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Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres
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Various researchers have predicted situations where the acoustical or optical radiation force on a sphere
centered on a Bessel beam is opposite the direction of beam propagation. We develop the analogy between
acoustical and optical radiation forces of arbitrary-order helicoidal and ordinary Bessel beams to gain insight
into negative radiation forces. The radiation force is expressed in terms of the asymmetry of the scattered field,
the scattered power, the absorbed power, and the conic angle of the Bessel beam and is related to the partial-wave
coefficients for the scattering. Negative forces only occur when the scattering into the backward hemisphere is
suppressed relative to the scattering into the forward hemisphere. Absorbed power degrades negative radiation
forces.
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I. INTRODUCTION

Recent predictions that spherical particles placed on the axis
of an electromagnetic Bessel beam (EMBB) may be attracted
to the source of the beam for appropriately selected particle
properties and beam parameters [1,2] make it appropriate
to consider prior results predicting negative radiation forces
on spherical objects placed on the axis of acoustical Bessel
beams [3–6]. Since Bessel beams are translationally invariant,
the force in the EMBB case is not associated with the gradient
force commonly used to trap small objects at the focus of
converging light beams. For situations producing negative
acoustical radiation forces for which the associated scattering
pattern is also evaluated, the scattering into the backward
hemisphere is suppressed relative to the scattering into the
forward hemisphere [3–5]. This result is suggestive of the
correlation between the shape of the scattering pattern, as
characterized by the asymmetry factor, and negative radiation
forces predicted in one of the EMBB investigations [1]. In
the present research we identify the analogy between optical
and acoustical radiation forces by showing the similarity
of the dependence on the asymmetry in the scattering by
spheres illuminated by Bessel beams. The research illustrates
geometrical aspects of the momentum transport associated
with negative forces and the importance of the conic angle
of the beam.

This Rapid Communication shows that the acoustical radia-
tion force can be expressed directly in terms of the asymmetry
of the acoustical scattering pattern and the computed acoustical
extinction. Throughout this analysis the propagation of waves
in the external media is assumed to be free of absorption,
as was also the case in the calculation of radiation forces in
EMBBs. The analysis includes the case of helicoidal acoustical
Bessel beams with an exp(imφ) azimuthal phase dependence
where the beam order m is an arbitrary integer [5–7]. The
nonhelicoidal case is recovered by setting m = 0 [3,4,8].
The notation follows a generalization of the notation used
in the closely related prior work on acoustical beams [3–5,7,8]
and light scattering [9,10]. In addition to considering the
asymmetry in the acoustical scattering it is also necessary
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to consider the scattered power and, when the sphere is
absorptive, absorbed power. The results clarify the degradation
of negative radiation forces introduced by energy absorption
by the sphere.

While the emphasis is on gaining insight into the reason
why negative forces are predicted to be produced in idealized
situations, if such forces can be produced with acoustical
or optical beams there may be diverse applications for the
manipulation of spherical and nearly spherical objects with
beams of traveling waves [1,2,11,12].

II. ACOUSTICAL BESSEL BEAMS AND SCATTERING
BY A SPHERE

The spatial part of the complex velocity potential for a he-
licoidal Bessel beam in an ideal fluid may be expressed as fol-
lows in cylindrical coordinates: ψi = ψ0i

mJm(μρ) exp(iκz +
imφ), where ψ0 is a real-valued amplitude constant, z is the
axial coordinate, ρ is the radial coordinate, Jm is a Bessel
function of order m, κ and μ denote the axial and radial wave
numbers, and the wave number k =

√
μ2 + κ2 = ω/c0, with

c0 the speed of sound in the surrounding fluid and ω the
beam’s frequency for the time dependence exp(−iωt). [The
dependence of the pressure and the velocity on the velocity
potential is given in the paragraph following Eq. (4).] The
im is included for convenience and for making the distinction
between positive and negative m primarily the dependence on
φ since imJm = i−mJ−m. The Bessel beam has the geometric
parameter β = arctan(μ/κ), which is the conic angle of the
beam’s wave-vector components relative to the z axis [3,13].

