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Bubble solitons in an inhomogeneous, helical DNA molecular chain with flexible strands
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Base pair opening in an inhomogeneous, DNA double helical molecular chain with flexible strands is
investigated by studying its internal dynamics. For the study, a generalized model which takes into account
the energies involved in stacking and hydrogen bonds along with inhomogeneity, helicity, and phonons coupled
to the stacking and hydrogen bonds is proposed. The internal dynamics of the proposed DNA model is governed
by a perturbed nonlinear Schrödinger equation. The unperturbed, completely integrable nonlinear Schrödinger
equation which admits soliton solutions and forming a bubble corresponds to DNA dynamics with homogeneous
and rigid strands. The results of the soliton perturbation analysis show that the inhomogeneity in stacking and
hydrogen bonds in localized and periodic forms and the helicity do not alter the amplitude under perturbation.
However, the flexibility of the strands diminishes the perturbed amplitude. On the other hand, the velocity of
the soliton and bubble are unaltered due to all the above effects. However, the position and phase of the soliton
and the bubble vary linearly in time. While the position of the soliton depends on the initial velocity, the phase
depends on both the initial velocity and the initial amplitude of the soliton. The above effects introduce small
fluctuation in the tail of the soliton, without affecting the robust nature of the soliton and the bubble during
propagation. The soliton and the bubble obtained as solutions of the internal dynamics of the DNA molecule
represent an opening of the base pairs which is essential for the transcription process.
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I. INTRODUCTION

DNA is a dynamical complex molecular system with fairly
ordered structure and its fluctuation is essential for important
functions such as transcription and replication [1], because the
genetic information is encoded in the bases which are buried
inside the structure, in addition to denaturation. In order to read
the genetic code, DNA must be locally opened by structural
distortion or by breaking the hydrogen bonds between the
bases. It can be caused either by an enzymatic protein molecule
which makes large conformational changes when it attacks
specific site of DNA or by undergoing large amplitude fluctu-
ations, and this leads to the study of its internal dynamics. This
large amplitude motion unwinds the helical strands, allows the
base pairs to rotate, and leads to nonlinear molecular excita-
tion, which has become an emerging field of nonlinear DNA
dynamics. The nonlinearity in DNA [2] leads to the possibility
of coherent, localized excitations in the form of kink-antikink
solitons [3,4], breathers [5–7], bubbles [8], charge transport
in terms of polarons and bubbles [9], and compactons [10].
Among the different experiments available to explain the
internal dynamics of the DNA molecule, Raman scattering [11]
interprets the small vibrational modes, hydrogen-deuterium
exchange experiments [12] explain the opening of base pairs,
microwave absorption experiments [13–15] provide proof for
the existence of longitudinal acoustic modes, and fluorescence
depolarization experiments [16,17] describe the torsional
constants of DNA. A few more attempts were also made to
study the internal dynamics of DNA, in terms of solitons
through scattering of neutrons and light [18–20]. Single DNA
molecule experiments constitute an important tool to unzip
the DNA molecule through microscopic modeling [21,22].
The above experimental studies are clear evidence for the
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importance of nonlinearity in DNA dynamics and, hence, it
needs an understanding on the theoretical front as well. On
the theoretical front, the internal dynamics and the nature
of nonlinear molecular excitations in the DNA molecule are
studied by proposing different models. After the pioneering
work of Englander et al. [23], who introduced the concept of
solitons in DNA dynamics by treating the molecule as chains
of pendula, which imitate the local opening of base pairs
during motion. Yomosa [24,25] proposed a dynamic plane
base-rotator model, by including the rotational motion of bases
leading to double well potential. Yomosa’s model was further
refined by Takeno and Homma [26,27], in which attention
was paid to the degrees of freedom. Peyrard and Bishop [28]
studied the DNA denaturation process through Morse potential
and this model concentrates on the stretching dynamics of
DNA with one degree of freedom for each base pair. Using
the Toda lattice model, Christiansen and his co-workers [29]
explained DNA denaturation by including the transverse and
longitudinal motions of the bases in addition to the torsional
degree of freedom. The underlying nonlinear excitations in this
case appear in the form of breathers. Campa [8] and Barbi [30]
also considered the interaction between the complementary
bases in the form of Morse potential. The model of Krumhansl
and Alexander [31] describes the hydrogen bond interaction by
asymmetric double well potential. Gaeta and his co-workers
[32–34] made contributions to the study of soliton dynamics
in DNA via torsion dynamics. Sataric et al. [35,36] examined
the impact of protein interaction on the breather dynamics
in DNA by extending the model of Peyrard-Bishop, which
is more accurate for the formation of localized oscillations
in terms of breathers and bubbles. The dynamical equations
corresponding to the above models eventually lead to nonlinear
evolution equations in the integrable family which were
solved analytically [36–38] and numerically [39–42] for
kink-antikink, pulse, breather, bubble, and compactonlike
modes, which essentially represent the pattern of base pair
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opening in the DNA molecule. In the above models, the DNA
double helical molecular chain is considered as consisting of
two homogeneous rigid linear chains. However, in nature,
the constitution of the DNA molecular chain is sequence-
dependent (inhomogeneous), the strands are flexible, and the
molecule is helical in shape [43–47]. Recently, Daniel and
Vasumathi [43] studied the base pair opening in the DNA
molecule by treating it as equivalent to a coupled ferromagnetic
lattice or spin ladder. The helicity was taken into account by
different authors through torsional coupling [30–32,35], and
helical transformation [10] and the dynamics were expressed
in the form of kinks and breathers, respectively. Daniel and
Vasumathi [45] introduced helicity through twist deformation,
in analogy with a cholesteric liquid crystal system and a
helimagnet [48–50] and the DNA dynamics is expressed in
the form of a kink-antikink soliton. However, helicity was
found to increase the width of the soliton [45] and more base
pairs participated in the opening process. The inhomogeneous
character of the DNA molecular chain introduces small
fluctuations in the width of the soliton without affecting the
localized pattern of it. Further, flexibility of the DNA strands
generate phonons which accelerate the solitons, leaving small
fluctuations in the localized region of the solitons without
affecting the width and the base pair opening [46].

The number of base pairs that participate in the opening
process depends on the nature of the soliton. For instance, due
to its broad nature, in a kink-antikink soliton, more base pairs
will participate in the opening process. However, in biological
processes, it is advantageous to have base pair opening with
participation by fewer bases. Therefore, it is preferred to
have pulselike nontopological soliton representing bubblelike
opening involving few base pairs [39–42]. Recently, there
are quite a few studies related to bubble dynamics in DNA
in different contexts. Altan-Bonnet et al. [51], explained the
denaturing process of the helical strands in DNA in terms of
bubblelike solitons. From a statistical mechanics point of view,
Hanke et al. [52,53] studied single DNA denaturation, using
the Poland-Scheraga model [54], by putting forwarding the fact
that the denatured bubbles open up due to thermal activation.
Wu Lian-Ao et al. [55] described the bubble dynamics by map-
ping the Fokker-Planck equation that explains DNA dynamics
to a time-dependent Schrödinger equation. The stability of the
helix was analyzed through bubble solitons by Villagran et al.
[56]. Hennig [57] proposed an oscillator network model, which
appears like the double helical structure of DNA and obtained
a solution in the form of radial breathers and kink shaped
patterns resembling an oscillating bubble. When nonelastic
effects are included, the amplitude of the soliton grows in
time and causes fluctuation. Transfer-matrix studies show the
formation of bubbles in flexible DNA loops [58,59]. Vasumathi
and Daniel [47], while investigating the dynamics of a protein-
DNA complex in a viscous medium, obtained bubbles traveling
along the helical chain. Thus, it has become important and
necessary to investigate the internal dynamics of DNA in terms
of soliton bubbles by proposing a generalized model involv-
ing inhomogeneity, flexibility, and helicity of the molecule.
Therefore, in the present paper, we propose a generalized
model for DNA dynamics by considering the molecule as
consisting of two helical, flexible, interacting, site-dependent
molecular chains in analogy with the Heisenberg model for a

coupled anisotropic site-dependent spin system and investigate
the underlying nonlinear excitations in the form of solitonlike
bubbles by solving the governing dynamical equation.

The paper is organized as follows. Section II presents
a generalized model for DNA dynamics by including the
site-dependent sequence of bases and the helicity and the
flexibility of the strands. In Sec. III, the DNA internal dynamics
is expressed in terms of a perturbed nonlinear Schrödinger
equation. Section IV outlines the soliton perturbation the-
ory to solve the perturbed nonlinear Schrödinger equation.
Sections V, VI, and VII are devoted to the results of the
perturbation study on the effect of inhomogeneity in base
sequences and hydrogen bonds and the helicity and flexibility
in DNA strands on soliton excitations, respectively. The results
are summarized and concluded in Sec. VIII. The evaluation of
several integrals that appear while evaluating the parameters
of the soliton and the perturbed part of the soliton solution
using residue theorem is given in the Appendix.

