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Directed percolation describes lifetime and growth of turbulent puffs and slugs
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We show that directed percolation (DP) simulations in a pipe geometry in 3 + 1 dimensions capture the
observed complex phenomenology of the transition to turbulence. At low Reynolds numbers (Re), turbulent puffs
form and spontaneously relaminarize. At high Re, turbulent slugs expand uniformly into the laminar regions. In

a spatiotemporally intermittent state between these two regimes of Re, puffs split and turbulent regions exhibit
laminar patches. DP also captures some of the quantitative features of the transition, with a superexponentially
diverging characteristic lifetime below the transition. Above the percolation threshold, active (turbulent) clusters
expand into the inactive (laminar) phase with a well-defined velocity whose scaling with control parameter
(Reynolds number or percolation probability) is consistent with experimental results. Our results provide strong

evidence in favor of a conjecture of Pomeau.
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The transition from laminar to turbulent flow, studied
first by Reynolds [1] in pipes, remains a source of complex
and fascinating phenomenology. Varying the dimensionless
parameter bearing his name, Re = UL /v, where U and L
are characteristic flow velocity and length scales and v is the
kinematic viscosity, Reynolds observed localized clusters of
turbulence, now commonly called “puffs,” that can sponta-
neously split or decay. Later, Wygnanski and Champagne [2]
systematically described the phase diagram of the laminar to
turbulent transition as a function of the Reynolds number, and
the dynamics of the transition is an active area of investigation
today [3—5]. Laminar pipe flow is known to be linearly stable
for all Reynolds numbers, but small disturbances can trigger
a transition to the turbulent state [6]. For sufficiently low Re
the fluid flow is always laminar and any turbulent disturbances
decay immediately. However, when 1650 < Re < 2050, tur-
bulent puffs are metastable and their lifetime grows superexpo-
nentially with Re [7]. For larger values of Re, the characteristic
lifetime of these puffs grows, and they begin to split and show
complex spatiotemporal behavior [8,9]. The splitting process
continues, until Re exceeds a critical value Re. ~ 2500, above
which and for a sufficiently large inlet disturbance, a uniform
state of turbulence, a “slug,” grows with a clearly defined
turbulent-laminar interface and a velocity that scales approx-
imately with /Re — Re, [10,11]. The phase diagram of pipe
flow turbulence is shown schematically in Fig. 1. The purpose
of this Rapid Communication is to show in detail that the phe-
nomenology and quantitative details of many features of the
laminar-turbulent transition are consistent with the nonequi-
librium phase transition in the universality class of directed
percolation (DP), as originally conjectured by Pomeau [12]
and continued in subsequent works by many authors (see, e.g.,
[13] and references therein). Our work measures the lifetime
of active states in DP in a pipe geometry, finding agreement
with the superexponential functional dependence recently
measured by Hof ez al. [7]. We also measure the growth rate of
active DP clusters in the supercritical directed percolation and
show that our scaling results are in good agreement with avail-
able experimental data on the growth rate of turbulent slugs
[10]. These results show that dynamical phase transition phe-
nomena may be described by directed percolation, supporting
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earlier detailed observations of the DP critical exponents in a
fluctuating turbulent liquid crystal system driven by external
forcing [14,15].

The analogy between DP and the turbulent-to-laminar
transition is the following: Active states in a three-dimensional
lattice correspond to coarse-grained regions of size ~n where
the turbulence intensity exceeds a threshold (here 7 is the
viscous scale), whereas inactive states correspond to patches
of the fluid which are laminar. The dimension along the
percolating direction is associated with time ¢ in the usual
interpretation of DP as a dynamical process. The percolating
probability p is analogous to the Reynolds number Re in the
vicinity of the percolation transition, but the mapping need
not be linear. For the metastable puffs, Re < 2050 region is
mapped to p < p. whereas for the growing fronts, Re > 2500
is mapped to p > p.. The critical region maps into the
spatiotemporal regime, as summarized in Fig. 1, but this region
and p, are not strictly defined except in the limit of infinite
system size.