The property that the Bessel beam is equivalent to the
superposition of plane-wave components allows the beam
to be expressed as a partial-wave expansion. Following the
approach of Durnin et al. [13], the Bessel beam is expressed in
spherical coordinates as the superposition (see the Appendix
of Ref. [7]) ψi = (2π )−1ψ0

∫ 2π

0 exp(ik′ · r + imφ′)dφ′, where
k′(k,β,φ′) = kn′ is the wave-vector component with n′ · nz =
cos β, nz is a unit vector along the z axis, and r(r,θ,φ) = rn
is the field point having a polar angle θ relative to the z

axis. The partial-wave expansion of ψi is given by insert-
ing the plane-wave expansion exp(ikrn′ · n) = ∑∞

n=0(2n +
1)injn(kr)Pn(n′ · n) (see p. 471 of Ref. [14]) into the
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superposition representation of ψi . This yields a summation
of terms containing the integration Anm = (2π )−1

∫ 2π

0 Pn(n ·
n′)eimφ′

dφ′, which may be evaluated by using one form of the
spherical harmonic addition theorem [Eq. (3.68) in Ref. [14]]
and by noting that only certain terms survive the integration.
This gives

ψi = ψ0e
imφ

∞∑
n=|m|

(2n + 1)
(n − m)!

(n + m)!
injn(kr)P m

n (b)P m
n (w),

(1)

where w = cos θ , b = cos β, jn is a spherical Bessel function,
and P m

n is an associated Legendre function. The series
converges with a finite number of terms. With jn(kr) =
h(1)

n (kr)/2 + h(2)
n (kr)/2, where h(1) and h(2) are a spherical

Hankel function of the first and second kinds, the incident beam
is a superposition of outgoing and incoming spherical-wave
components ψi1 and ψi2. Only the far-field form is needed
here; jn(kr) is replaced by the asymptotic form jn(kr) ∼
i−(n+1)eikr/2kr + in+1e−ikr/2kr for kr � n.

The analytical solution of the scattering by an isotropic
sphere with a radius a in an inviscid fluid centered on the
beam’s axis can be expressed in terms of a superposition of
the scattering for each plane-wave component [7,8]. The super-
position of the scattering from the plane-wave components of
the beam is ψs = (2π )−1ψ0

∫ 2π

0 ψ ′
s exp(imφ′)dφ′, where ψ ′

s

is the scattering for the plane-wave component exp(ikrn′ · n),
given in the far field as ψ ′

s = (a/2r)f (ka,n′ · n) exp(ikr), with
f (ka,n′ · n) = −(i/ka)

∑∞
n=0(2n + 1)(sn − 1)Pn(n′ · n). The

notation is similar to the notation used for quantum mechanical
scattering. The scattering functions sn are functions of ka

determined by the composition of the sphere and the acoustical
properties of the surrounding fluid. These functions are known
from the analysis of plane-wave scattering for a wide variety
of spheres [3–8,15]. Hence the scattering of the beam in
the far field is expressed in the terms of a partial-wave
series as

ψs(r,θ,φ) = ψ0(a/2r) exp(ikr)F (w,φ), (2)

F (w,φ) = (2π )−1
∫ 2π

0
f (ka,n′ · n) exp(imφ′)dφ′

= exp(imφ)

ika

∞∑
n=|m|

(sn − 1)(2n + 1)

× (n − m)!

(n + m)!
P m

n (b)P m
n (w), (3)

where the integral for F (w,φ) is evaluated like that for the
incident beam with a summation containing terms proportional
to Anm. The scattered field has the same azimuthal phase
dependence as the incident beam due to the axial symmetry of
the scatterer. The scattering reduces to that for the m = 0 and 1
cases [7,8]. Note that in the case of an ideal sphere causing no
dissipation of energy, the complex functions sn are unimodular:
|sn| = 1; otherwise, |sn| < 1. It is convenient to write the
normalized partial-wave amplitude as (sn − 1)/2 = αn + iβn,
with αn and βn the real and imaginary parts.