II. A GENERALIZED MODEL FOR DNA
INTERNAL DYNAMICS

The models considered earlier by different authors for the
study of DNA dynamics treat the molecule as consisting of two
homogeneous, rigid, linear chains. Many of the authors, further
assumed specific potentials such as Morse, Toda, double well,
plane base rotator, etc., to represent the hydrogen bonding
between complementary bases. Few authors modeled the
system by taking into account the translational, rotational, and
torsional motion of bases to represent the energy associated
with the hydrogen bonds. Here we consider the DNA molecule
as consisting of two sequence- or site-dependent (inhomoge-
neous), flexible, helical strands or chains with interstrand and
intrastrand interactions through hydrogen bonds and stacking,
respectively. Interestingly, in the model proposed here, we
invoke the analogy of inhomogeneous DNA molecular chain
with that of a coupled anisotropic ferromagnetic spin chain
and will construct the associated Heisenberg model of the
Hamiltonian. The exact form of B-DNA with its helical axis
along the z direction is schematically represented in Fig. 1(a).
Each base is depicted by an arrow and the conjugated arrow
represents the complementary base. The dots between the
arrows in the figure represent the hydrogen bonds between
complementary bases. The site-dependent (inhomogeneous)
character of hydrogen bonds and base stacking is expressed
by the difference in the length of the arrows and the variation
in the space between the neighboring arrows. The projection
of the nth base pair in the XY plane is shown in Fig. 1(b). In
the figure, B and B ′ represent the tips of the nth bases, which
belong to the complementary strands S and S ′, respectively.
It is limited in our model here that the two complementary
bases rotate in opposite directions. The radius of the circle
in the figure is represented as “r”. The angles of rotation
of bases around the points P and P ′ are represented by
(θn,φn) and (θ ′

n,φ
′
n) in the XZ and XY planes, respectively.

The coordinates of P and P ′ are (r cos nφ0,r sin nφ0,zn)
and [r cos(nφ0 + π ),r sin(nφ0 + π ),z′

n] respectively, where,
φ0 = 2π

p
with p, the number of base pairs per turn in the strands

S and S ′. The rotational motion of bases will cause fluctuation
and breaking of hydrogen bonds in the DNA molecule which
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FIG. 1. (a) A schematic representation of the structure of a B-form DNA double helix. (b) A horizontal projection of the nth base pair in
the xy plane.

leads to opening of base pairs, or in other words, unwinding
of the double helical strands. The conformation and stability
of the DNA double helix is mainly determined by the stacking
energy, in addition to the hydrogen bonds and other forms of
energies.

The base-base interaction or the strength of the hydrogen
bonds between complementary bases depends on the distance
between the complementary bases. In Fig. 1(b), the square of
the distance, D2

n, between the edges of the arrows B and B ′
can be calculated using the geometry as

D2
n = 2 + 4r2 + (zn − z′

n)2 + 2(zn − z′
n)(cos θn − cos θ ′

n)

+ 2[sin θn sin θ ′
n cos(φn − φ′

n) − cos θn cos θ ′
n]

− 4r[sin θn cos φn + sin θ ′
n cos φ′

n]. (1)

The role of hydrogen bonds and stacking in the dynamics can
be understood in a better way, when the distance between the
bases can be expressed in terms of quasispin operators,

Sx
n = sin θn cos φn, Sy

n = sin θn sin φn, Sz
n = cos θn, (2a)

S ′x
n = sin θ ′

n cos φ′
n, S ′y

n = sin θ ′
n sin φ′

n, S ′z
n = cos θ ′

n,

(2b)

for the base at the nth site in the S and S
′
strands. Further, it is

easy to generalize the model in terms of spin operators, when
various other interactions are considered in the dynamics.

Using the quasispin operator representation given in Eqs. (2),
Eq. (1), after assuming zn = z′

n, can be written as

D2
n = 2 + 4r2 + 2

[
Sx

nS
′x
n + Sy

nS
′y
n − Sz

nS
z
′n
] − 4r

[
Sx

n + S
′x
n

]
.

(3)

The form of D2
n given in Eq. (3) is similar to the Hamiltonian

for a Heisenberg spin model. Therefore, the intrastrand base-
base interaction or stacking and other useful forces and
interactions that stabilize the double helical form of DNA
can also be written using the same consideration. In order
to use such a quasispin model for the DNA problem, it
is reasonable to think that the flexible double strand helix
with site-dependent bases can be conceived as an anisotropic
twisted and coupled site-dependent spin lattice model or
coupled anisotropic helimagnetic spin system. By mapping
two such coupled helical spin systems with the two DNA
double helices, Daniel and Beula [48] studied the dynamics
of DNA by introducing the helical structure through twist
deformation in analogy with the structure of a helimagnet [49]
(see Fig. 2). and cholesteric liquid crystal system [50]. Under
this mapping, the two strands of the DNA molecule correspond
to two site-dependent anisotropic, ferromagnetic twisted spin
lattices and are antiferromagnetically coupled to each other
via the spins or magnetic moments. The direction of the
helical axis, that is, the z direction, is chosen as the easy
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FIG. 2. A schematic representation of a helimagnet.

axis of magnetization of the coupled spin system. Similar
to the stacking between adjacent bases in DNA, here the
spin-spin exchange interaction is restricted to the nearest
neighbors, with the nth spin interacting with the (n + 1)th and
(n − 1)th spins. With a view to consider a generalized DNA
double stranded helical model, we consider inhomogeneity
in stacking and hydrogen bonds and flexibility in the helical
strands.

A. Hamiltonian of the model

With the above identification, we consider the Heisenberg
model of Hamiltonian for an anisotropic, site-dependent,
twisted, and antiferromagnetically coupled ferromagnetic spin
lattice system or for a suitable site-dependent anisotropic
coupled helimagnetic spin system. The total Hamiltonian
which consists of the above components is written as [48]

H = Hex + Hani + Hhy + Hhel + Hph. (4)

The site-dependent exchange Hamiltonian Hex (which rep-
resents stacking energy in DNA) for the two spin lattices

corresponding to the two strands S and S ′ is written as

Hex = −
∑

n

{
fn

[
Jxy

(
Sx

nSx
n+1 + Sy

nS
y

n+1

) + JzS
z
nS

z
n+1

]
+ f ′

n

[
J ′

xy

(
S ′x

n S ′x
n+1 + S ′y

n S
′y
n+1

) + J ′
zS

′z
n S ′z

n+1

]}
. (5)

In the above Hamiltonian, Jxy and J ′
xy represent ferromagnetic

exchange integrals due to nearest-neighboring spin-spin inter-
action in the two lattices in the xy plane, which correspond
to the intrastrand interaction constant or the stacking energy
between the nth base and its nearest neighbors in the plane
normal to the helical axis in the strands S and S ′, respectively.
When Jz and J ′

z are not equal to Jxy and J ′
xy , respectively,

anisotropy is introduced in the intrastrand interaction in the
lattices. In Hamiltonian (5), fn and f ′

n introduce site-dependent
character in the exchange interaction of the spin lattices, which
further indicate that the intrastrand stacking energy between
bases in the S and S ′ strands varies in a specified site-dependent
fashion, leading to sequence-dependent character or inhomo-
geneity in DNA. In general, fn and f ′

n may take different
mathematical forms for different types of inhomogeneities.
In DNA, inhomogeneity may arise due to more than one
reason. The presence of different sites along the strands such
as promotor, terminator, coding, etc., each of which has a
very specific sequence of bases in a particular function, makes
the strands site dependent or inhomogeneous, making them
soft [60]. Also, defects caused due to the presence of additional
molecules such as drugs in specific sites of the sequence and
the presence of abasic sitelike nonpolar mimic of thymine
leads to inhomogeneity [61,62]. On the other hand, periodic
inhomogeneity may arise due to periodic repetition of different
sites or simple defects along the strands.

The Hamiltonian for the magnetocrystalline anisotropy due
to crystal field effect in the ferromagnetic spin system is written
as

Hani =
∑

n

[
A

(
Sz

n

)2 + A′(S ′z
n

)2]
, (6)

where A and A′ are the uniaxial anisotropic coefficients
assuming positive values, leading to rotation of bases in a
plane normal to the helical axis of the DNA. The Hamiltonian
corresponding to the antiferromagnetic spin-spin coupling
between the two lattices analogous to interstrand interaction
or hydrogen bonds is written as

Hhy =
∑

n

[
Jcgn

(
Sx

nS ′x
n + Sy

nS ′y
n

) + J ′
cS

z
nS

′z
n

]
, (7)

where J ′
c and Jc, which represent the antiferromagnetic

exchange interaction between the two spin lattices, correspond
to a measure of the interstrand interaction or energy of the
hydrogen bonds between the complementary bases of similar
sites in both the strands, along the direction of the helical
axis (z direction) and in a plane normal to it, respectively.
gn represents the inhomogeneity in the interaction between
lattices or in the strength of the hydrogen bonds.

In a helimagnet, the helicity is incorporated by using the
discrete form of the free energy corresponding to the twist
deformation in a cholesteric liquid crystal system. Thus, the
Heisenberg model of the Hamiltonian corresponding to the
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free energy for the twist, which is responsible for helicity in
terms of spin vectors is written as [48]

Hhel =
∑

n

h{[k · (Sn × Sn+1)] + q0}2

+h′{[k · (S′
n × S′

n+1)] + q0}2, (8)

where, Sn = (Sx
n ,S

y
n ,Sz

n) and k = (0,0,1). In Hamiltonian (8),
q0 = 2π

q
is the pitch wave vector and q is the pitch of the

helix. h and h′ denote the coefficients associated with the twist
deformation in the two lattices which correspond to the two
strands of the DNA molecule.