We simulate DP in 3 + 1 dimensions, in the reference
frame of the traveling puff, which usually travels more
slowly than the laminar mean flow velocity U. Here we
use the bond percolation process. The inlet disturbance in
pipe flow experiments is modeled as the initial region of
active (turbulent) sites. At each time step, each turbulent
site will stay turbulent with probability p, or decay to the
laminar state with probability 1 — p. With probability p, the
turbulent lattice site (x,y,z) can also activate (infect) adjacent
laminar sites. Because the bond percolation process occurs on
a diagonal lattice, the adjacent sites are chosen differently for
odd and even time steps. For even time steps, adjacent sites are
(x+ 1,y,2), (x,y + 1,z), and (x,y,z + 1). For odd time steps,
adjacent sites are (x — 1,y,z), (x,y — 1,2), and (x,y,z — 1).
All updates are performed sequentially.

Lifetime of turbulent puffs. The survival probability of
turbulent puffs in pipe flow is known to be memoryless [16,17],

t—1
P(Re,t) = exp “IRe) (D

where ¢ > (. Here, the survival probability P(Re,r) refers to
the probability that the turbulent puff still exists after flowing
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FIG. 1. (Color online) Comparison of the phenomenology of
transitional turbulence as a function of Re with that of DP in 3 + 1
dimensions as a function of p, both in a pipe geometry.

for time 1, #y is the formation time of the puff, and t(Re) is the
characteristic lifetime. In Hof et al.’s work #, was a constant
(70D/U where U is the mean flow velocity and D is the
pipe diameter) [7]. By measuring P(Re,?) for specific times ¢
and Reynolds numbers Re, Hof et al. calculated 7(Re) from
(1). They discovered that 7 scales superexponentially with
Reynolds number [7], fitting well a parametrization of the form

7(Re) = 19 explexp(ciRe + ¢;)], 2

where tp ~ D/U.

The survival probability P(p,t) in our DP measurements
is the probability that there will be active sites left in the
lattice after + DP steps. From P(p,t), the lifetime of the
disturbance t can be measured just as it was by Hof et al.
This idea is illustrated in the snapshots of the simulation in
Fig. 2(a). Here, DP is simulated in 3 + 1 dimensions in a
pipe of radius of five lattice sites. In this simulation p is
less than p., and so the puff eventually decays. Generally,
one can measure the lifetime with a three-dimensional lattice
where two of the spatial dimensions span a disk of radius
of R lattice points (corresponding to the pipe radius), with
fixed boundary conditions. However, the measurement of
lifetime in this way over many orders of magnitude is made
difficult because of the system size. The lifetime measurements
must be repeated many times to be able to obtain sufficient
statistics. However, when p is close to the critical percolation
threshold p., the correlation length £, ~ (p — p.)"* along a
space dimension becomes larger than R, and the nominally
(3 + 1)-dimensional DP is effectively (1 + 1)-dimensional.
Thus, to get sufficient statistics we simulate DP in a one-
dimensional lattice of length N that is initially made to be
active in a subregion of length Ny. Below the DP critical
point the active states will eventually decay into the absorbing
state. In a finite-sized system, the decay can always occur,
but we find that the characteristic lifetime t of the decay
grows superexponentially with percolation threshold p, and
beyond a certain percolation probability, the average lifetime
of the active state is too large to be measurable on a
computer.

Hof et al. were able to calculate t via (1) by measuring
P(Re,t). Even though they could only extend ¢ to 3450D /U,
they were able to resolve P to 100 ppm, giving them effective
measurements of T over eight orders of magnitude. In the
case of directed percolation, one cannot use this procedure,
since #y is not constant, but instead depends on the percolation
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FIG. 2. (Color online) (a) Illustration of the decay of an active
cluster in subcritical directed percolation in 3 + 1 dimensions in pipe
geometry. In this figure the length of the pipe extends horizontally,
and the active sites in percolation are displayed with green cubes.
Inactive sites are not shown. (b) Different front shapes in the growing
front bond DP model. Rough fronts occur for small p — p. whereas
smoother fronts occur for large p — p.. (c) Time evolution of an
initially active 180 contiguous sites percolating downward simulated
via bond percolation for p = 0.61 < p.. The active state (in black)
fully decays into the absorbing state (white) after about 250 steps.