III. AXIAL RADIATION FORCE ON THE SPHERE

Using the far-field scattering, the static radiation force
is evaluated by a surface integration of the time-averaged
radiation stress tensor for the total sound field over a fixed
spherical surface of radius r with kr � 1 [3,5,16], F =∫
S
〈ST 〉 · dA, giving

F =
∫

S

(
ρ0

2
〈|u|2〉 − 1

2ρ0c
2
0

〈p2〉
)

dA −
∫

S

ρ0〈uu〉 · dA,

(4)

where the area differential dA is directed radially outward, ρ0

is the density of the surrounding fluid, and 〈 〉 denotes a time
average of the quantity in the angular brackets. The real-valued
time-varying first-order pressure and velocity are expressed
in terms of velocity potential as p = Re(iωρ0ψe−iωt ), and
u = Re(∇ψe−iωt ). By writing the fields as the superposition
of the incident beam and the scattering field using Eq. (2),
the axial radiation force on the sphere becomes [3,5,16] Fz =
πa2I0c

−1
0 Yp, where Yp = Y1 + Y2 − Y3 is the dimensionless

radiation force and

Y1 = −(4π )−1
∫ 2π

0

∫ 1

−1
|F (w,φ)|2w dw dφ, (5)

Y2 = −r(2πψ0a)−1Re
∫ 2π

0

∫ 1

−1
ψ∗

i F (w,φ)eikrw dw dφ,

(6)

Y3 =−r(2πψ0ka)−1Im
∫ 2π

0

∫ 1

−1

(
∂ψi

∂z

)∗
F (w,φ)eikrdw dφ,

(7)

where I0 = (ρ0c0/2)(kψ0)2 characterizes the beam’s intensity,
Re and Im designate real and imaginary parts of a complex
quantity, and ∗ denotes complex conjugation. The integral
in Eq. (4) containing only the incident wave vanishes since
the radiation force vanishes in the absence of a sphere. The
integrals are then evaluated using the far-field partial-wave
representations of ψi in Eq. (1) and of the scattering F

in Eq. (3). Both Y2 and Y3 have two summations, letting
Y2 = Y21 + Y22 and Y3 = Y31 + Y32, which are associated with
the outgoing and incoming components ψi1 and ψi2 of the
incident beam. For Y3 the first step is to set ∂ψi1,i2/∂z = ẑ ·
∇ψi1,i2 	 w∂ψi1,i2/∂r and ∂ψi1,i2/∂r 	 (+,−)ikψi1,i2 for
kr � 1. Then it is trivial to identify Y31 = −Y21 and Y32 = Y22,
and hence Y2 − Y3 = 2Y21. The task then reduces to evaluating
Y1 and Y21 only. Their integration over φ yields a factor of
2π by noticing that the integrands are independent of φ. The
remaining double summation contains an integration over w:
Im
nq = ∫ 1

−1 wP m
n (w)P m

q (w)dw, which is evaluated by using the
relations

(2n + 1)wP m
n (w) = (n− m + 1)P m

n+1(w)+(n + m)P m
n−1(w),

(8)∫ 1

−1
P m

n (w)P m
q (w)dw = 2

2n + 1

(n + m)!

(n − m)!
δn,q , (9)
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where δn,q = 1 if n = q and δn,q = 0 if n 
= q. The results for
Y1 and Y23 = Y2 − Y3 are

Y1 = −
(

2

ka

)2 ∞∑
n=|m|

[2(αnαn+1 + βnβn+1)]

× (n − m + 1)!

(n + m)!
P m

n (b)P m
n+1(b), (10)

Y23 = −
(

2

ka

)2 ∞∑
n=|m|

αn

(n− m)!

(n+ m)!
P m

n (b)
[
(n− m + 1)P m

n+1(b)
]

−
(

2

ka

)2 ∞∑
n=|m|

αn

(n − m)!

(n + m)!
P m

n (b)
[
(n + m)P m

n−1(b)
]
.

(11)

Simplifying Eq. (11) by using the recurrence relation given in
Eq. (8) with w being read as b gives

Y23 = b

(ka)2

∞∑
n=|m|

(−4αn)(2n + 1)
(n − m)!

(n + m)!

[
P m

n (b)
]2

, (12)

which is used below in the geometrical interpretation of the
radiation force.

One may rewrite the second summation in Eq. (11) by
discarding the vanishing term n = |m|, reindexing with n =
n′ + 1, and replacing n′ by n such that

Y23 =−
(

2

ka

)2 ∞∑
n=|m|

(αn + αn+1)
(n − m + 1)!

(n + m)!
P m

n (b)P m
n+1(b).