In nature, the spin lattices and also the strands of DNA
are not rigid, but flexible, and hence the two strands deform
elastically and the resultant phonons couple to the stacking (ex-
change interaction) and hydrogen bonds (coupling between lat-
tices). Hence, the part of the Hamiltonian corresponding to the
phonon energy and the energy due to its coupling is written as

Hph = p2
n

2M
+ p′

n2

2M
+ K(yn+1 − yn)2 + K ′(y ′

n+1 − y ′
n)2

− α̂
(
yn+1 − yn)(Sx

nSx
n+1 + Sy

nS
y

n+1

)

− α̂′(y ′
n+1 − y ′

n)
(
S ′x

n S ′x
n+1 + S ′y

n S
′y
n+1

)
+ β̂(yn+1 − yn−1)

(
Sx

nS ′x
n + Sy

nS ′y
n

)
. (9)

In the above Hamiltonian, yn and y ′
n represent the longitudinal

displacements of the nth spin/nucleotide from the equilibrium
position in the two lattices/strands, pn and p′

n are the
associated momenta, and M is the uniform mass. K

and K ′ are the longitudinal elastic constants along the
lattices/strands. While α̂ and α̂′ are the coefficients related to
the exchange/intrastrand interaction in the two lattices/strands,
β̂ is a measure of the coupling between the phonons and
the hydrogen bonds or interlattice/interstrand interaction. In
DNA, the bases are broad molecules lying almost normal
to the helical axis. Therefore, for future convenience, while
writing Hamiltonian (9), we considered transverse coupling
alone, that is, coupling in the xy plane normal to the
helical axis. Now the total Hamiltonian can be obtained
by using Hamiltonians (5)–(9) in Eq. (4). The resultant
Hamitonian (4) after using Hamiltonians (5)–(9) in terms of
the variables (θn,φn) and (θ ′

n,φ
′
n) using Eqs. (2a) and (2b) is

written as

H =
∑

n

[
− {Jxyfn + α̂(yn+1 − yn)} sin θn sin θn+1 cos(φn+1 − φn) − {J ′

xyf
′
n + α̂′(y ′

n+1 − y ′
n)} sin θ ′

n sin θ ′
n+1 cos(φ′

n+1 − φ′
n)

− Jzfn cos θn cos θn+1 − J ′
zf

′
n cos θ ′

n cos θ ′
n+1 + {Jcgn + β̂(yn+1 − yn)} sin θn sin θ ′

n cos(φn − φ′
n)

+ J ′
cgn cos θn cos θ ′

n + A cos θ2
n + A′ cos θ ′2

n + h
{

sin2 θn sin2 θn+1 sin2(φn+1 − φn) + q2
0

}
+h′{ sin2 θ ′

n sin2 θ ′
n+1 sin2(φ′

n+1 − φ′
n) + q2

0

} + p2
n

2M
+ p′

n2

2M
+ K(yn+1 − yn)2 + K ′(y ′

n+1 − y ′
n)2

]
. (10)

The quasispin model introduced above implies that the
dynamics of bases in DNA can be described by the following
equations of motion:

sin θn

∂θn

∂t
= ∂H

∂φn

, sin θn

∂φn

∂t
= −∂H

∂θn

, (11a)

sin θ ′
n

∂θ ′
n

∂t
= ∂H

∂φ′
n

, sin θn

∂φ′
n

∂t
= −∂H

∂θn

. (11b)

When the anisotropy energies A and A′ are much
larger than the other interactions, then upon substituting

Hamiltonian (10), the equations of motion (11a) and (11b)
become

∂φn

∂t
= 2A cos θn, (12a)

∂φ′
n

∂t
= 2A′ cos θ ′

n. (12b)

The other two θn and θ ′
n equations in Eq. (11) satisfy

identically. With the use of Eqs. (12a) and (12b), the
Hamiltonian (10) becomes

H =
∑

n

[
I

2

(
∂φn

∂t

)2

+ I ′

2

(
∂φ′

n

∂t

)2

− {Jxyfn + α̂(yn+1 − yn)} sin θn sin θn+1 cos(φn+1 − φn)

−{J ′
xyf

′
n + α̂′(y ′

n+1 − y ′
n)} sin θ ′

n sin θ ′
n+1 cos(φ′

n+1 − φ′
n) − Jzfn cos θn cos θn+1

− J ′
zf

′
n cos θ ′

n cos θ ′
n+1 + {Jcgn + β̂(yn+1 − yn)} sin θn sin θ ′

n cos(φn − φ′
n) + J ′

cgn cos θn cos θ ′
n

+h
{

sin2 θn sin2 θn+1 sin2(φn+1 − φn) + q2
0

} + h′{ sin2 θ ′
n sin2 θ ′

n+1 sin2(φ′
n+1 − φ′

n) + q2
0

}
+ p2

n

2M
+ p′

n2

2M
+ K(yn+1 − yn)2 + K ′(y ′

n+1 − y ′
n)2

]
, (13)
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where I = 1
2A

and I ′ = 1
2A′ are the moments of inertia of the

nucleotides around the axes at Pn and P ′
n. The first two terms

proportional to I and I ′ represent the kinetic energies of the
rotational motion of the nth nucleotide bases accompanied by
the potential energy associated with the nth nucleotide, sugar,
and phosphate and their complementary units around the axes
at Pn and P ′

n. In Hamiltonian (13), the nonlinear potential
associated with different interactions, bondings, excitations,
twist, etc., in terms of the rotational angles is given in Table I.

As we have considered plane (xy) base rotator model here,
we assume θn = θ ′

n = π
2 . Since the physical properties of

the two DNA strands are similar, we can also assume that
Jxy = J ′

xy = J , Jz = J ′
z, Jc = J ′

c, K = K ′, α̂ = α̂′, h = h′,
and fn = f ′

n. Further, as the above coefficients associated with
the strands S and S ′ are equal [26], we can limit our discussion
to the case I = I ′. In view of the above assumptions, the
Hamiltonian (13) can be rewritten in the limits of absolute
minima of potential as

H =
∑

n

I

[(
∂φn

∂t

)2

+
(

∂φ′
n

∂t

)2]
− [Jfn + α̂(yn+1 − yn)]{[1 − cos(φn+1 − φn)]} − [J ′fn + α̂(y ′

n+1 − y ′
n)][1 − cos(φ′

n+1 − φ′
n)]

+ [Jcgn + β̂(yn+1 − yn)][1 − cos(φn − φ′
n)] + h

{
2q2

0 − [sin(φn+1 − φn) − q0]2 − [sin(φ′
n+1 − φ′

n) − q0]2
}

+ p2
n

2M
+ p′

n2

2M
+ K[(yn+1 − yn)2 + (y ′

n+1 − y ′
n)2]. (14)

B. Dynamical equation

Having constructed the Hamiltonian for the generalized model, the dynamical equation can be obtained by deriving the
associated Hamilton’s equations of motion in the form

I
∂2φn

∂t2
= {[Jfn + α̂(yn+1 − yn)] sin(φn+1 − φn) − [Jfn−1 + α̂(yn − yn−1)] sin(φn − φn−1)

+ [Jcgn + β̂(yn+1 − yn)] sin(φn − φ′
n) − 2hq0[cos(φn+1 − φn) − cos(φn − φn−1)]}, (15a)

I
∂2φ′

n

∂t2
= {[Jfn + α̂(y ′

n+1 − y ′
n)] sin(φ′

n+1 − φ′
n) − [Jfn−1 + α(y ′

n − y ′
n−1)] sin(φ′

n − φ′
n−1)

+ [Jcgn + β̂(yn+1 − yn)] sin(φ′
n − φn) − 2hq0[cos(φ′

n+1 − φ′
n) − cos(φ′

n − φ′
n−1)]}, (15b)

Mÿn = 2K(yn+1 − 2yn + yn−1) − α̂[cos(φn+1 − φn) − cos(φn − φn−1)] + β̂[cos(φn+1 − φ′
n+1) − cos(φn−1 − φ′

n−1)], (15c)

Mÿ ′
n = 2K(y ′

n+1 − 2y ′
n + y ′

n−1) − α̂[cos(φ′
n+1 − φ′

n) − cos(φ′
n − φ′

n−1)] + β̂[cos(φn+1 − φ′
n+1) − cos(φn−1 − φ′

n−1)]. (15d)

Equations (15a)–(15d) describe the dynamics of bases in DNA
at the discrete level, when rotational motion of bases in a
plane normal to the helical axis is considered. In the B form
of DNA, as the difference in angular rotation of bases with
respect to neighboring bases along the two strands is small,
we assume that sin(φn±1 − φn) ≈ (φn±1 − φn) and sin(φ′

n±1 −
φ′

n) ≈ (φ′
n±1 − φ′

n). Also, as the DNA molecular chain is very
long, having several thousand base pairs, compared to the
distance between the neighboring bases along the strands “a”,
it is appropriate to make a continuum approximation, which
is also valid in the long wavelength and low temperature
limit. This is done by introducing two fields of rotational
angles, φn(t) → φ(z,t) and φ′

n(t) → φ′(z,t), where z = na.
The inhomogeneity in both stacking and hydrogen bonds is
also expressed by the fields as fn → f (z) and gn → g(z).
Also, we introduce the following expansions:

φn±1 = φ(z,t) ± a
∂φ

∂z
+ · · · , (16a)

fn±1 = f (z) ± a
∂f

∂z
+ · · · , (16b)

gn±1 = g(z) ± a
∂g

∂z
+ · · · , (16c)

yn±1 = y(z,t) ± a
∂y

∂z
+ · · · . (16d)

In a similar way, the expansions for φ′
n±1 and y ′

n±1 can be
written. Since the inhomogeneity is associated with the bases
themselves, the same parameter a is used in all the expansions.