probability p. In directed percolation, #, is the time over
which the initial state is remembered by the system. Hence,
for each value p we must measure the survival lifetimes of
many instantiations of directed percolation. The cumulative
distribution function (CDF) of these survival lifetimes then
approximates the survival probability P(p,t), as long as
sufficiently many instantiations have been performed. From
the fit of the form (1) to the CDF data, one can read off
7(p) and fy(p). Our measurements of t(p) for a lattice of size
N = 100 and Ny = 20 are given in Fig. 3(a). The line in the
figure is obtained by fitting 7 to (2). The inset shows the linear
fit to loglog t(p)/to. Sufficiently far away from the critical
point p., we find that the linear fit deviates, indicating that
the superexponential behavior may somehow be related to the
diverging correlation lengths at the critical point.

From the CDF data, we can evaluate the survival probability
functions analogously to Fig. 2 of [7]. Figure 3(b) shows our
numerical data P(p,t) for four different times (S curves), along
with the model P(p,t) = exp[—(t —ty)/T(p)]. To evaluate
the model fit, we use the value of #y(po,) where pg, is
found by setting P(pg2,t) = 0.2. Note that the fact that the
S curves become steeper with p is a characteristic of the
superexponential scaling of 7(p).

The numerical data presented so far in the paper has been
measured in a finite volume of size N = 100. Finite size effects
in DP have been investigated thoroughly in the literature [18].
We ran our simulations in a volume bound only by the range
of the integers on our computer (0 to 203 _ 1), and we did not
find any qualitative differences regarding the superexponential
scaling of t(p).
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FIG. 3. (Color online) (a) Superexponential scaling of the charac-
teristic lifetime t. The line indicates the fit to (2). Error bars indicate
95% confidence intervals from a Kolmogorov-Smirnov test (for
p > 0.62) and 90% confidence intervals from a 2 test (for p < 0.62).
In the inset, 7o = 0.017. (b) Numerical data for survival probabilities
P(p,t) (points) and a fit to (1) with t given by (2) (solid lines). Data
shown for# = 300 (red crosses), 1000 (green dots), 6000 (blue pluses)
and 80 000 (cyan triangles). The value of p. observed corresponds to
that of (1 + 1)-dimensional bond percolation. (c) Measured survival
probabilities as functions of ¢ for four different values of percolation
probability p. Blue solid line indicates measured data, whereas red
dashed line indicates a fit to the exponential distribution. Deviations
from exponential distribution for small # are due to nonzero f.

Growth rate model. When p > p, active DP clusters grow
in the pipe. We measured their growth rate and related it to
the growth rate of turbulent slugs. The speed at which the
front of the percolating clusters propagate into the neighboring
inactive region is givenby G ~ &, /§ ~ (p — p.)""~"*, where
& ~ (p— pc)7V is the correlation length in the direction of
space (denoted by L) or in the direction of time (denoted by ||).
Using the above prescription and numerical values of DP
critical exponents [18], one should expect that G ~ (p — p.)¥
where y = 0.524 in (3 + 1)-dimensional DP, whereas y =
0.637 in 1+ 1 dimensions. These power laws are close
to the exponent 0.5 first proposed in 1986 [10], as well
as in modern experiments [11]. However, the data are not
sufficient yet to differentiate between two such close power law
exponents.

