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We reveal and give a theoretical explanation for spiral-like structures of periodicity hubs in the biparameter
space of a generic dissipative system. We show that organizing centers for “shrimp”-shaped connection regions
in the spiral structure are due to the existence of Shilnikov homoclinics near a codimension-2 bifurcation of
saddle-foci.
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Over recent years, numerous experimental studies and mod-
eling simulations have been directed toward the identification
of various dynamical and structural invariants to serve as key
signatures uniting often diverse nonlinear systems into a single
class.

One such class of low order dissipative systems has been
identified to possess one common, easily recognizable pattern
involving spiral structures, called the periodicity hub, along
with shrimp-shaped domains in a biparametric phase space
[1,2]. Such patterns turn out to be ubiquitously alike in both
time-discrete [3,4] and time-continuous systems [5–7], as well
as in experiments [1,8].

Despite the overwhelming number of studies reporting
the occurrence of spiral structures, there is still little known
about the fine construction details and underlying bifurcation
scenarios for these patterns. In this Rapid Communication, we
study the genesis of the spiral structures in two exemplary,
low order systems and reveal the generality of underlying
global bifurcations. We will demonstrate that such parametric
patterns along with shrimp-shaped zones are the key feature
of systems with homoclinic connections involving saddle-foci
meeting the single Shilnikov condition [9]. The occurrence of
this bifurcation causing complex dynamics is common for a
plethora of dissipative systems describing (electro)chemical
reactions [10], population dynamics [11], electronic circuits,
and nonlinear optics [2,8,12].

The first paradigmatic example is the canonical Rössler
system [13]

ẋ = −(y + z), ẏ = x + ay, ż = b + z(x − c), (1)

with two bifurcation parameters a and c (we fix b =
0.2). For c2 > 4ab, the model has two equilibrium states
P1,2 = (ap±, − p±,p±), where p± = (c ± √

c2 − 4ab)/2a.
This classical model exhibits the spiral and screw chaotic
attractors after a period doubling cascade followed by the
Shilnikov bifurcations of the saddle-focus P2.

*Corresponding author: rbarrio@unizar.es

The second example is the Rosenzweig-MacArthur model
[11,14]

ẋ = x[ r(1 − x/K) − 5y/(1 + 3z) ],

ẏ = y[ 5y/(1 + 3x) − z/10(1 + 2y) − 0.4 ], (2)

ż = z[ y/10(1 + 2y) − 0.01 ]

for a tritrophic food chain composed of a logistic prey x, a
Holling type II predator y, and a top predator z; two bifurcation
parameters K and r control the regrowth rates of the prey [11].

Biparametric screening the Rössler [panels (a) and (b)] and
food chain [panels (c) and (d)] models unveils a stunning
universality of the periodicity hubs in the bifurcation diagrams
shown in Fig. 1 of both models. Each diagram is built
on a dense grid of 1000 × 1000 points in the parameter
plane. Solutions of the models were integrated using the
high precision ordinary differential equation (ODE) solver
TIDES [15]. The color bars on the right in Fig. 1 yield a
spectrum of the Lyapunov exponents. Figures 1(a) and 1(c)
reveal the characteristic spiral patterns, where dark and light
colors discriminate between the regions of regular and chaotic
dynamics corresponding to a zero and positive maximal
Lyapunov exponent λ1, respectively. Figures 1(b) and 1(d)
show the enhanced fine structures of the bifurcation diagrams
of the models due to variations of both Lyapunov exponents λ1

and λ2. The white stripes expose shrimp-shaped areas (within
red boxes) on the dark background of the regular (λ1 = 0)
region, as well as in the multicolored region corresponding to
complex dynamics (λ1 > 0).

