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Generalized interacting self-avoiding trails on the square lattice:
Phase diagram and critical behavior

D. P. Foster
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A generalized model for interacting self-avoiding trails on a square lattice is presented and studied using
numerical transfer matrix methods. The model differentiates between on-site double visits corresponding to
collisions, and crossings. Rigidity is also included in the model. The model includes the Nienhuis O(n = 0)
model and the interacting self-avoiding trail model as special cases. It is shown that the generic type of collapse
found is the same as in the pure interacting self-avoiding trail model.
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Lattice walk models have been used for many decades as
coarse-grained models of polymers in solution [1]. The quality
of the solvent is modeled by introducing short-ranged inter-
actions [2,3]. While the interacting self-avoiding walk, with
an attractive interaction associated with nearest-neighbour
nonconsecutively visited sites, is the most studied lattice walk
model, models in which an attractive interaction is associated
with multiply visited sites have also attracted attention. These
models fall into two types: the vertex-interacting self-avoiding
walk (VISAW) model [4] and the interacting self-avoiding
trails (ISAT) model [5]. The VISAW is a bond-avoiding walk
which is allowed to revisit sites but is not allowed to intersect
itself, whereas the ISAT is allowed to intersect at a lattice
site.

The VISAW is rather well understood, partly because it
corresponds to the n = 0 limit of the O(n) model introduced
by Blöte and Nienhuis [4]. The ISAT model, on the other hand,
has given rise to many apparently contradictory results [6]. In
recent work we presented evidence that the collapse transition
in the ISAT model has the same correlation length exponent,
ν, as the VISAW but a different entropic exponent γ [7].
The apparent contradiction with the results of Owczarek and
Prellberg [8] is resolved by the realization that the relation
ν = 1/df between the ν exponent and the fractal dimension
does not always hold [9].

An interesting question arises as to the generic nature of the
ISAT point. If the parameter space is enlarged to enable one
to extend the collapse point to a line, is the ISAT the generic
type of collapse, or does one recover a more conventional
θ -type collapse? This question was recently examined on the
triangular lattice [10], where the construction of the lattice
leads naturally to two different attractive interactions; on the
triangular lattice one may revisit a site once or twice without
visiting the same bond twice. In this study Doukas et al. [10]
found that the ISAT collapse corresponded to a special point
separating an isotropic collapse phase, a crystalline phase,
and the swollen phase. In this phase space the ISAT collapse
extended into a line of θ points.

In this Brief Report we study a generalized interacting
self-avoiding trail model on a square lattice to examine how
the collapse varies as the model is moved from the standard
interacting trail model. In our model this may be achieved
either by differentiating between crossings and collisions, or by

introducing a rigidity (weighting straight sections with respect
to corners).

The model studied here is defined as follows (see Fig. 1):
Consider all random walks on the square lattice which do not
visit any lattice bond more than once. Doubly visited sites
may correspond to either crossings or “collisions”; crossings
are assigned an attractive energy −εx , while collisions are
assigned an attractive energy −εc. We also introduce a penalty
εs for straight sections. The partition function for the model is

Z =
∑
walks

KNτNx

x τNc

c pNs , (1)

where K is the step fugacity, τx/c = exp(βεx/c), p =
exp(−βεs), N is the length of the walk, Nx is the number
of crossings, and Nc is the number of collisions.

This partition function may be calculated exactly on a strip
of length Lx → ∞ and of finite width L by defining a transfer
matrix T . If periodic boundary conditions are assumed in both
directions, the partition function for the strip is given by

ZL = lim
Lx→∞

Tr (T Lx ). (2)

The free energy per lattice site, the density, and correlation
length for the infinite strip may be calculated from the
eigenvalues of the transfer matrix:

f = 1

L
ln(λ0), (3)

ρ(K,τ ) = K

Lλ0

∂λ0

∂K
, (4)

ξ (K,τ ) =
(

ln

∣∣∣∣λ0

λ1

∣∣∣∣
)−1

, (5)

where λ0 and λ1 are the largest and second largest (in modulus)
eigenvalues.

It is expected that Z , ρ, and ξ should have the following
scaling forms close to the critical fugacity (for fixed τ ):

Z ∼ |K − Kc|−γ , (6)

ξ ∼ |K − Kc|−ν, (7)

ρL(K) = ρ∞(K) + L1/ν−2ρ̃(|K − Kc|L1/ν). (8)
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FIG. 1. The generalized interacting self-avoiding trail model
showing the vertex crossings, weighted with a Boltzmann factor
τx , and the vertex collisions, weighted with a Boltzmann factor τc.
A weight p is associated with straight segments and a fugacity K

controls the length of the walk. The walk is shown on a strip of width
L = 5 and length Lx = 10.

Z corresponds to the high-temperature expansion of the
susceptibility of an equivalent magnetic model, hence the use
of the exponent γ .

These scaling properties enable estimates of the critical
lines to be calculated using a phenomenological renormaliza-
tion group method. For example a critical point estimate for a
pair of lattice widths L and L′ is given by the solution of the
equation [13]

ξL

L
= ξL′

L′ (9)

with estimates of the critical exponent ν given by

1

νL,L′
= log

(
dξL

dK
/

dξL′
dK

)
log(L/L′)

− 1. (10)

For a more detailed discussion of the transfer matrix
method, the reader is referred to the paper by Blöte and
Nienhuis [4].