Using the expansions given in Eqs. (16a)–(16d) in
Eqs. (15a)–(15d), the equations of motion in the continuum
limit reduce to

φtt = [f (z) + 2h]φzz + fzφz + α̂(yzφz)z
− 1

2g(z) sin(φ − φ′) + β̂yz sin(φ − φ′), (17a)

φ′
t t = [f (z) + 2h]φ′

zz + fzφ
′
z + α̂(y ′

zφ
′
z)z

− 1
2g(z) sin(φ′ − φ) + β̂yz sin(φ′ − φ), (17b)

ytt = v2yzz, (17c)

y ′
t t = v2y ′

zz. (17d)

In the above equations, the subscripts t and z represent partial
derivatives with respect to time t and the spatial variable z,
which have been rescaled, respectively, as t →

√
Ja2
I

t and z →√
Ja2
2h

z. Also, the various parameters are defined as Jc → −Ja2

2 ,

ε̂ = a
J

, β̂ = 2εβ̂

a2 , v2 = 2K
MI

, and α̂ = εα̂. Upon adding Eqs.
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TABLE I. Nonlinear substrate potential for different interactions, excitations, and twist in terms of the rotational angles of the bases in a
plane normal to the helical axis.

Type of interaction/bonding/twist Form of the potential

Homogeneous stacking −J [sin θn sin θn+1 cos(φn+1 − φn) + cos θn cos θn+1]
−J ′[sin θ ′

n sin θ ′
n+1 cos(φ′

n+1 − φ′
n) + cos θ ′

n cos θ ′
n+1]

Inhomogeneous stacking −Jxyfn sin θn sin θn+1 cos(φn+1 − φn) − Jzfn cos θn cos θn+1

−J ′
xyf

′
n sin θ ′

n sin θ ′
n+1 cos(φ′

n+1 − φ′
n) − Jzf

′
n cos θ ′

n cos θ ′
n+1

Homogeneous hydrogen bonding J sin θn sin θ ′
n cos(φn − φ′

n) + J ′ cos θn cos θ ′
n

Inhomogeneous hydrogen bonding Jcgn sin θn sin θ ′
n cos(φn − φ′

n) + J ′
cgn cos θn cos θ ′

n

Twist/helicity h{2q2
0 − [sin(φn+1 − φn) − q0]2 + [sin(φ′

n+1 − φ′
n) − q0]2}

Flexibility/phonon I

2 φ̇2
n + I ′

2 φ̇′2
n + K(yn+1 − yn)2 + K ′(y ′

n+1 − y ′
n)2

Phonon coupling with stacking I

2 φ̇2
n + I ′

2 φ̇′2
n + K(yn+1 − yn)2 + K ′(y ′

n+1 − y ′
n)2

−α̂(yn+1 − yn) sin θn sin θn+1 cos(φn+1 − φn)

−α̂′(y ′
n+1 − y ′

n) sin θ ′
n sin θ ′

n+1 cos(φ′
n+1 − φ′

n)

Phonon coupling with hydrogen bonds I

2 φ̇2
n + I ′

2 φ̇′2
n + K(yn+1 − yn)2 + K ′(y ′

n+1 − y ′
n)2

+ β̂(yn+1 − yn) sin θn sin θ ′
n cos(φn − φ′

n)

(17a) and ((17b), the resultant equation satisfies identically
and on subtracting Eq. (17b) from (17a), we get

(φ − φ′)t t = [2h + f (z)](φ − φ′)zz + fz(φ − φ′)z
+ α̂(yzφzz + yzzφz − y ′

zφ
′
zz − y ′

zzφ
′
z)

− g(z) sin(φ − φ′) + 2β̂yz sin(φ − φ′). (18)

As the two DNA strands are asymmetric in nature, they will
exhibit similar physical behavior [63]. Also, due to the above,
when an open state configuration is formed in DNA, the two
complementary bases rotate in opposite directions, so that φ =
−φ′. The above limitation further helps to deduce the coupled
evolution equations (17a) and (17b) into a generalized sine-
Gordon family of equation. Then Eq. (18) becomes

	tt = [2h + α̂yz + f (z)]	zz + fz	z + α̂yzz	z

+ [β̂yz − g(z)] sin 	, (19)

where 	 = 2φ. In analogy with the above choice, it is
appropriate to choose y ′ = −y, and then Eqs. (17c) and (17d)
can be written as

ytt = v2yzz. (20)

Assuming that the inhomogeneity along and between the DNA
strands are small, we write f (z) = 1 + λ1f1(z) along the
strands and g(z) = 1 + λ1g1(z) between the strands, where
λ1 is a small constant. Using the above values of f (z) and
g(z), Eqs.(19) and (20) can be written as

	tt = 	zz − sin 	 + λ1{[f1(z) + h + α̂yz]	zz + f1zψz

− g1(z) sin 	 + α̂yzz	z + β̂yz sin 	}, (21a)

ytt = v2yzz. (21b)

While writing Eq. (21a), we have redefined h → λ1h
2 , α̂ →

λ1α̂, and β̂ → λ1β̂. Equations (21a) and (21b) describe the
dynamics of an inhomogeneous DNA double helical molecule
with flexible strands in the continuum limit.

III. DNA DYNAMICS IN TERMS OF PERTURBED
NONLINEAR SCHRÖDINGER EQUATION

When the DNA double helical molecule is treated as two ho-
mogeneous linear rigid chains, that is, when h = α̂ = β̂ = 0,
f1(z) = g1(z) = 0, Eq. (21a) reduces to the well-known com-
pletely integrable sine-Gordon equation which admits kink-
antikink solitons [64]. The kink and antikink soliton solutions
of the sine-Gordon equation represent the configuration of base
pair opening in the homogeneous DNA molecule with rigid
strands. Further, the effect of inhomogeneity in the strands
and hydrogen bonds, as well as helicity and flexibility in the
strands are studied in detail in a series of papers by one of
the present authors [44–46]. However, as the kink-antikink
topological soliton of the sine-Gordon equation is considerably
broad, a large number of base pairs participate in the opening.
However, as mentioned earlier, if the base pair opening can
be represented in terms of a pulselike nontopological soliton,
which is highly localized with small width, it is expected
that fewer base pairs will take part in the opening, which is
advantageous. This localized formation of base pair opening
can occur and travel in the form of bubbles and breathers
along the DNA molecule. Therefore, it is intended to rewrite
the dynamical equation (21a) in the form of a generalized
nonlinear Schrödinger equation, which will admit localized
pulselike soliton with small perturbation.

For this, we use derivative expansion [65,66], which extends
the independent variables z and t into several variables
z0,z1, . . . , and t0,t1, . . . , where

zn = εnz, tn = εnt. (22)

Using the above expansions, we write Eq. (21a) as

	tt + 2ε	tT + ε2	T T

= λ1({[1 + f1(z)] + h + α̂yz}(	zz + 2ε	zZ + ε2	ZZ)

+ f1z	z + α̂yzz	z − {[1 + g1(z)] + β̂yz} sin 	). (23)
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In the above, we have used z for z0, Z for z1, t for t0, and T
for t1. Now we assume the solution of Eq. (23) in the form of
a modulated wave as given below:

	 = F1(Z,T )ei(kz−ωt) + c.c. + ε[F0(Z,T )

+F2(Z,T )e2i(kz−ωt) + c.c.]. (24)

The above solution contains a d.c. term, a first harmonic term
and a second harmonic term, and the complex conjugate (c.c.),
which explicitly defines 	 as a real quantity. Substituting
Eq. (24) in Eq. (23) and equating the zero harmonic, first
and second harmonic terms, we get the following results.

For the zero harmonic equation,

F0T T = F0ZZ. (25a)

The zero harmonic equation (25a) is a linear nondispersive
wave equation, the solution of which can be written in terms
of a linear wave, given by F0 = Cei(Z−T ), where C is the
amplitude of the wave.

For the first harmonic equation,

−2iε[ωF1T + kF1Z] + ε2
[
F1T T − F1ZZ − 1

2 |F1|2F1
]

= iλ1[(α̂k3 + 6β̂k)yZ − i{k2f1(Z) + g1(Z) + hk2}]F1.

(25b)

While writing the above equation, we have used the dispersion
relation ω2 = 1 + k2.