The panels are overlaid with (thin blue) curves (obtained
using [16]) that correspond to saddle-node (or fold) bifurca-
tions of periodic orbits. These curves demarcate the stability
windows from chaotic regions within the spiral structure,
which are either via the intermittency of type I boundary
crisis [6], or due to a period doubling bifurcation. In the case
of the Rössler model, the saddle-node curves spiral onto a F
(focal) point [1,2] at (a,c) = (0.1798,10.3084). This F point
seems to be the turning point of a bifurcation curve (thick
black) corresponding to a formation of a homoclinic loop
of the saddle-focus P2 of the Rössler model. Another curve
(medium-thick green) passes (up to our numerical precision)
through the F point: crossing it rightward, the chaotic attractor
changes the topological structure from spiral to screw shaped.
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FIG. 1. (Color online) Spirals and “shrimps” in the 1000 × 1000 grid biparametric bifurcation diagrams for the Rössler [(a) and (b)] and
tritrophic food chain [(c) and (d)] models. The F point of the hub is located at (a,c) = (0.1798,10.3084) and (K,r∗) = (1.0587, − 1.6285 ×
10−3) (respectively). The color bars for the Lyapunov exponent range identify the regions of chaotic and regular dynamics. For visibility,
the parameter plane of the food chain model is untwisted by transformation r∗ = r + 0.11(K − 1)/0.14 − 0.83. Left monochrome panels are
superimposed with bifurcation curves: thin blue for saddle-nodes and thick black for homoclinic bifurcations of saddle-foci. The medium-thick
green boundary determines a change in the topological structure of chaotic attractors from spiral (at solid dot) to screw shaped (at star).

This curve has been singled out of a 1000 × 1000 grid of
points in the parameter plane. In what follows, we will
describe the topological algorithms applied for detecting this
boundary, which are based on the examination of the number
of critical points and monotonicity intervals in corresponding
one-dimensional (1D) Poincaré return maps [6,17]. This
transition is completely different from the one considered
in [17], where maps with an increasing number of branches
are detected in other parametric ranges [6].

The topological structure of the Rössler attractor can be
described in terms of topological templates [18]. A template is
a branched two-dimensional manifold to which any periodic
orbits (space curves in R3) in the attractor are projected
without changing their (self-) knotting and (mutually) linking
invariants. Practically, the template may be derived using a
Poincaré return map defined on successive local maxima y(i)
of the y coordinate of trajectories on the chaotic attractor
for further examining the knots of the unstable periodic
orbits (UPOs) foliating the attractor. The map allows for the

determination of the number of branches of the template, which
is associated with the number of monotone components in the
map graph. The study of the signed crossings of the UPOs
uniquely determine the topological template of the chaotic
attractor [18]. So, the spiral attractor in the Rössler model at
a = 0.14 [the point labeled by the solid dot in the diagram
in Fig. 1(a)] generates a 1D unimodal map shown in Fig. 2
(top). The single critical point of the map graph determines
the boundary between the normal and twisted (respectively)
stripes. This lets a symbolic description be naturally introduced
for the map using two symbols, 0 and 1, for corresponding
branches. In the case of the screw attractor at a = 0.18 [the
point labeled by a star in the diagram in Fig. 1(a)], the
corresponding map in Fig. 2 (bottom) has a bimodal graph
with two critical points. Here, the symbolic dynamics can be
defined using three symbols: {0, 1, 2}. The addition of the
second critical point in the map is a direct indication that the
spiral attractor changes topology. These criteria were used to
locate the corresponding boundary (medium-thick green line)
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FIG. 2. (Color online) Poincaré return maps in the left panels
for the spiral and screw-shaped (respectively) chaotic attractors in
the Rössler model [Eq. (1)] at a = 0.14 and 0.18 for c = 15. Right
panels show the corresponding topological templates.

that separates the existence regions of the attractors of both
types in the bifurcation diagram in Fig. 1. Notice that this
boundary passes right through the F point.
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FIG. 3. (Color online) Transformation of homoclinic orbits to
the saddle-focus P2 in the Rössler system: AUTO L2 norm of the
orbit is plotted against the bifurcation parameter a. The turning point
terminates two branches: the bottom corresponding to the primary
homoclinic loop, while the top one corresponds to the secondary
loop with an additional round. Homoclinic orbits are sampled at the
indicated points.

The linking matrices, which contain necessary topological
information for the spiral and screw attractors of the Rössler
model, are given by

Msp =
(

0 −1

−1 −1

)
, Msc =

⎛
⎜⎝

0 −1 −1

−1 −1 −2

−1 −2 −2

⎞
⎟⎠ , (3)

using the same notation as [17]. The diagonal elements in
each matrix are the sum of the signed half-twists in each
branch. The off-diagonal elements are the sum of the oriented
crossings between the branches. Thus, we have (Fig. 2) a 0
entry implying that the right branch 0 has no twists, the middle
branch 1 has a half-twist, entry −1, and the left branch 2 has a
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FIG. 4. (Color online) Outline of the spiral structures: (a) Two
kinds, folded and cusp shaped of saddle-node bifurcation curves for
the Rössler model originating from the codimension-2 homoclinic B
point. (b) Phenomenological sketch of the spiral hub formed by the
“shrimps.” (c) Magnification of the bifurcation portrait of the spiral
hub, overlaid with principal folded (thick red) and cusp-shaped (thin
blue) bifurcation curves setting the boundaries for largest “shrimps”
in the Rössler model.
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twist, entry −2. The other −1 entries indicate that two branches
of the topological template cross once only.

