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Taylor cones in a leaky dielectric liquid under an ac electric field
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Conical points of a leaky dielectric drop surrounded by a dielectric gas in an external ac electric field are
investigated. A novel class of steady conical tips depending on the permittivity ratio and applied signal frequency
is presented. It is found that conical solutions with very small angles are possible (angles much smaller than the
classical Taylor cone angle 49.3◦ for a conducting drop in a dc field); this result can be relevant to the observations
of small cone angles in Chetwani, Maheshwari, and Chang experiments [N. Chetwani, S. Maheshwari, and H.-C.
Chang, Phys. Rev. Lett. 101, 204501 (2008)].
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Introduction. It has been known from the works by Zeleny
and Taylor [1,2] that liquid drops subjected to an external
dc electric field, beyond some threshold, present conical
singularities. In Ref. [2] a simple mathematical model was
also developed to find the angle of the conical shape for
a conducting drop. The relation for the cone angle θ0 =
θT

0 ≈ 49.3◦ readily follows from the balance of capillary and
electrostatic pressure and the equipotentiality of the interface.
In Refs. [3,4], Taylor’s results were generalized for different
electrical properties of two phases. In particular, the case
of two dielectric phases was considered and an eigenvalue
relation between the ratio of gas and liquid permittivities
δ = εg/ε and cone angle θ0 was derived and investigated; a
critical value 1/δ∗ ≈ 17.59 was found. For δ > δ∗ a cone-type
equilibrium becomes impossible; the cone angle at critical
δ = δ∗ is θ∗

0 ≈ 30◦. For δ < δ∗ there are two branches of
solutions, 0 < θ0 < θ∗

0 and θ∗
0 < θ0 < θT

0 , which merge at δ∗.
The problem of the ambiguity of the solution is resolved by
the authors of Ref. [4] by a principle of less singularity of the
electric field: The branch with smaller angles 0 < θ0 < θ∗

0 is
found to be stable. In the case of a perfect conductor there is
only one solution which corresponds to the Taylor cone with
the angle θT

0 ≈ 49.3◦ and the angle selection principle cannot
be applied. It is interesting to notice that most experiments with
dc fields are consistent with cone angles closed to the Taylor
angle. According to the authors of Ref. [5] the existence of
charged drops emitted from the apex of the cone can lead to
a reduction of the cone angle because of repulsion and there
have been observations of cone angles up to 32◦. However, very
small cone angles are not observed in experiments with dc that
correspond to the dielectric limit. The possible explanation of
this fact is that we never deal with perfect dielectrics and the
liquid always contains ions from the dissociation of impurities
or from the liquid itself. Hence, dielectrics, in fact, turn into
conductors in dc, with a cone angle equal to 49.3◦.

Recently, in certain experimental electrospray studies
[6–9], it has been proposed to use a high-frequency ac,
rather than dc, electric field. The advantages of such external
fields are (1) the presence of a new control parameter,
namely, the oscillation frequency, (2) the electric neutrality
of liquid droplets formed during atomization, and (3) the
absence of undesired electrochemical reactions accompanying

the process at fairly high oscillation frequencies (greater
than 10 kHz) because of the fact that the oscillation period
is much less than the characteristic reaction time. In the
experiments presented in Refs. [8,9] an anomalously small
cone angle θ0 ∼ 11◦ in a high-frequency (30–180 kHz) ac
field is reported. A theoretical foundation to weak ac fields is
offered in Ref. [10]. A preliminary analysis of conical tips in
ac fields was done in Ref. [11].

In the present work, conical points of a leaky dielectric drop
surrounded by a dielectric gas in an external high-frequency
ac electric field are investigated. The mathematical solution
for a conical shape leads to a complex eigenvalue problem
connecting the signal frequency ω, the conductivity of the drop
κ , the permittivity ratio δ, and the cone angle θ0. Depending
on the frequency, two limiting cases can be distinguished: at
ω → ∞ the eigenvalue problem coincides with the one for the
dielectric case [3] and at ω → 0 it coincides with the Taylor
case of a conducting drop [2]. For a wide range of frequencies,
the angles of the ac cone are found to be much smaller than
the classical Taylor angle 49.3◦ in the dc field; this result can
be relevant to the recent experimental observations [8,9].

Formulation and assumptions. The governing equations are
presented in the spherical coordinate system r , θ , for the axially
symmetric case. To assume that we have a given (conical)
shape in the presence of ac forcing, the frequency of the
applied signal ω should be much greater than the reciprocal
of the typical mechanical time. For the viscous dominated
case, the typical mechanical time is given by tm = η�/γ and
for the inertial-dominated case this time is tm = (ρm�3/γ )1/2,
where η and ρm are the dynamic viscosity and mass density of
the liquid, γ is the surface tension, and � is a typical distance
of the drop. Typically, this implies that the applied ac electric
fields have frequencies much greater than 1 kHz for millimeter
drops.