Measurements of the growth rate G of an initially active
region in 3 + 1 DP in a pipe geometry are shown in Fig. 4. The
measurements were made by simulating bond DP with p > p,
and measuring the positions of the two fronts as functions
of time. During the numerical simulation we also measure
the correlation length &, by calculating the root-mean-square
height (i.e., roughness) of the turbulent-laminar interface. The
agreement with theoretical expectation is good, and we see
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FIG. 4. (Color online) Measured values of front propagation
velocity G (red crosses) compared to theoretical prediction for
(3 4+ 1)-dimensional and (1 4 1)-dimensional DP. Green vertical line
indicates the value of p for which &, exceeds 1.2R. We call this value
pr- (2) Plot indicating the power law crossover of G(p). Inset shows
that G/(p — p.)*%7 is roughly constant for p < pg and similarly
G/(p — po)*** for p > pg. (b) Both regimes of DP have the same
critical point p,. (within the error of our measurements). The linear
fits to G'/” are shown in solid lines. Extrapolations are indicated
with dashed lines, and they cross at the same p,.. This value of p.
corresponds to that of (3 4 1)-dimensional bond percolation.

numerical evidence for the crossover from 34+ 1 to 141
dimensions. When p — p. < 1, then £, > R and the system
is effectively 1 4 1 dimensional. In Fig. 4(b), we have plotted
G'7 versus p for different choices of y corresponding to
(1+1)- and (3 4 1)-dimensional DP. We see clearly the
crossover between the expected regimes [19]. Note that in
this plot we did not need to guess p.: both scaling regimes
yield the same p,. It is difficult however to extend the data for
G(p) close to p.. Due to the finite size of the system, when
p — pc is small, the active regions split and may decay into
the absorbing state. This makes it difficult to clearly measure
front propagation velocity. On the other hand, when p — p, is
large, the scaling breaks down. Thus we expect the power law
exponent of 0.524 to be observable only in an intermediate
regime of p — p,., sufficiently close to p. but still such that
& <R.

One other aspect of the phenomenology of pipe flow is
captured by the DP model, namely, that the fronts of active
regions with p — p. <« 1 are much rougher than when p — p,
is large. This is because the density of active states within the
region is an increasing function of p. Furthermore, the width
of the front is related to the spatial correlation length £, which
becomes small when p — p, is large. The difference between
the rough and smooth front regimes is shown in Fig. 2(b).
This is analogous to the results in pipe flow experiments
using hot wire measurements, where puff structures were
found to have rough edges whereas slugs have clearly defined
fronts [2,20].

Conclusion. The DP simulations of characteristic lifetime
presented in this paper have been performed via the bond
percolation algorithm. However, we found superexponential
scaling of 7(p) for site percolation too. Therefore, the
superexponential scaling of the lifetime is likely a universal
characteristic of the directed percolation process. Goldenfeld
et al. proposed that this superexponential character of the
turbulent puff lifetime can be described by extreme value
statistics [21], because puff decay occurs when turbulent
energy fails to attain the required threshold at all points
in the puff [22]. In the usual central limit theorem, under
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appropriate conditions [23] the distribution of a sum of N
random variables tends to a Gaussian distribution for large N.
However, a maximum (or minimum) of N random variables is
instead superexponentially distributed with three universality
classes [21], selected by the underlying probability distribution
of {x;}. In Fig. 2(c) we show a time evolution of an initially
active cluster percolating with p < p.. The lifetime of the
entire cluster is the lifetime of the longest active “strand”
percolating downward. Assuming that strand lifetimes are
independent and identically (exponentially) distributed, then
the lifetime of the longest strand is given by the type I
Fisher-Tippett distribution exp[— exp(—p)]. This argument
has also been used to explain the superexponential distribution
of size of the largest connected cluster in ordinary (isotropic)
percolation [24], and it was found there that correlations
between cluster sizes (analogous to strand lifetimes) do not
influence the superexponential scaling.
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The DP model we proposed in this paper can account for
the superexponential lifetime of the turbulent puffs, as well
as the uniform growth rate of turbulent slugs. As shown in
Fig. 1, the transition between these two regimes (2050 <
Re < 2500) occurs through the splitting and interactions of
puffs. The spatiotemporal patterns of coarse-grained turbulent
intensity obtained from a direct numerical simulation [9] bear
similarities to those of directed percolation, but the data are
not adequate to make a quantitative analysis. Recently, we
learned of work by Barkley, which uses a coupled map and
a shear field to model the laminar-turbulent transition [25].
It is possible that this model is in the DP universality class
also.
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