
proportions of active particles in heterogeneous networks can
be controlled in wider ranges than those in homogeneous
networks with similar numbers of nodes and links, under the
assumption that only the weights of links can be changed
within a fixed bound. Consistent with the natural law “the fittest
survives,” this finding may provide another explanation for the
common heterogeneous structures existing in many real-world
networks.

In the future, the work presented here can be expanded
regarding the following three issues. First, different kinds of

0.6

0.55
>
=, 05
=

0.45

QA Controlled results (Lattice)
I —— Controlled results (SF Network)
- - - Expected values
0.4 0.45 0.5 0.55 0.6
)

FIG. 9. (Color online) The controlled and analytic proportions of
particles in the networks as well as the expected values at different
stages of evolution under centralized rewiring control.
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RD process may be considered under the same framework to
examine whether they can be controlled by similar methods.
Second, more precise relationships between structural proper-
ties and the RD results should be established. Finally, more
effective control schemes might be developed to improve the
control efficiency.
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