The (thick black) bifurcation curve in Fig. 1(a) corresponds
to a formation of the primary homoclinic orbit to the saddle-
focus P2 of topological type (1, 2), i.e., with 1D stable
and 2D unstable manifolds, in the Rössler model [Eq. (1)].
Depending on the magnitudes of the characteristic exponents
of the saddle-focus, the homoclinic bifurcation can give rise
to the onset of either rich complex or trivial dynamics in
the system [9,19]. The cases under consideration meet the
Shilnikov conditions and, hence, the existence of a single
homoclinic orbit implies chaotic dynamics in the models
within the parameter range in the presented diagrams. The
magnification of the corresponding bifurcation curve in the
diagram [Figs. 1(a) and 1(b)] reveals that what appears to be as
a single bifurcation curve has two branches (Fig. 3). This curve
has a U shape, the turning point of which seems to be at the F
point. To examine the U shape in detail, we plot the bifurcation
curve in terms the L2 norm [16] of the homoclinic orbit against
the bifurcation values of the parameter a [for periodic solutions

U (t), the L2 norm is defined as ‖U‖2 =
√∫ 1

0 ‖U (t)‖2dt ,
where the independent variable t is scaled to [0,1]]. Figure 3
shows that the F point terminates two branches of homoclinic
loops or, alternatively, serves as a turning for the homoclinic
branches.

Figure 4 outlines a structure of the bifurcation unfolding
around the spiral hub [7]. The inset [4(a)] depicts a number of
the identified saddle-node bifurcation curves originating from
codimension-2 points, labeled as B (Belyakov), toward the
spiral hub in the (a,c) parameter plane for the Rössler model.
At these B points, the saddle with real characteristic exponents
becomes a saddle-focus for smaller values of the parameter a.
The unfolding of this bifurcation is known [20] to contain
bundles of countably many curves corresponding to saddle-
node and period doubling bifurcations of periodic orbits [14],
as well as to various secondary homoclinic bifurcations of the
saddle-focus. Indeed, both B and F points together globally
determine the structure of the (a,c) bifurcation portrait of
the Rössler model. Figure 4(b) sketches phenomenologically
a caricature of the bifurcation structure of the spiral hub

along with “shrimps.” In it, the saddle-node bifurcation curves
originating from the B point demarcate the boundaries of
“shrimps” near the spiral hub. Indeed, the hub can generate
an infinite chain of “shrimps” [2,10]. A zoom of the Rössler
bifurcation diagram in Fig. 4(c) depicts a few such shrimps,
S2j and S2j±1, which are singled out by the saddle-node
curves (solid red) folding back around the F point in the
existence region of the spiral attractor (to the left from
the corresponding boundary (green) passing through the F
point). The cusp-shaped saddle-node bifurcation curves (light
blue) join the successive (S2j−1)th and (S2j )th shrimps in the
existence region of the screw-type attractor (here, the subscript
j stands for an ordinal number of nearby shrimps). Thus,
both fold- and cusp-shaped bifurcation curves of saddle-node
periodic orbits determine the local structure of the hub and
the “shrimps.” The latter serve as connection centers between
hubs that contribute toward the formation of characteristic
spiral structures in the bifurcation diagram of the system.

We have presented a generic scenario for the formation of
the spiral structures and “shrimps” in the biparameter space of
a system with a Shilnikov saddle-focus. The skeleton of the
structure is due to fold- and cusp-shaped bifurcation curves of
saddle-node periodic orbits that accompany the homoclinics of
the saddle-focus. These bifurcation curves distinctively shape
the “shrimp” zones in the vicinity of the spiral hub. In the
Rössler model, these bifurcation curves originate from the
codimension-2 Belyakov point corresponding to the transition
to the saddle-focus from a simple saddle. The common feature
of the spiral hub in the Rössler and the tritrophic food chain
models is the F point at the center of the spiral structure, which
gives rise to the alternation of the topological structure of the
chaotic attractor transitioning between the spiral and screwlike
types. The findings let us hypothesize about a universality of
the structure of the spiral hubs in similar systems with chaotic
attractors due to homoclinics of the Shilnikov saddle-focus.
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