For the second harmonic equation,

F2 = 0. (25c)

Upon using the transformations X̂ = Z − VgT , where Vg is
the group velocity and s = εT , and the redefinitions β̂ = εβ̂,
λ1 = ελ1, Eq. (25b) transforms into the following equation:

iF1s + PF1X̂X̂ + 2|F1|2F1 = iλ1[(α̂k3+6β̂k)yX̂−i{k2f1(X̂)

+ g1(X̂) + hk2}]F1, (26)

where P = (ω2−k2

2ω3 ). On introducing the new spatial variable

X = (ω2−k2

2ω3 )−
1
2 X̂, Eq. (26) can be rewritten in the form of the

following perturbed nonlinear Schrödinger equation:

iF1s + F1XX + 2|F1|2F1 = iλ1R[F1], (27a)
where

R[F1] = [(α̂k3 + 6β̂k)yX − i{k2f1(X) + g1(X) + hk2}]F1.

(27b)

Equation (27a) is called a perturbed nonlinear Schrödinger
equation because, when λ1 = 0, it reduces to the completely
integrable nonlinear Schrödinger (NLS) equation:

iF1s + F1XX + 2|F1|2F1 = 0, (28)

which admits N -soliton solutions [67].

IV. SOLITON PERTURBATION

The completely integrable NLS equation found in Eq. (28)
describes the dynamics of a rigid homogeneous DNA molecu-
lar chain when it is treated as two interacting linear chains.
The one soliton solution of the NLS equation describes
the open state configuration in the DNA molecular chain

which propagates along the direction of the helical axis.
Now, the natural question arises as to what the impact of
inhomogeneity, helicity, and flexibility of the molecular chain
on the propagating solitonic excitations will be. The answer to
this question is found by carrying out a multiple scale soliton
perturbation analysis on the perturbed NLS equation (27).
Different perturbation methods [66,68–77], such as the
Lindstedt-Poincare perturbation method, the method of aver-
aging, and the harmonic balance method, are available. Among
the different methods, the multiple-scale perturbation method
[66,78], which is widely used, treats the independent variables
expanded in different scales and the dependent variables are
expanded in asymptotic series. In the following, the details of
the multiple scale soliton perturbation theory used to solve the
perturbed NLS equation (27) is presented.

A. Linearization of the perturbed nonlinear
Schrödinger equation

In order to study the effect of perturbation on the soliton,
the time variable s is transformed into several variables as
sn = γ ns, where n = 0,1,2, . . . , and γ is a very small
parameter. Simultaneously, F1 and R[F1] are expanded in
asymptotic series, as given below:

F1 = F
(0)
1 + γF

(1)
1 + γ 2F

(2)
1 + · · · , (29)

R[F1] = R(1)
[
F

(0)
1

] + γR(2)
[
F

(0)
1 ,F

(1)
1

] + · · · . (30)

Substituting the above expansions in Eq. (27), and equating the
coefficients of different powers of γ , we obtain the following
equations:

γ 0 : iF
(0)
1s0

+ F
(0)
1XX + 2|F1|2F (0)

1 = 0, (31)

γ 1 : iF
(1)
1s1

+ F
(1)
1XX + 4|F (0)

1 |2F (1)
1 + 2F

(0)
1 F

(1)
1

= i
[
R(1)F

(0)
1 − F

(0)
1s1

]
, (32a)

where

R(1) = [(α̂k3 + 6β̂k)yX − i{k2f1(X) + g1(X) + hk2}].
(32b)

The equation obtained at order of γ 0, that is, Eq. (31), is just
the standard NLS equation. It has the single soliton solution
which is explicitly written as

F
(0)
1 (X,s0) = 2βsechẑe−iθ , (33)

with

ẑ = 2β(X − ξ ), ξ = −4αs0, (34a)

θ = αẑ

β
+ δ = 2α(X − ξ ) + δ, δ = −4(α2 + β2)s0,

(34b)

where α, β, ξ , and δ are four real parameters which determine
the propagating velocity, amplitude, position, and phase of the
soliton, respectively. Due to perturbation, the above soliton
parameters are assumed to be functions of the slow time
variables s0,s1,s2, . . .. However, α,β are independent of s0,
and the s0-dependent parameters ξ and δ are given by the
second equations in Eqs. (34a) and (34b), respectively. The
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initial condition for perturbation in the case of the one soliton
given in Eq. (33) is written as

F
(0)
1 (X,0) = 2βsech [2β(X − X0)] e−i(2αX+θ0), (35)

F
(n)
1 (X,0) = 0, for n = 1,2, . . . . (36)

It follows from Eq. (33) that

F
(0)
1sn

= 2
{[

βsn
ψ1(z) + 2β2ξsn

ψ2(z)
]

+ i
[
β
(
2αξsn

− δsn

)
φ1(z) − αsn

φ2(z)
]}

e−iθ , (37)

where

φ1(ẑ) = sechẑ, φ2(ẑ) = ẑsechẑ, (38)

ψ1(ẑ) = (1 − ẑ tanh ẑ)sechẑ, ψ2(ẑ) = tanh ẑsechẑ. (39)

φ1, φ2, ψ1, ψ2 are, in fact, discrete eigenfunctions. The
linearized NLS equation (32), with the initial conditions given
in Eqs. (35) and (36), are reduced to the following form with
the use of Eq. (37):

iF
(1)
1s0

+ 8iαβF1ẑ + 4β2F1ẑẑ + 4
∣∣F (0)

1

∣∣2
F

(1)
1 + 2F

(0)
1 F

(1)
1

= iR(1)F
(0)
1 − 2i

[
βs1ψ1(z) + 2β2ξs1ψ2(z)

+ i
{(

2αβξs1 − βδs1

)
φ1(ẑ) − αs1φ2(ẑ)

}]
e−iθ . (40)

Writing

F
(1)
1 = e−iθG

(1)
1 = [C(1) + iD(1)]e−iθ , (41)

where C(1) and D(1) are the real and imaginary parts of G
(1)
1 ,

respectively, the complex equation (41) can be written as the
following two real simultaneous equations:

C(1)
s0

+ 4β2L̂1D
(1) = [g1(ẑ) + k2f1(ẑ)]F (0)

1 eiθ

− 2βs1ψ1(ẑ) − 4β2ξs1ψ2(ẑ), (42a)

D(1)
s0

− 4β2L̂2C
(1) = −(

4αβξs1 − 2βδs1

)
φ1(ẑ) + 2αs1φ2(ẑ),

(42b)

with

C(1)(ẑ,0) = D(1)(ẑ,0), (43)

where

L̂1 = d2

dẑ2
+ 2sechẑ2 − 1, L̂2 = d2

dẑ2
+ 6sechẑ2 − 1

(44)

are two self-adjoint linear differential operators.

B. Coupled eigenvalue problem

The solutions of Eqs. (42a) and (42b) can be found using
the method of separation of variables, with the initial condition
given in Eq. (43). The key to the problem is to solve the
following types of eigenvalue problems of the operators
L̂1, L̂2:

L̂1� = λζ, (45a)

L̂2ζ = λ�. (45b)

We assume the eigen functions of Eqs. (45a) and (45b) in the
form

�(ẑ,k) = p(ẑ,k)eikẑ, (46a)

ζ (ẑ,k) = q(ẑ,k)eikẑ, (46b)

and expand p(ẑ,k) and q(ẑ,k) as

p(ẑ,k) = c0 + c1 tanh ẑ + c2

cosh2 ẑ
+ c3

sinh ẑ

cosh3 ẑ
+ · · · ,

(47a)

q(ẑ,k) = d0 + d1 tanh ẑ + d2

cosh2 ẑ
+ d3

sinh ẑ

cosh3 ẑ
+ · · · ,

(47b)

where c0 and d0 are nonzero coefficients and the coefficients cj ,
dj , j = 1,2, . . ., which are functions of ẑ, are to be determined.
Using the completeness or orthonormality relations,∫ ∞

−∞
�(ẑ,k)ζ̄ (ẑ,k′)dz =

∫ ∞

−∞
ζ (ẑ,k)�̄(ẑ,k′)dz = δ(k − k′),

(48a)∫ ∞

−∞
�(ẑ,k)ζj (ẑ)dz =

∫ ∞

−∞
ζ (ẑ,k)�j (ẑ)dz = 0, j = 1,2,

(48b)∫ ∞

−∞
�j (ẑ)ζl(ẑ)dẑ = δjl, j,l = 1,2, (48c)

∫ ∞

−∞
�(ẑ,k)ζ̄ (ẑ,k′)dk +

2∑
j=1

�j (ẑ)ζj (ẑ′) = δ(ẑ − ẑ′). (48d)

Here � and ζ are the eigenfunctions and the bar over these
eigenfunctions indicates the complex conjugate, we determine
the following eigenfunctions using the procedure used in
Ref. [66]:

�(ẑ,k) = − 1√
2π (k2 + 1)

[(k + i tanh ẑ)2 − sech2ẑ]eikẑ,

(48e)

ζ (ẑ,k) = − 1√
2π (k2 + 1)

[(k + i tanh ẑ)2 + sech2ẑ]eikẑ.

(48f)

C. Effect of perturbation on the soliton

To find the values of C(1) and D(1), we solve Eqs. (42a) and
(42b) with the initial condition C1(ẑ,0) = D1(ẑ,0) = 0, using
the variable separation technique by expanding

C(1)(ẑ,s0) =
∫ ∞

−∞
c(1)(s0,k)ζ (ẑ,k)dk +

∞∑
j=1

c
(1)
j (s0)ζj (ẑ),

(49a)

D(1)(ẑ,s0) =
∫ ∞

−∞
d (1)(s0,k)�(ẑ,k)dk +

∞∑
j=1

d
(1)
j (s0)�j (ẑ).

