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Shearing self-propelled suspensions: Arrest of coarsening and suppression
of giant density fluctuations
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We study the effect of a linear shear flow on a collection of interacting active, self-propelled particles modeled
via the Vicsek model. The imposed flow has a dramatic effect on the behavior of the model. We find that in the
presence of shear there is no order-disorder transition, and that coarsening of the domains is arrested. Shear also
suppresses the so-called giant density fluctuations that are observed in the quiescent limit.
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Active matter has been a growing field of research in physics
over the last decade or so. A suspension of self-propelled (SP)
particles, modeling, for instance, microbial or bacterial fluids,
fish schools, or synthetic swimming microrobots, is a primary
example of an active material [1–3]. Active and SP particles
continuously burn energy from their surroundings or from
internal sources, typically to move; this drives them out of
equilibrium and renders active suspensions sharply different
from their passive counterparts [1,4–7].

Elucidating the physical, and possibly universal, properties
of such active and self-propelled matter is an important goal,
which has prompted physicists to develop and characterize
simplified models, such as the Vicsek model [8–11], which
was introduced in 1995 and has by now risen to be a paradigm
for the physics of SP particles. In the Vicsek model SP particles
tend to preferentially align their velocity locally with their
neighbors; this alignment is not deterministic but stochastic,
as noise is fed into the system at all times. By decreasing the
strength of noise, one observes a transition from a disordered
phase to an ordered one in which flocks of SP particles
form and move coherently, with long-range order even in
two dimensions. This behavior is markedly at odds with the
thermodynamics of passive systems, where according to the
Mermin-Wagner theorem a continuous symmetry cannot be
spontaneously broken in less than three dimensions [12]. Sim-
ilarly, the central limit theorem constraints density fluctuations
in passive equilibrium systems to scale as the square root of
the number of particles, whereas suspensions of SP particles
modeled like by Vicsek show giant density fluctuations, which
are also found in experiments with vibrated granular rods [13],
although the extent of the universality of the scaling exponents
characterizing these fluctuations as well as their ultimate origin
remain to be determined [14,15]. Besides being the model of
choice to study universal effects in active matter, the Vicsek
model is a useful starting point to describe even quantitatively
a number of specific self-propelled systems ranging from
bacterial fluids to starling flocks [2,16].

Our program in this work is to extend the comparison
between passive and active materials to the case of externally
driven, sheared, suspensions. This work then provides a
theoretical framework to understand the generic properties of

sheared active microbial suspensions [17]. In passive materi-
als, an imposed flow may lead to nonequilibrium steady states
that are spectacularly different from the thermodynamic ones.
For instance, wormlike micelles and liquid crystalline systems
can form bands when sheared [18]. In a binary fluid undergoing
spinodal decomposition a linear externally imposed shear
is instead, to some extent, irrelevant when hydrodynamic
couplings between the order parameter and velocity fields are
disregarded [19–21]. Retaining them changes the picture and
effectively arrests spinodal decomposition, leaving domains
of a well-defined size [22]. Here we consider, for the first
time, the response of a suspension of Vicsek SP particles to
an imposed linear shear; hydrodynamic couplings between
the particles are therefore neglected. As in the Vicsek model
flocks coalesce at low noise into a single aggregate; one
may think of a coarsening binary fluid subject to shear (and
without hydrodynamic coupling) as the passive analog of our
system. We show that shear arrests the coarsening of flocking
domains, thereby providing another example in which active
and passive systems behave in a qualitatively different way,
this time in an externally driven, thus nonequilibrium, context.
Interestingly, shear also drastically changes the nature of the
density fluctuations, bringing them back to “normal,” i.e.,
proportional to the square root of the number of particles.
Therefore a sheared suspension of active SP particles is
a physical system that is qualitatively different from both
an unsheared active fluid and a sheared passive fluid. Our
results lead to a series of predictions for externally driven
active systems, such as bacterial fluids, fish schools, or even
inanimate active matter such as vibrated granular rods, whose
collective dynamics in the absence of shear are well captured
by the Vicsek model as discussed in Refs. [2,3].