We first study the flexible generalized ISAT model. By
flexible we mean that p = 1 and the straight sections and
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FIG. 2. (Color online) Phase diagram in the x,τc plane for the
fully flexible generalized ISAT model (p = 1). The point marked
A corresponds to the pure VISAW model and the point marked B
corresponds to the pure ISAT model.
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FIG. 3. (Color online) The ν exponent as a function of x

calculated for the flexible generalized ISAT model using the scaling
of ρ setting λ1 = λ0 = 1. The dotted line corresponds to ν = 12/23.

corners are equally weighted. The phase diagram was cal-
culated in the plane where the average length of the walk
diverges, which occurs when λ1 → λ0, or equivalently when
ξ → ∞. This (critical) surface may then be estimated in two
different ways—either by setting λ1 = 1 (since λ0 = 1), or
by using the phenomenological renormalization group (RG)
equation (9). In both cases the collapse transition may be
found in a variety of ways, but commonly one looks at the
variation of ν as τc (or τx) is varied for fixed x = τx/τc. The
crossings of ν give an estimate of the collapse transition. One
may calculate ν either from the scaling behavior of ρ using
(8), useful when we estimated the critical surface by setting
λ0 = λ1 = 1, or by the phenomenological RG equation (10).
The two methods give superposable results for the phase
diagram plotted in the critical surface, shown in Fig. 2. The
estimates of ν calculated using the two methods are shown
in Figs. 3 and 4. Remembering that the VISAW model is
expected to have ν = 12/23 [11], and it is conjectured that
the ISAT model also has ν = 12/23 [7], we may interpret
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FIG. 4. (Color online) The ν exponent as a function of x calcu-
lated for the flexible generalized ISAT model using phenomenological
RG [Eqs. (9) and (10)]. The dotted line corresponds to ν = 12/23.
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FIG. 5. (Color online) Phase diagram in the p,τc plain for the
semiflexible ISAT model (x = 1). The point marked A corresponds
to the O(n = 0) Nienhuis-Blöte model with only corners. This point
then maps onto the θ point on the Manhattan lattice or on the L lattice
(see text). The point marked B corresponds to the pure ISAT model.

the ν results as indicating that the entire collapse line to the
left of the ISAT collapse point (B) is in the ISAT universality
class, while at some stage the collapse transition becomes first
order. It seems that the ISAT behavior extends beyond x = 1
[x/(1 + x) = 0.5]. Both the VISAW model and the ISAT
model are believed to have the same value of ν, while the value
of γ was found to be different (γ = 53/46 in the first case [11]
and is conjectured to be γ = 22/23 in the second [7]). This
difference is similar to that seen between the θ -point model on
the regular lattice where γ = 8/7 [12] and on the Manhattan
lattice γ = 6/7 [14]. Both the Manhattan lattice θ -point model
and the ISAT model have the particularity that if the walks are
grown dynamically, the construction of the walk can only fail
if the walk meets its starting point. This feature is common
to the whole collapse line except for the VISAW collapse
point (A) (x = 0); since crossings are forbidden at this point,
when walks are grown they may find themselves trapped. This
suggests that the generic behavior along the collapse line might
be that of the ISAT, though this is not totally clear from the
transfer matrix data available.

On the square lattice, the other obvious means of moving
away from the ISAT collapse is to include a rigidity to the
walk. Here we chose to weight the straight sections relative to
the corners with a weight p. This choice was made to coincide
with the previous work of Blöte and Nienhuis [4].

The phase diagram in the critical surface is calculated
as before and is shown in Fig. 5 in the τc,p plane for
x = 1. The limit p = 0 excludes the possibility of crossings,
since a crossing necessarily requires two straight portions.
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FIG. 6. (Color online) The ν exponent as a function of τc

calculated using phenomenological RG [Eqs. (9) and (10)].

At this point the model may be mapped into the interacting self-
avoiding walk on the Manhattan lattice, which, as discussed
above, is known to be θ -like (ν = 4/7). Following from the
results for the ISAT on the triangular lattice, where it was
found that the θ -type behavior was more generic, we may
expect that the collapse transition between (A) and the ISAT
collapse point (B) might fall into a θ -like universality class
(θ -like since the γ exponent may differ from the θ -point value
8/7). The results, while not conclusive, do seem to indicate
that the ν value calculated for the ISAT model extends into a
plateau as the lattice widths increase (see Fig. 6), leading to the
conclusion that the ISAT behavior in this case is again more
generic. Again the results indicate that the plateau extends
beyond the ISAT collapse point, before the collapse transition
becomes first order for some value of p > 1.

In this Brief Report we presented transfer matrix results for
a generalized model for interacting self-avoiding trails in order
to investigate the stability of ISAT collapse to variation of the
model parameters. On a triangular lattice, Doukas et al. [10]
presented convincing Monte Carlo results which showed that
a collapse transition similar to the ISAT collapse was a special
point in the phase diagram, and that generically the collapse
transition was either in the θ universality class or first order.
The first type of collapse separates a swollen walk from a
dense isotropic phase, and the second separates the swollen
walk from an anisotropic crystalline collapsed phase. On a
square lattice the ISAT collapse transition is an extended
line separating the swollen phase from the crystalline phase.
The collapse transition becomes first order when crossings
dominate over collisions, which happens for either large
enough x = τx/τc or large enough p.
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