(49b)

The eigenfunctions have the symmetries mentioned in the
following first two equations. Because of these symmetries,
the coefficients in Eqs. (49a) and (49b) should satisfy the
following relations in order to prove that both C(1) and D(1)
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are real quantities:

�̄(ẑ,t) = �(ẑ, − k), ζ̄ (ẑ,k) = ζ (ẑ,k), (50a)

�̄j (ẑ) = �j (ẑ), ζ̄j (ẑ) = ζj (ẑ), j = 1,2, (50b)

c̄1(s0,k) = c(1)(s0, − k), c̄
(1)
j (s0) = c

(1)
j (s0), (50c)

d̄1(s0,k) = d (1)(s0, − k), d̄
(1)
j (s0) = d

(1)
j (s0). (50d)

Substituting Eqs. (49a) and (49b) into Eqs. (42a) and (42b)
with the initial conditions C(1)(ẑ,0) = D(1)(ẑ,0) = 0, and
employing Eqs. (48e) and (48f) and the eigenvalue relations
L̂1�2(ẑ) = −2ζ2(ẑ), L̂2ζ1(ẑ) = 2�1(ẑ), we get∫ ∞

−∞
[ċ(1)(s0,k) + 4β2λb(1)(s0,k)]ζ (ẑ,k)dk + ċ

(1)
1 (s0)ζ1(ẑ)

+ [
ċ

(1)
2 (s0) − 8β2d

(1)
2 (s0)

]
ζ2(ẑ) = −2βs1ζ1(ẑ) − 4β2ξs1ζ2(ẑ),

(51a)∫ ∞

−∞
[ḋ (1)(s0,k) + 4β2λc(1)(s0,k)]�(ẑ,k)dk

+ [
ḋ

(1)
1 (s0) − 8β2c

(1)
1 (s0)

]
�1(ẑ) + ḋ

(1)
2 (s0)�2(ẑ)

= Im[R(1)eiθ ] − (
4αβξs1 − 2βδs1

)
�1(ẑ) + 2αs1�2(ẑ),

(51b)

with c(1)(0,k) = c
(1)
j (0) = d (1)(0,k) = d

(1)
j (0), j = 1,2. The

overdot in Eqs. (51a) and (51b) represents the derivative with
respect to s0. From Eqs. (51a) and (51b) with corresponding
initial conditions, we obtain the following ordinary differential
equations with suitable zero initial conditions:

ċ(1)(s0,k) + 4β2λd (1)(s0,k) = a(1)(k), c(1)(0,k) = 0, (52a)
ḋ (1)(s0,k) − 4β2λc(1)(s0,k) = b(1)(k), d (1)(0,k) = 0, (52b)

ċ1
(1)(s0) = a

(1)
1 − 2βs1 , c

(1)
1 (0) = 0, (53a)

ḋ2
(1)

(s0) = b
(1)
2 + 2αs1 , d

(1)
2 (0) = 0, (53b)

ċ2
(1)(s0) − 8β2d

(1)
2 (s0) = a

(1)
2 − 4β2ξs1 , c

(1)
2 (0) = 0, (54a)

ḋ1
(1)

(s0) − 8β2c
(1)
1 (s0) = b

(1)
1 − (

4αβξs1 − 2βδs1

)
,

d
(1)
1 (0) = 0, (54b)

where

a(1)(k) =
∫ ∞

−∞
Re[R(1)eiθ ]�̄(ẑ,k)dẑ, (55a)

a
(1)
j (k) =

∫ ∞

−∞
Re[R(1)eiθ ]�̄j (ẑ)dẑ, j = 1,2, (55b)

b(1)(k) =
∫ ∞

−∞
Im[R(1)eiθ ]ζ̄ (ẑ,k)dẑ, (55c)

b
(1)
j (k) =

∫ ∞

−∞
Im[R(1)eiθ ]ζ̄j (ẑ)dẑ, j = 1,2. (55d)

The right-hand sides of Eqs. (54a) and (54b) are independent
of s0 in the moving coordinate system and Eqs. (53a) and (53b)
lead to secularity and integrating these equations over s0 give
c

(1)
1 (s0) = (a(1)

1 − 2βs1 )s0 and d
(1)
2 (s0) = (b(1)

2 + 2αs1 )s0, which
grow infinitely in time. Therefore, we demand that

a
(1)
1 − 2βs1 = 0 → c

(1)
1 (s0) = 0, (56a)

b
(1)
2 + 2αs1 = 0 → d

(1)
2 (s0) = 0. (56b)

Equations (54a) and (54b) lead to secularity due to Eqs. (56a)
and (56b). Therefore, we get

a
(1)
2 − 4β2ξs1 = 0, (57a)

b
(1)
1 − (

4αβξs1 − 2βδs1

) = 0, (57b)

with c
(1)
2 (s0) = 0 and d

(1)
1 (s0) = 0. By substituting Eqs. (56a)

and (57a) and Eqs. (56b) and (57b) into Eqs. (55b) and (55d),
respectively, we obtain appropriate formulas for the soliton
parameters. The derived formulas for the amplitude β, the
velocity α, the position ξ , and the phase δ are as follows:

βs1 = 1

2
Re

∫ ∞

−∞
R(1)eiθ sechẑdẑ, (58)

ξs1 = 1

4β2
Re

∫ ∞

−∞
R(1)eiθ ẑsechẑdẑ, (59)

αs1 = −1

2
Im

∫ ∞

−∞
R(1)eiθ tanh ẑsechẑdẑ, (60)

δs1 = 2αξs1 − 1

2β
Im

∫ ∞

−∞
R(1)eiθ (1 − ẑ tanh ẑ)sechẑdẑ. (61)

Equations (58)–(61) give the information about how the
amplitude, velocity, position, and phase of the soliton are
affected by the perturbation.

In order to understand the effect of perturbation on the
soliton solution, we derive the first-order correction to it. As
a first step, we get the solutions of Eqs. (52a) and (52b) in a
standard way:

c(1)(s0,k) = −b(1)(k)

4β2λ
[1 − cos(4β2λs0)]

+ a(1)(k)

4β2λ
sin(4β2λs0), (62a)

d (1)(s0,k) = a(1)(k)

4β2λ
[1 − cos(4β2λs0)]

+ b(1)(k)

4β2λ
sin(4β2λs0). (62b)

After substituting the values of c(1)(s0,k) and d (1)(s0,k) from
Eqs. (63a) and (63b) in Eqs. ((49a) and (49b), we get

C(1)(ẑ,s0) =
∫ ∞

−∞
c(1)(s0,k)ζ (ẑ,k)dk, (63a)

D(1)(ẑ,s0) =
∫ ∞

−∞
d (1)(s0,k)�(ẑ,k)dk. (63b)

Substituting Eqs. (63a) and (63b) into Eq. (41) we obtain,

F
(1)
1 (ẑ,s0) = e−iθ

∫ ∞

−∞
dk[c(1)(s0,k)ζ (ẑ,k)

+ id (1)(s0,k)�(ẑ,k)]. (64)

Upon using the values of c(1)(s0,k), d (1)(s0,k), �(ẑ,k), and
ζ (ẑ,k) from Eqs. (62a), (62b), (48e), and (48f), respectively,
and after lengthy calculations, we get the following expression
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for the first-order correction:

F
(1)
1 (ẑ,s0) = −ie−iθ

8πβ2

∫ ∞

−∞
dk

Ī (k)

(k2 + 1)3

[
1 − e−4iβ2(k2+1)s0

]
× (k + i tanh ẑ)2eikẑ ie−iθ

8πβ2

+
∫ ∞

−∞
dk

I (−k)

(k2 + 1)3

[
1 − e4iβ2(k2+1)s0

]
sech2ẑeikẑ,

(65)

where

I (k) =
∫ ∞

−∞
dz[R̄(1)e−iθ (k + i tanh ẑ)2 − R(1)eiθ sech2ẑ]eikẑ.

(66)

Having obtained the general expression and formulas for the
variation of the soliton parameters, namely amplitude, velocity,
position, and phase and the first-order correction to soliton, we
now construct the above quantities explicitly by using specific
forms for R(1) corresponding to different inhomogeneities and
also by including the effect of helicity and flexibility of the
DNA strands separately in the following sections.

V. IMPACT OF INHOMOGENEITY
ON THE SOLITON EXCITATIONS

The perturbed NLS equation (27) contains information
about three different characteristics of the DNA molecule,
namely, inhomogeneity, helicity, and flexibility as perturba-
tion. At first, we attempt to understand the effect of inhomo-
geneity in stacking and hydrogen bonding on the solitonic
excitations exhibiting base pair opening in DNA, leaving
behind helicity and flexibility by making the coefficients of
helicity (h) and the phonon coupling with stacking (α̂) and
hydrogen bonding (β̂) equal to zero, that is, h = α̂ = β̂ = 0,
respectively, in Eq. (27). In this case, the factor R[F1] in the
perturbation part of Eq. (27) is proportional to k2f1(X) +
g1(X). Inhomogeneity in the DNA molecule may occur due to
different reasons. The localized form of inhomogeneity may
correspond to the intercalation of a compound between neigh-
boring bases similar to the insertion of a drug molecule and
the DNA double helix has to unwind, which leads to distortion
of the helix at intercalated sites explaining the function of
the molecule. Periodic inhomogeneity may represent periodic
repetition of base pairs or defects or molecules along the helical
chain. Any form of inhomogeneity in the structure will lead to
changes in the functional property of the molecule.