In the bulk liquid, the electrical current j is given approx-
imately by Ohm’s law, j = κE (i.e., we assume the leaky
dielectric model [12]). At low frequencies (<100 MHz) the
electromagnetic equations reduce to the quasi-electrostatic
limit [13]. In addition, we assume that the convection current
can be neglected when compared to the ohmic current. Thus
we assume that the electrical Reynolds number, defined as
εv/�κ [14], is negligible (v is a typical velocity). Assuming
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that κ and ε are independent of time, the equations that govern
the electric fields are

∇ · (εE) = ρ, ∇ · (κE) = −∂ρ

∂t
, ∇ × E = 0. (1)

As the applied voltage is an ac signal of angular frequency
ω, we use complex amplitudes for the electric field E(t) =
Êeiωt + c.c. and the potential �(t) = �̂eiωt + c.c. Combining
the equations, the electric potential phasor satisfies ∇ · ((κ +
iωε)∇�̂) = 0. For a homogeneous liquid, we obtain the
Laplace’s equation. The same equation holds for the gas
phase in the absence of space charge, and we have ∇2�̂ = 0,

∇2�̂g = 0.

The boundary conditions at the interface are (i) the
continuity of potential, (ii) the difference between normal
components of electric displacement is equal to the surface
charge density σ , and (iii) the rate of increase of σ is equal to
the net flow of charge into the interface. In complex notation,
these boundary conditions at θ = θ0 are

�̂ = �̂g, ε
∂�̂

∂n
− εg

∂�̂g

∂n
= σ̂ , − κ

∂�̂

∂n
= iωσ̂ , (2)

where σ̂ is the phasor of the surface charge. Combining these
last two equations we get to

�̂ = �̂g,

(
ε − iκ

ω

)
∂�̂

∂n
= εg

∂�̂g

∂n
. (3)

From the solution of Laplace’s equation by the separa-
tion of variables, the potential near the tip is of the form
�̂ = BrνPν(cos θ ), �̂g = CrνPν(− cos θ ), where Pν(x) is
the Legendre function. Since we are dealing with complex
numbers, the parameter ν is also complex. The electric field
near the conical tip should be proportional to r−1/2 so that
the electrical pressure is proportional to r−1 and can balance
the capillary pressure for a conical surface. This implies that
the complex parameter ν should be taken as ν = 1/2 + iA,
where A is real.

From Eq. (3), we eventually obtain

1

δ

(
1 − i

�

)
= −P1/2+iA(cos θ0)P ′

1/2+iA(− cos θ0)

P ′
1/2+iA(cos θ0)P1/2+iA(− cos θ0)

≡ F1/2+iA.

(4)

Here δ = εg/ε is a permittivity ratio and � = ωε/κ is a
nondimensional frequency. At fixed δ and � the complex
eigenvalue problem (4) gives the cone angle θ = θ0.

At � = ∞ the imaginary part of Eq. (4) vanishes, A = 0,
and hence we obtain the dielectric limit [3,4]. Let us consider
asymptotics � → ∞; expanding Eq. (4) into a series with
respect to A → 0 up to the second order F1/2+iA ∼ F (0,0) +
iAF (1,0) − 1

2A2F (2,0), we come to the relation

1

�2
= 2(δ2F (0,0) − δ)[F (1,0)]2

F (2,0)
. (5)

Here superscripts denote the derivative with respect to ν at
ν = 1/2.

As � → 0, we can see from Eq. (3) that the normal
derivative inside the liquid should go to zero and this implies
that the potential is constant in the liquid, the system behaves
as a conductor.
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FIG. 1. (Color online) Cone angle dependence on the permittivity
ratio δ with � taken as a parameter. Solid lines denote the exact
solution of Eq. (4), dashed lines denote asymptotics (5)

Figure 1 shows the permittivity ratio δ as a function of
cone angle θ0 for different values of �. For a given �, the
function δ = δ(θ ) is zero at θ0 = 0 and θ0 = 49.3 and has a
maximum value δm. The behavior is similar for all frequencies
with increasing δm as � decreases. The perfect dielectric case
[3] is re-obtained at � → ∞. As � → 0 the curve δ(θ0) goes
to infinity, while the terminal points (θ0 = 0 and θ0 = 49.3) are
“anchored” at their positions. Hence, at a finite δ and small �

the conductor case θ0 = 49.3 is realized. Incidentally, the limit
θ0 = 0 is not a limiting solution for perfect conductors, which
are equipotential, since the fields near an equipotential point
of a very small angle have a stronger singularity than r−1/2

(E ∼ r−1+ε , with ε � 1 [15]). At � � 3, the asymptotics (5)
coincides within graphical accuracy with the exact solution.