Our starting point is the original Vicsek model. This is
defined in terms of N point (off-lattice) particles with positions
�xi , and velocities �vi , of fixed magnitude v0 (i = 1, . . . ,N). In
two dimensions, to which we restrict this paper, the direction of
motion of the ith particle can be described via a single angle θi .
To explore the effect of shear, we have generalized the Vicsek
update rules to include an imposed linear velocity profile
along the x direction, �vs = γ̇ yêx , where y labels the velocity
gradient direction and γ̇ is the shear rate. The dynamics of the
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particle positions and directions are thus given explicitly by
the formulas

�xi(t + �t) = �xi(t) + (�vi(t) + γ̇ yêx)�t, (1)

θi(t + �t) = Arg

{ ∑
j∼i

exp[iθj (t)]

}
+ ηψi(t), (2)

where t and t + �t denote two successive time steps. The
function Arg returns the argument of a complex variable, the
parameter η > 0 measures the noise strength, and ψi(t) is a
uniform random variable between 0 and 2π . The sum in Eq. (2)
is performed over j particles that are within a distance up to r0

from the ith SP particle. Note that in the quiescent limit, γ̇ = 0,
we recover the backward update rule, originally employed by
Vicsek et al. and that, after some debate, has been clarified
to lead to a continuous phase transition [10,11]. In order to
account for the imposed laminar flow, we implement Lees-
Edwards boundary conditions at the top and bottom surfaces
of the system (periodic boundary conditions are employed
along the other direction) [23].

A natural order parameter for this system is the modulus of
macroscopic mean velocity normalized to v0, ϕ, given by

ϕ(t) ≡ 1

Nv0

∣∣∣∣∣
∑

i

�v′
i(t)

∣∣∣∣∣, (3)

where the sum extends to all particles, and �v′
i ≡ �vi − �vs is

the average of the velocities after the imposed shear has been
subtracted away. In our simulations, we set, without loss of
generality, �t = 1 and r0 = 1 [8], whereas the velocity was
set to v0 = 0.2 (similar results are obtained for different values
of the velocity in the range considered, e.g., in Ref. [8]).

A useful quantity in a finite-size scaling analysis of a
nonequilibrium phase transition is the variance χ = L2[〈ϕ2〉 −
〈ϕ〉2] where our system is a square box of size L, and
〈· · ·〉 denotes averages over configurations [8,9]. Note that
for an equilibrium system, χ would be akin to a magnetic
susceptibility. In the absence of shear, χ sharply peaks at the
transition, which should be attained for η = ηc � 0.09 [8–10]
at a density ρ ≡ N/L2 = 1/8. The peak diverges as L → ∞
[8]; this is confirmed by our data in Fig. 1(a), where the γ̇ = 0
case is also shown.

What happens when the suspension is instead subject
to a linear shear? Our simulations in this case lead to a
completely different picture [Fig. 1(b)]: The peak of the
variance of χ drifts to larger values of noise strength η, but,
most importantly, the height of the peak does not increase any
more with L. Indeed the variance χ does not display, in η,
any sign of singularity; rather, as L increases, it converges
to a smooth master curve. This strongly suggests that a
linear shear imposed on Vicsek self-propelled particle systems
washes away the nonequilibrium phase transition and changes
it into a smooth crossover between a largely disordered and
an ordered phase regime. This behavior is very different from
that of sheared passive systems, such as that of the Ising or
XY model, where shear changes the universality class of the
transition but does not remove it altogether [24,25]. Our results
may be qualitatively understood by recalling that at γ̇ = 0
the transition in the Vicsek model occurs via spontaneous
symmetry breaking: A flock forms by selecting, via random
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FIG. 1. (Color online) Plot of the order parameter ϕ (in the insets)
and of its variance χ as a function of noise strength, for γ̇ = 0
(a) and γ̇ = 5 × 10−5 (b). Curves correspond to N equal to 1058
(circles), 2048 (squares), 3200 (upward triangles), 5000 (diamonds),
and 10 082 (downward triangles). All data refer to a density ρ ≡
N/L2 = 1/8. Typically averages have been performed over the last
5000 steps, after an equilibration of 105 time steps.

fluctuations, a direction for its motion, leading to a violation of
total momentum conservation. One may then view a shear flow
as an external symmetry-breaking field, akin to a magnetic
field in a thermal Ising or XY model. Just as there is no
finite-temperature transition in a bulk equilibrium Ising model
with a field, this argument then suggests that there may be
no flocking transition in the Vicsek model under shear, as the
imposed laminar flow leads to a natural, preferred direction
for the collective motion. These results were supported by
a short-time dynamics [26] analysis of the initial evolution
of the order parameter: No power-law behavior signaling the
occurrence of a second-order transition was found.