A. Localized inhomogeneity

1. Variation of soliton parameters

As mentioned, localized inhomogeneity in the DNA
molecule may arise because of defects due to the presence
of drug molecule in specified sites in the DNA. When the
perturbation due to inhomogeneity is switched on, it may
have impact on the parameters of the soliton, namely, the
amplitude, the velocity, the position, and the phase. This is
understood by evaluating the integrals found in the right-hand
sides of Eqs. (58)–(61), after substituting the specific form of
inhomogeneity in R(1). Upon substituting the inhomogeneities

in stacking and hydrogen bonds, namely f (ẑ) and g(ẑ) in
the localized form f1(ẑ) = g1(ẑ) = Asechẑ, where A is the
amplitude of the localized inhomogeneity in the right hand
sides of Eqs. (58)–(61), and evaluating the resultant integrals,
we obtain

βs1 = 0, ξs1 = 0, (67a)

αs1 = 0, δs1 = A(1 + k2)
π

3
. (67b)

The above equations express the time variation of the ampli-
tude, position, velocity, and phase of the soliton, respectively,
due to localized inhomogeneity which can be rewritten after
using the transformation sn = γ ns, where n = 0,1,2, . . . as

βs = βs0 + γβs1 , ξs1 = 0, (68a)

αs = αs0 + γαs1 , δs1 = A(1 + k2)
π

3
. (68b)

As β and α are independent of s0 (βs0 = αs0 = 0), we have

β = β0, ξ = ξ0 − 4α0s, (69a)

α = α0, δ = δ0 + γA(1 + k2)
π

3
− 4

(
α2

0 + β2
0

)
s, (69b)

where β0, α0, ξ0, and δ0 represent the initial amplitude,
velocity, position, and phase of the soliton and γ represents the
small perturbation parameter. From Eqs. (69a) and (69b), it is
observed that the amplitude (β) and velocity (α) of the soliton
remain unchanged even while the soliton excitation crosses
the localized inhomogeneous region along the molecule. Also,
we understand that the phase (δ) of the soliton depends on the
initial amplitude β0 and also the initial velocity α0 of the soliton
and evolves linearly in time. Further, the time variation of the
position of the soliton depends on the initial velocity. The
above results further show that, except for a displacement
and phase shift in the soliton, the localized inhomogeneity
in the DNA molecule does not affect the solitonic excitation
that represents base pair opening in the molecule. In another
context, in a recent paper, Salerno [39,41], while studying the
nonlinear wave dynamics of the T 7A1 promotor region with
a specific sequence of bases using a perturbed sine-Gordon
equation, found that the static solitons acquire energy and they
are accelerated, or decelerated, or reflected depending upon the
finite velocities present in the dynamically active region. A per-
turbation study on the effect of localized inhomogeneity on the
kink-antikink soliton of the sine-Gordon equation by Daniel
et al. [44] showed that while the width of the soliton remains
constant, the velocity of the soliton gets a small correction.

2. Perturbed soliton

Having obtained the variation of the soliton parameters,
we now study the effect of the localized inhomogeneity as a
perturbation on the NLS-soliton. For this, first we calculate
the quantities a(1)(k) and b(1)(k) found in Eqs. (55a) and (55c),
after using the localized form of the inhomogeneity f1(ẑ) =
g1(ẑ) = Asechẑ and evaluating the integrals. The results read

a(1)(k) = 0, (70a)

b(1)(k) = −√
2πAβk(5k2 − 7)

3 sinh
(

πk
2

) . (70b)

031928-11



M. DANIEL AND M. VANITHA PHYSICAL REVIEW E 84, 031928 (2011)

Substituting Eqs. (70a) and (70b) in Eqs. (62a) and (62b),
we obtain the values of c(1) and d (1) as

c(1)(k) = −2Aπk(5k2 − 7)

3
√

2πβ0

{
{1 − cos[4β2(1 + k2)s0]}

(1 + k2) sinh πk
2

}
,

(71a)

d (1)(k) = Aπk(5k2 − 7)

6
√

2πβ0

{
sin[4β2(1 + k2)s0]

(1 + k2) sinh πk
2

}
. (71b)

The first-order perturbation correction F
(1)
1 (ẑ,s0) can be

obtained by substituting the above values of c(1) and d (1) in
Eq. (64). The result reads

F
(1)
1 (ẑ,s0) = Ae−iθ

6πβ0

∫ ∞

−∞
dk

k(5k2 − 7)eikẑ

(1 + k2) sinh πk
2

×
(

{1 − cos[4β2(1 + k2)s0]}[(k + i tanh ẑ)2 + sech2ẑ] − i

2
sin[4β2(k2 + 1)s0][(k + i tanh ẑ)2 − sech2ẑ]

)
. (72)

The integrals in the right-hand side of Eq. (72) can be evaluated with the use of residue theorem [79]. The residue of the above
integrand can be found at the poles k = i and k = 2in, n = 0, 1, 2, 3, . . . . After evaluating the integral using the different integral
values found in the Appendix, we get the first-order perturbation correction as

F
(1)
1 (ẑ,s0) = iAe−iθ

3β0

[
115

9
e−2ẑ{(15 + 4 tanh ẑ + 2 tanh2 ẑ)(1 − cos 60β2s0)} + 96iπβ2s0e

−ẑ(1 + tanh ẑ)

]
. (73)

Having obtained the first-order perturbation correction, the perturbed one soliton solution is written by adding the above result
Eq. (73) to the unperturbed one soliton solution given in Eq. (33):

F1 = 2βsech[2β(Z + 4αT )]e−2i{αZ+2(α2+β2)T }

+ Ae−i[2α(Z+4αT )−4(α2+β2)T ]

3β0

{
115

9

[ (
15 + 2 tanh2

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωZ − kT ) + 4αt

]})

+ 4 tanh 2β

[(
2ω

ω2 − k2

) 1
2

(ωZ − kT )

]
(1 − cos 60β2T )e−4β{( 2ω

ω2−k2 )
1
2 (ωZ−kT )+4αT }

]

+ 96iπβ2T e
−2β{( 2ω

ω2−k2 )
1
2 (ωZ−kT )+4αt}

{
1 + tanh 2β

[(
2ω

ω2 − k2

) 1
2

(ωZ − kT ) + 4αT

]}}
. (74)

Knowing F1, 	 can be computed using Eq. (24) and finally the rotational angle φ = 	
2 is obtained as,

φ(z,t) = 2βsech[2β(z + 4αt)] cos{(2α − k)z + [2(α2 + β2) + ω]t} +
{

A

3β0
cos[2α(z + 4αt) − 4(α2 + β2)t]

+ sin[2α(z + 4αt) − 4(α2 + β2)t]

}[
115

9

(
15 + 4 tanh

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

]}

+ 2 tanh

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

]})
(1 − cos 60β2t)e−4β{( 2ω

ω2−k2 )
1
2 (ωz−kt)+4αt}

+ 48πβ2T

(
1 + tanh

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

]})
e
−2β{( 2ω

ω2−k2 )
1
2 (ωz−kt)+4αt}

]
. (75)

Equation (75) represents the perturbed one soliton repre-
senting the rotation of bases in the DNA molecule, under the
influence of localized inhomogeneity along the strands and in
the hydrogen bonds. In Fig. 3(a), the perturbed envelope one
soliton for the base rotation given in Eq. (75) is plotted by
choosing the parameters as A = 0.0009, α = 0.01, β = 0.9,
ω = 1.414, k = 1.0. In the above, the values of ω and k

are chosen such that the dispersion relation is satisfied. To
understand the effect of localized inhomogeneity on the

NLS-soliton, we have also plotted the unperturbed envelope
one soliton in Fig. 3(b). From Figs. 3(a) and 3(b), one observes
that the localized solitonic excitations representing the base
pair opening moves along the two DNA strands with localized
inhomogeneity. The above inhomogeneity introduces only
small localized fluctuation in the tail of the soliton. However,
the fluctuation that appears in the tail does not affect the robust
nature of the soliton as it propagates along the molecule.
This solitonic excitation, in general, may start to travel from
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FIG. 3. (Color online) (a) The perturbed one soliton due to localized inhomogeneity in stacking and hydrogen bonds in the form of
f1(ẑ) = g1(ẑ) = Asechẑ. The values of the parameters used here are A = 0.0009, α = 0.01, β = 0.9, ω = 1.414, k = 1.0. (b) The unperturbed
one soliton solution of the NLS equation as given in Eq. (33) for the same parameter values.

the promotor region of DNA which is defined as a point
of initiation to the target gene without deceleration with
constant velocity since the energetic region gives energy to
the transport process [39]. The above result on perturbed
soliton corresponds to the rotation of bases in one of the
inhomogeneous strands of the DNA molecule. The perturbed
solitonic excitations in the complementary strand of the
molecule can be obtained from the above result using the
relation φ′ = −φ. Thus, the combined pattern of the perturbed
solitonic excitations that occur in the two strands of the
inhomogeneous DNA molecule forms a bubble. In Fig. 4, a
sketch of the perturbed bubble soliton propagating along the
DNA molecule is given. Here the base pair opening, in the
form of a bubble occurs due to the rotational motion of bases.
During rotation, the bases of the DNA molecule vibrates and
the hydrogen bonds connecting the two strands break, so that
the DNA strands separate and this open complex of DNA
encloses few broken base pairs leading to local denaturation.
The connection between nonlinear energy localization in terms
of bubble opening in DNA and its function is explained by
Scott [80]. The DNA bubble occurs in different situations such
as transcription, replication, nucleotide excision repairs [81],
the process of meiotic recombination [82], etc.