The maximum value of the permittivity ratio δm is depicted
as a function of � in Fig. 2. At small � it becomes unbounded
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FIG. 2. (Color online) Locus of extremal points in Fig. 1. Conical
solutions exist below the line δm(�).
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FIG. 3. (Color online) Cone angle dependence on the frequency
� with permittivity ratio taken as a parameter. Solid and dashed lines
refer, respectively, to stable and unstable solutions

while at large � it tends to the asymptotic value δ∗. Thus,
for a given value of �, conical solutions are only possible for
δ < δm, which opens the possibility of experimental research
on the transition to conical shape using � as a parameter.

It is instructive to depict the cone angle dependence on
frequency for a given δ (see Fig. 3). For 1/δ < 1/δ∗ ≈ 17.6 the
domain of existence is finite, for 1/δ > 1/δ∗ it is infinite. There
are two branches of conical solutions for a given δ. To evaluate
the stability of these solutions, let us apply the arguments
presented in ref. [4]. The larger angles correspond to an
unstable equilibrium because a small disturbance decreasing
the angle will cause a more singular electric field (E ∝ rν−1

with ν < 1/2), which implies a greater electrical pressure at
the tip, and eventually the disturbance will grow. Similarly, a
disturbance which increases the angle will cause a less singular
electric field and eventually the disturbance will also grow. The
branch with a smaller angle is stable with respect to small angle
disturbances [4]. The solid and dashed lines in Fig. 3 refer,
respectively, to stable and unstable solutions. As observed in
Ref. [16], this argument is rather puzzling because it predicts
that the static Taylor cone is unstable, which is the angle
observed in experiments in dc. However, it is true that very
close to the cone tip an emitted jet is almost always observed
with dielectric liquids and so Taylor cones are not entirely
static. The arguments were applied to the case of a perfect
dielectric in a dc field with a prediction of the realization of the
smaller angles. Interestingly, parallel experiments on ferrofluid
drops in static magnetic fields seem to show these small

cone angles [17]. Static dielectric cones should be difficult
to observe in dc fields because any dielectric liquid always
contains a small amount of impurities that tend to dissociate
into ions to some degree and the liquid acquires a certain
conductivity. Therefore, dielectrics are leaky dielectrics, in
general, and behave as conductors in dc. On the other hand, in
the ac case ions do not have time to charge the interface if the
frequency is much higher than the reciprocal charge relaxation
time of the liquid ε/σ and very small angles can be realized
experimentally [8,9]. In other words, in the ac case there is a
control parameter, the frequency �, which allows variation of
the cone angle.

Comparison with experiments. Experiments [8,9] seem to
support the theoretical finding that conical surfaces with much
smaller angles than the Taylor cone angle can be obtained. In
Ref. [9], three organic liquids were used: acetonitrile (1/δ =
37.5), ethanol (1/δ = 24.5), and isopropanol (1/δ = 18.3).
The frequency of the applied signal was changed from 80
to 180 kHz and the observed cone angles were from 8◦
to 11◦. To observe the dc Taylor cone, the conductivity of
isopropanol and acetonitril was increased from 7 × 10−4 S/m
up to κ = 40 × 10−4 S/m by adding an NaCl salt solution. If
we look at the theoretical curves of Figs. 1 and 3, there are
steady solutions with angles around 10◦ for nondimensional
frequency � ∼ 1 for these permittivity ratios. For instance,
1/δ = 18.3 shows a solution of the cone angle equal to 10◦ at
� ≈ 0.5. Taking a signal frequency of 120 kHz, this implies
that the conductivity of the liquid should be 2.4 × 10−4 S/m,
which is not far from the value of 7 × 10−4 S/m. The cor-
responding theoretical cone angles for infinite frequency (the
dielectric limit) are 12◦ for 1/δ = 37.5, 16◦ for 1/δ = 24.5,
and 23◦ for 1/δ = 18.3. For finite values of frequency smaller
angles can be realized and, therefore, these steady conical
solutions can correspond to the experimental observations in
ac. Although the existence of charged drops emitted from
the apex of the cone can lead to a reduction of the cone
angle [5], and cone angles have been observed from 49.3◦
to 32◦ in experiments in dc, this angle range is still far from
the observations in ac around 10◦. We claim that the novel
class of steady conical solutions presented in this work can
be relevant to the observations of small cone angles in ac
fields.
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