Therefore, shear drastically alters the critical behavior
of the Vicsek model in a steady state, de facto removing
the disordered phase. But what is the effect of an external
flow on the dynamics of flocking, e.g., at low values of the
noise? For γ̇ = 0, the flocking, ordered state is characterized
by clusters, which form and coarsen until eventually one
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single flock remains; the exact domain morphology strongly
depends on parameters such as density and noise strength.
In particular, due to the absence of surface tension in the
original Vicsek model that we employ, there is a lot of transient
breaking and reforming of the domains during coarsening.
An example of coarsening dynamics at γ̇ = 0 is shown in
Fig. 2I [snapshots (a)–(d)], for ρ = 1. Figure 2II [snapshots
(a)–(d)] instead shows the corresponding coarsening when
a linear shear is applied (γ̇ = 10−4). While the very early
stages are comparable to the quiescent state, it is apparent
that the imposed shear fragments the domains and selects
a well-defined size in steady state. Therefore even a linear
velocity profile can arrest coarsening in suspensions of SP
particles, at odds with what happens in passive systems such
as binary fluids (see above).

(a)_

(d)

(c)

(b)

(I) (II)

FIG. 2. (I) (a)–(d) Snapshots of the evolution of a system of
5184 Vicsek particles with γ̇ = 0, η = 0.01, and ρ = 1. (II) (a)–(d)
Evolution of 5184 Vicsek particles with ρ = 1, η = 0.01, and
γ̇ = 10−4. For all snapshots, the corresponding time is also shown.

Figure 2 also suggests that for large enough shear the
domains elongate and align at a small angle with respect to
the shear. That the coarsening is actually arrested may be
quantitatively proved by computing, e.g., the time series of
the second moment of the instantaneous structure factor of the
SP particle density; Fig. 3 shows its inverse for two values
of the imposed shear. It can be seen that after a transient (of
less than ∼104 time steps), the coarsening is arrested, and
the typical length scales of the domains (or flocks) do not
increase with time anymore; rather, a statistical steady state
is reached where domains fragment and coalesce, but remain
with a well-defined and shear-dependent size. Figure 3 also
shows that shear arrests domain growth in both directions,
with the steady-state domain size larger along the shear
direction. Moreover, the typical length scales decrease with
shear rate [Fig. 3(a), inset], as in a passive system or binary
fluids [22].

Another hallmark of active matter such as active nematics
and suspensions of self-propelled particles is the existence
of the so-called giant density fluctuations [13,27]. This term
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FIG. 3. (Color online) Time series of the inverse of the second
moment of the structure factor, 〈k2

x,y〉 giving the square of the typical
domain length scales along x, the shear direction (top curves), and y,
the velocity gradient direction (bottom curves). Parameters are η =
0.01, and: ρ = 1, N = 5184, and γ̇ = 10−4 (a); ρ = 1/8, N = 5000,

and γ̇ = 5 × 10−5 (b). In (a) the inset shows the dependence of the
time average 〈k2

x,y〉−1 on shear rate.

031930-3



SARACCO, GONNELLA, MARENDUZZO, AND ORLANDINI PHYSICAL REVIEW E 84, 031930 (2011)

10
-2

10
0

n

10
-1

10
0

10
1

10
2

[〈
n2 〉 −

 〈n
〉2 ]1/

2

γ = 0.0

γ = 5x10
-6

γ = 5x10
-5

γ = 5x10
-3

γ = 5x10
-1

γ = 1.0
γ = 5.0
γ = 10.0
slope = 0.80(2)
slope = 0.51(2)

.

.

.

.

.

.

.

.

FIG. 4. (Color online) Plot of the fluctuations in number density
as a function of the total number of particles, for a system with
ρ = 1/8 (Np = 5000, L = 200), and different value s of the shear
rate, as is indicated in the legend. The upmost straight line is a linear
regression of the data corresponding to γ̇ = 0.0, while the lowest
straight line has a slope that is an average of the slopes (also obtained
by linear regressions) of the data in the range 5 × 10−3 � γ̇ � 10.

refers to the observations of a nonstandard scaling of the
fluctuations in local number of particles �n as a function of the
local average number of particles n, in dilute systems where
the local density is allowed to vary a lot, such as in the Vicsek
model. In a passive system in thermodynamic equilibrium the
central limit theorem forces �n ∼ n1/2, whereas in an active
bath �n ∼ nα , with α larger than 1/2, and, for instance, equal
to 1/2 + d/2 for active nematics [14]. In the Vicsek model,
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FIG. 5. Time correlation function in the Vicsek model (γ̇ = 0),
defined as C(t) = 〈(ϕ(t) − 〈ϕ〉)(ϕ(0) − 〈ϕ〉)〉 (normalized to the
value for t = 0) for the case with N = 5000, L = 200 (ρ = 1/8),
η = 0.05, and v0 = 0.2, and where 〈〉 denote temporal. The straight
line is a regression fit with an exponential function that gives an
estimate of the correlation time equal to τ = 171.49. (A different
estimate based on the first momentum of the correlation function gives
τ ≈ 150.) The inset shows the complete evolution of the correlation
function over a larger time interval. C(t) was recorded after the system
has reached the nonequilibrium steady states.
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FIG. 6. (Color online) Plot of the fluctuations in number density
as a function of the total number of particles, for different shear rates
γ̇ (indicated in the legend). The system’s parameters are N = 10 082,
ρ = 1/8, η = 0.05, and v0 = 0.2. The upmost straight line is a linear
regression fits of the data corresponding to γ̇ = 0.0, while the lowest
straight line has a slope that is an average of the slopes, obtained also
by linear regression fits, of the data in the range 5 × 10−5 � γ̇ � 10.