(13)

Then the result for Yp with Y1 in Eq. (10) and Y23 in Eq. (13)
agrees with the results for the cases m = 0 and 1 in Refs. [3,5]
and with the result of a different approach given in Ref. [6]
(YJm,p therein).

IV. GEOMETRICAL INTERPRETATION OF THE
RADIATION FORCE

We can connect the radiation force to the asymmetry of
the scattering and the scattered and absorbed power. Using
the far field scattering, the absorbed power is evaluated by
the surface integral of the time-averaged energy flux of the
total field over a fixed spherical surface of radius r with
kr � 1: Pabs = − ∫

S
〈pu〉 · dA. We could write the total field

as a superposition of the incident wave and the scattering field.
The term containing only the incident wave may be omitted
since the absorption vanishes in the absence of the sphere.
The two terms crossing the beam and the scattering are the
extinction power Pext = − ∫

S
〈pius + psui〉 · dA, that is, the

power extracted from the beam. The term containing only
the scattering is associated with the scattered power Psca =∫
S
〈psus〉 · dA. It has Pabs = Pext − Psca. Then it follows from

a procedure analogous to the evaluation of Eq. (4) that
Psca,ext,abs = πa2I0Qsca,ext,abs, where the Q’s denote acoustical

counterparts of optical efficiency factors [9,10]:

Qsca = (4π )−1
∫ 2π

0

∫ 1

−1
|F (w,φ)|2dw dφ, (14)

Qext = Qis + Qsi

=−r2(πa2ψ2
0 k)−1Im

∫ 2π

0

∫ 1

−1

(
∂ψi

∂r
ψ∗

s + ∂ψs

∂r
ψ∗

i

)

× dw dφ,

(15)

and Qabs = Qext − Qsca. Again, the integrals are evaluated
using the far-field partial-wave representations of ψi in
Eq. (1) and of the scattering F in Eq. (3). With ψi =
ψi1 + ψi2, each term in Qext involves two summations, letting
Qis = Qis1 + Qis2 and Qsi = Qsi1 + Qsi2. By recognizing
∂ψi1/∂r 	 ikψi1, ∂ψi2/∂r 	 −ikψi2, and ∂ψs/∂r 	 ikψs

for kr � 1, it is straightforward to identify Qis1 = Qsi1 and
Qis2 = −Qsi2, and hence Qext = 2Qis1. Now the task reduces
to evaluating Qsca and Qis1 only. Again, their integration over
φ yields a factor of 2π by noticing the independence of the
integrands on φ. The remaining double summation contains
an integration over w given in Eq. (9). The results in terms of
partial-wave coefficients are

Qsca = 1

(ka)2

∞∑
n=|m|

(|sn − 1|2)(2n + 1)
(n − m)!

(n + m)!

[
P m

n (b)
]2

,

(16)

Qext = 1

(ka)2

∞∑
n=|m|

(2 − sn − s∗
n)(2n + 1)

(n − m)!

(n + m)!

[
P m

n (b)
]2

,

(17)

Qabs = 1

(ka)2

∞∑
n=|m|

(1 − |sn|2)(2n + 1)
(n − m)!

(n + m)!

[
P m

n (b)
]2

.

(18)

The sign of m does not affect Qsca, Qext, Qabs, Y1, and Y23.
Notice that each term in Qsca and Qext is positive, which is
consistent with Psca > 0 and Pext > 0. The expression Qabs

indicates that if |sn| = 1 for the ideal case of no energy
dissipation, all terms vanish so that Pabs = 0. To have energy
absorption, there must be terms with |sn| < 1.

The first part of the force Y1 is associated with only the
scattering. From Y1 in Eq. (5) and Qsca in Eq. (14) we have

Y1

Qsca
= −

∫ 2π

0

∫ 1
−1 |F (w,φ)|2w dw dφ∫ 2π

0

∫ 1
−1 |F (w,φ)|2dw dφ

= −〈w〉, (19)

that is, Y1 = −Qsca〈w〉, where the asymmetry 〈w〉 means the
average of w = cos θ over the angle distribution of scattered
power. The rest of the force Y23 is associated with the
interference of the incident beam and the scattered field. The
extinction power Qext is also associated with such interference.
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By recognizing −4αn = 2 − sn − s∗
n , it follows immediately

from Y23 in Eq. (12) and Qext in Eq. (17) that Y23 = Qextb =
(Qsca + Qabs)b. [This relation is also obtained by recognizing
−4αn = |sn − 1|2 + (1 − |sn|2) and using Eqs. (12), (16), and
(18).] Together we have