α ∼ 0.8 [9], although there remains no analytical predictions
in quantitative agreement with the numerical results.

We have measured �n in our simulations and found that
it grows as a power law in n also in the presence of shear
(see Fig. 4). Once more, we find that shear changes the
universal properties of the Vicsek model. While we reobtain a
scaling exponent α ∼ 0.8 > 0.5 in the quiescent case (in good
agreement with Ref. [9]), we find that α tends to decrease with
shear rate, reaching the “passive” value of 1/2 for sufficiently
large values of γ̇ . Our results therefore seem to suggest a slow
transition from α ∼ 0.8 to α = 1/2 at larger shear rates.

Interestingly, at the shear rate for which α approaches
0.5 the dimensionless “Deborah” number, τ γ̇ , where τ , the
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FIG. 7. (Color online) Plot of the giant density fluctuation
exponent α as a function of the shear rate, for four different values
of N indicated in the legend. Our data at small γ̇ (see inset) support
the scenario that α changes smoothly with shear rate, as there are no
signs of a singular behavior at γ̇ = 0 in the thermodynamic limit.
The dashed line is plotted to guide the eye and indicates α = 0.5.

031930-4



SHEARING SELF-PROPELLED SUSPENSIONS: ARREST . . . PHYSICAL REVIEW E 84, 031930 (2011)

correlation time of the system, is very close to 1, as can
be seen from Fig. 5. To investigate whether the crossover
we observe may be a finite-size effect, we have performed
simulations at values of L and N larger than those used
in Fig. 4 (at fixed ρ): The results are shown in Fig. 6,
which show a similar trend than the ones in Fig. 4. To
further quantify size effects, we plot in Fig. 7 the effective
exponent α as a function of shear rate, for different system
sizes. While not being definitive, these data strongly suggest
that α changes smoothly rather than discontinuously with
shear rate. The shear-induced suppression of giant density
fluctuations associated with activity we observe is to some
extent reminiscent of what happens in sheared binary systems
[24,25,28], where it is shown that the strength of thermal
fluctuations decreases with shear. It would be interesting to
study other particle-based models for active matter and assess
whether this phenomenon is generic.

Besides providing an interesting fundamental model for
nonequilibrium active matter under an external driving, the
sheared Vicsek model could be relevant as a simplified model
for a number of biological systems. For instance, it is nowadays
possible to study the dynamical behavior of a suspension
of microbial swimmers, such as algae, bacteria, or sperm
cells, under an imposed shear [17]. As bacteria rarely flock
in solutions, the relevant quiescent regime would be in the
disordered phase, but arguably close to the transition as motion
of bacteria shows long-range correlations. An imposed shear
then should increase the average ordering in the bulk, and

this effect may be observed in the lab. For instance, we find
that at a moderate density ρ = 1/8 typical for experimentally
used microbial suspensions [17,29], at a noise η = 0.2 > ηc a
seemingly small shear of 10−4 changes the order parameter
from 0.01 to around 0.8. At a larger scale, animals such
as birds, insects, and fish form flocks, swarms, or schools.
In their natural environment, these may often be subjected
to effective shear flows due to spatially varying winds or
currents. Our results suggest that these should lead to a
fragmentation of the flocks, which is qualitatively in agreement
with the observations that insects are dispersed by strong
winds, and that bird flocks decrease in size under windy
conditions [30].

In conclusion, we have studied the effect of a linear shear
flow on a suspension of Vicsek self-propelled particles. We
have shown that shear dramatically reshapes the physics of the
Vicsek model. First, it removes the order-disorder transition
found at zero shear rate, γ̇ = 0. Second, shear arrests the
coarsening of domains into a single flock, leaving a steady
state made up of smaller clusters with a well-defined size.
Finally, shear also suppresses the giant density fluctuations that
characterize the Vicsek model in the ordered phase. Besides
providing a model system for driven active matter, our results
should be relevant to rheological experiments on suspensions
of bacterial or microbial swimmers, and to the large-scale
behavior of social animals, such as bird flocks and insect
swarms, which are known to be fragmented or dispersed by
strong winds.
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