Yp = Qextb − Qsca〈w〉
= Qsca(b − 〈w〉) + Qabsb, (20)

Fz = Pextc
−1
0 b − Pscac

−1
0 〈w〉

= Pscac
−1
0 (b − 〈w〉) + Pabsc

−1
0 b, (21)

which are expressions for the radiation force in terms of
the scattered power, absorption, and asymmetry of the scat-
tering; Eq. (21) may be interpreted using the conservation
of momentum. The factor 〈w〉 gives the axial projection
of momentum transport associated with the scattering field.
This is analogous to the dependence of the optical radiation
force on the asymmetry of the scattering [1,9]. The rate at
which momentum is removed from the incident Bessel beam
as a consequence of scattering and absorption is explicitly
proportional to the projection factor b = cos β, where β is
the beam’s conic angle. The part of the force associated with
the interference of the incident beam and scattered field is
proportional to the extinction power with a projection factor b.
There is also an implicit dependence on β in Eqs. (16)–(18).
The angle β also affects the asymmetry factor 〈w〉 through F

in Eq. (3) and the expression for Y1 in Eq. (10). In the limit
β = 0 Eq. (21) agrees with standard acoustical results [17] (see
also references cited in Ref. [3]). In an analysis of the radiation
force from an EMBB, the term proportional to Pabs was not
included [1].

V. NEGATIVE RADIATION FORCES ON SPHERES

In the absence of absorption Fz is negative when 〈w〉 >

cos β for both acoustical and optical beams. The recasting of
the acoustical radiation force into Eqs. (20) and (21) explains
the correlation between the shape of the scattering pattern
and the existence of negative forces [3–5]: When the scattering
into the backward hemisphere is suppressed relative to scatter-
ing into the forward hemisphere, the asymmetry factor 〈w〉 is
positive and relatively large in magnitude. Figure 1 shows the
example of an empty aluminum shell in water where the ratio
of the inner to the outer radius of the shell is 0.96. Absorption is
negligible for aluminum and the shear and longitudinal wave
velocities used were 3160 and 6370 m/s, respectively. The
other parameters used in the evaluation of the sn [15] were the
density ratio 2.712 and the velocity of sound in water, 1479
m/s. Other situations computed to give negative forces include
various liquid drops and solid spheres in water [3–6]. The
results suggest that, even in the favorable case of no absorption,
it appears to be necessary for β to exceed approximately
40◦: increasing β decreases the factor b in the positive force
term.

In the absence of absorption the parameter space to be
explored associated with negative forces corresponds to the
selection of the unimodular sn = exp(2iδn). The δn are partial-
wave phase shifts having the property that the partial-wave
amplitude vanishes if δn vanishes. (It becomes a separate

FIG. 1. Radiation force function Yp , Y23 = Qsca cos β, and nor-
malized asymmetry function 〈w〉/2 evaluated for an empty aluminum
shell in water in an acoustical Bessel beam with β = 45◦ and m = 0.
The radiation force Fz is negative in the region near ka = 1.53, where
Yp = −0.025 45. In that region 〈w〉 is maximized and is greater than
cos β as required by Eq. (20).

question as to the kind of sphere associated with a given set of
δn. In the EMBB case there are separate δn for the electric and
magnetic multipoles [10].) The number of significant partial
waves grows with increasing ka. If an acoustical beam has
m = 0 and ka is sufficiently small that only the monopole
and dipole terms are significant, Y1 is minimized by taking
δ0 = δ1 = π/2, which follows analytically from the form of
Y1 in Eq. (10). The case of negative forces associated with
low ka scattering by small fluid spheres previously discussed
[G = 0 in Eq. (15) of Ref. [3]] corresponds to going part
of the way down a valley in Y1 having δ0 = δ1. Near the
origin in the (δ0,δ1) domain a valley in Yp is present when
β > 55◦ having Yp < 0. The valley lies close to the valley
in Y1 since Y23 given in Eq. (13) or (12) does not depend on
Im(sn).

The practicality of using acoustical Bessel beams to attract
spheres will also depend on the transverse stability of the
sphere and complications associated with thermal viscous
dissipation. The finite-element method has been used to
compute the scattering with the sphere slightly displaced from
the axis of the beam and to compute the associated radiation
force by evaluating Eq. (4) [18]. It is not difficult to find stable
situations where Fz is predicted by Eq. (21) to be negative. The
influence of the thermal viscous response of fluids has been
analyzed in the case of acoustical plane waves with the result
that the influence on the radiation force may be significant if the
radius a of the sphere is not much greater than the thickness
of the oscillating thermal viscous boundary layer [19]. It is
usually possible to measure the radiation force on a sphere
in water in such a way that forces associated with acoustical
streaming induced by the incident wave and other effects of
viscosity and the nonlinearity of the acoustical medium may be
neglected [20,21]. Acoustic radiation pressure and streaming
forces are expressed using phonon concepts in Ref. [22].

ACKNOWLEDGMENTS

L.Z. was partly supported by NASA and P. L.M. was partly
supported by ONR.

035601-4



RAPID COMMUNICATIONS

GEOMETRICAL INTERPRETATION OF NEGATIVE . . . PHYSICAL REVIEW E 84, 035601(R) (2011)

[1] J. Chen, J. Ng, Z. Lin, and C. T. Chan, e-print
arXiv:1102.4905v1; Nature Photon. 5, 531 (2011).

[2] A. Novitsky and C.-W. Qiu, e-print arXiv:1102.5285v1.
[3] P. L. Marston, J. Acoust. Soc. Am. 120, 3518 (2006).
[4] P. L. Marston, J. Acoust. Soc. Am. 122, 3162 (2007).
[5] P. L. Marston, J. Acoust. Soc. Am. 125, 3539 (2009).
[6] F. G. Mitri, J. Phys. A: Math. Theor. 42, 245202 (2009).
[7] P. L. Marston, J. Acoust. Soc. Am. 124, 2905 (2008).
[8] P. L. Marston, J. Acoust. Soc. Am. 121, 753 (2007).
[9] H. C. van de Hulst, Light Scattering by Small Particles (Wiley,

New York, 1957).
[10] H. M. Nussenzveig, Diffraction Effects in Semiclassical

Scattering (Cambridge University Press, Cambridge, UK,
1992).

[11] D. G. Grier, Nature (London) 424, 810 (2003).

[12] J. Chen, J. Ng, P. Wang, and Z. F. Lin, Opt. Lett. 35, 1674 (2010).
[13] J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58,

1499 (1987).
[14] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New

York, 1999).
[15] G. C. Gaunaurd and M. F. Werby, J. Acoust. Soc. Am. 90, 2536

(1991).
[16] C. P. Lee and T. G. Wang, J. Acoust. Soc. Am. 93, 1637 (1993).
[17] P. J. Westervelt, J. Acoust. Soc. Am. 29, 26 (1957).
[18] D. B. Thiessen, L. Zhang, and P. L. Marston, J. Acoust. Soc.

Am. 125, 2552 (2009).
[19] A. A. Doinikov, J. Acoust. Soc. Am. 101, 722 (1997).
[20] T. Hasegawa and K. Yosioka, J. Acoust. Soc. Am. 58, 581 (1975).
[21] X. C. Chen and R. E. Apfel, J. Acoust. Soc. Am. 99, 713 (1996).
[22] M. Sato and T. Fujii, Phys. Rev. E 64, 026311 (2001).

035601-5

http://arXiv.org/abs/arXiv:1102.4905v1
http://arXiv.org/abs/arXiv:1102.5285v1
http://dx.doi.org/10.1121/1.2361185
http://dx.doi.org/10.1121/1.2799501
http://dx.doi.org/10.1121/1.3119625
http://dx.doi.org/10.1088/1751-8113/42/24/245202
http://dx.doi.org/10.1121/1.2973230
http://dx.doi.org/10.1121/1.2404931
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1364/OL.35.001674
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1121/1.402059
http://dx.doi.org/10.1121/1.402059
http://dx.doi.org/10.1121/1.406823
http://dx.doi.org/10.1121/1.1908669
http://dx.doi.org/10.1121/1.418036
http://dx.doi.org/10.1121/1.380708
http://dx.doi.org/10.1121/1.414648
http://dx.doi.org/10.1103/PhysRevE.64.026311