B. Periodic inhomogeneity

When the inhomogeneity appears as a periodic repetition
of bases, defects, or additional molecules in the strands of the
DNA molecule, it can be expressed by the periodic function
f1(ẑ) = g1(ẑ) = Bcosẑ, where B is a constant. On substituting
the above form of f1(ẑ) and g1(ẑ) in Eqs. (58)–(61), we obtain

FIG. 4. A sketch of the perturbed bubble soliton propagating
along the DNA molecular chain.

the following expressions that represent the time variation of
the amplitude, velocity, position, and phase, respectively:

βs1 = 0, αs1 = 0, (76a)

ξs1 = 0, δs1 = B
π2

8
(1 + k2) csc h3

(
π

2

)
sinh(π ). (76b)

Using the expansion s = γ ns, where n = 0,1,2, . . . in
Eqs. (76a) and (76b) and after integration, we obtain

β = β0, α = α0,
(77a)

ξ = ξ0 − 4α0s,

δ = δ0 + γB
π2

8
(1 + k2)csch3

(
π

2

)
sinh π − 4

(
α2

0 + β2
0

)
s,

(77b)

where β0, α0, ξ0, and δ0 represent the initial amplitude, velocity,
position, and phase of the soliton, respectively. Equation (77a)
tells that the amplitude and velocity of the solitonic excitation
in the DNA molecule are not affected by the perturbation
due to the presence of periodic inhomogeneity in stacking
and hydrogen bonds. Also, we notice from Eq. (77b) that
the position of the soliton depends on the initial velocity of
the soliton and varies linearly in time. However, the phase
of the soliton depends on both the initial amplitude and the
initial velocity of the soliton and varies linearly as time passes.
Qualitatively, all the parameters of the soliton undergo similar
variation as in the case of localized inhomogeneity.

To obtain the perturbed part of the soliton, we substitute the
periodic form of the inhomogeneity f1(ẑ) and g1(ẑ) = Bcosz
in Eqs. (55a) and (55c) and obtain the following expressions
for a(1)(k) and b(1)(k) after evaluating the integrals:

a(1)(k) = 0, (78a)

b(1)(k) = −Bβ
√

π

2
√

2
{[2 − k2(π − 4) + ik(π2 − 4)]}. (78b)

While finding b1(k), we had to evaluate three important
integrals based on residue theorem and the values of the
integrals are given in the Appendix. Once a(1)(k) and b(1)(k) are
obtained, c(1)(k) and d (1)(k) can be calculated using Eqs. (62a)
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and (62b):

c(1)(s0,k) = B
√

π

β(2
√

2)(1 + k2)

[
2(1 + 2k2) − k2 − ik

2
(π2 − 4)

]
[1 − cos 4β2(1 + k2)s0], (79a)

d (1)(s0,k) = B
√

π

β(2
√

2)(1 + k2)

[
2(1 + 2k2) − k2 − ik

2
(π2 − 4)

]
sin 4β2(1 + k2)s0. (79b)

The first-order correction F
(1)
1 can be found using the above values of c(1) and d (1), in Eq. (64). After substitution, the residue

of the integrand can be found by first finding the poles. There are two poles at k = ±i of which the pole at k = i is inside the
contour. The first-order correction is obtained as

F
(1)
1 (ẑ,s0) = −16iπBβ(−2 + π )πs0[1 + tanh(ẑ)]e−ẑ−i[2α(ẑ+4αs0)−4(α2+β2)s0]. (80)

Making use of the above perturbation correction, the perturbed one soliton solution is written as

F1 = 2βsech[2β(Z + 4αT )]e−2i{αZ+2(α2+β2)T } − 16iβBπ (−2 + π )πT

(
1 + tanh 2β

{(
2ω

ω2 − k2

) 1
2

(ωZ − kT ) + 4αt

})

× e−i[2α(Z+4αT )−4(α2+β2)T ]e
−2β{( 2ω

ω2−k2 )
1
2 (ωZ−kT )+4αT }

. (81)

Using the above value of F1, the angle of rotation of bases φ can be obtained after finding 	 using Eq. (24). The final result reads

φ = 2βsech[2β(z + 4αt)] cos{(2α − k)z + [2(α2 + β2) + ω]t}

−16βBπ2t

(
sin

{
2α

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

]
− 4(α2 + β2)t

})

×
(

1 + tanh 2β

{(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

})
e
−2β{( 2ω

ω2−k2 )
1
2 (ωz−kt)+4αt}

. (82)

In Fig. 5, we plot the variation of the rotational angle of
bases in the form of perturbed one soliton due to periodic
inhomogeneity as found in Eq. (82). The parameters chosen
here are B = 0.001, β = 0.9, and α = 0.01, as in the case of
localized inhomogeneity. From the figure we observe that the
periodic inhomogeneity in stacking and hydrogen bonds which
are in the form of B cos z introduces periodic fluctuation in the
tail of the soliton. The fluctuation that appears in the tail of the
soliton grows slowly in time without affecting the robust nature
of the soliton. As before, the perturbed solitonic excitation in
the complementary strand can be obtained using the relation
φ′ = −φ, and the pair forms the bubble with a small fluctuation

FIG. 5. (Color online) The perturbed one soliton due to periodic
inhomogeneity in stacking and hydrogen bonds f1(ẑ) =g1(ẑ) =
B cos ẑ for the parameter value B = 0.001. All the other parameter
values are the same as used in the case of localized inhomogeneity.

in the tail. The bubble in the present case will appear similar to
the one found in the case of localized inhomogeneity as shown
in Fig. 4. The only difference is that in the present case, the
fluctuation that appears in the tail is periodic in nature, unlike
the case of localized inhomogeneity, where it was localized.

VI. EFFECT OF HELICITY ON DNA DYNAMICS

A real DNA molecule has helical shape by its twisting
strands and the twisting leads to the study of torsional
dynamics. In this section, we attempt to study the effect of
helicity on the propagating soliton in a homogeneous rigid
DNA helical molecule. The corresponding perturbation part
R[F1] = −ihk2F1 can be obtained by substituting f1 = g1 =
α̂ = β̂ = 0 in Eq. (27b). Before finding the perturbed soliton
due to the above effect, we evaluate the effect due to helicity
on the amplitude, velocity, position, and phase of the soliton
by substituting the above perturbed part in Eqs. (58)–(61). On
evaluating the resultant integrals, we get

βs1 = 0, αs1 = 0, (83a)
ξs1 = 0, δs1 = hk2. (83b)

On integrating Eqs. (83a) and (83b) in terms of the variable
“s” up to first-order approximation ( ∂

∂s
= ∂

∂s0
+ γ ∂

∂s1
), we

obtain

β = β0, α = α0, (84a)

ξ = ξ0 − 4α0s, δ = δs0 − 4
(
α2

0 + β2
0

)
s. (84b)

It is evident that the amplitude (β) and velocity (α) of the
soliton remain unaltered even when there is helical character
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in the DNA molecule. However, the position and phase of the
soliton vary linearly as time progresses. Also, the phase of
the soliton depends on the initial amplitude and velocity of
the soliton, and the position depends on the initial velocity
but is independent of the initial amplitude. It may be noted
that the above results are qualitatively similar to that of the
inhomogeneous case.

In order to derive the first-order perturbation correction on
the soliton due to helicity, we substitute the term contributing
to perturbation due to helicity, that is, the term proportional to
h in the perturbation in Eqs. (55a) and (55c). After evaluating
the integrals, we obtain

a(1)(k) = 0, (85a)

b(1)(k) = 6βh
√

πk4sech
(

πk
2

)
√

2(1 + k2)
. (85b)

The integrals involved in Eqs. (85a) and (85b) are evaluated
using residue theorem [82] and using the values of the integrals
found in the Appendix. Substituting Eqs. (85) into Eqs. (62a)
and (62b), we obtain

c(1)(s0,k) = 3h

2β
√

2π

πk4[1 − cos 4β2(1 + k2)s0]

(1 + k2)2 cosh
(

πk
2

) , (86a)

d (1)(s0,k) = 3h

2β
√

2π

πk4 sin 4β2(1 + k2)s0

(1 + k2)2 cosh
(

πk
2

) . (86b)

Substituting Eqs. (86a) and (86b) into Eq. (64), we obtain the
first-order perturbation correction as

F
(1)
1 (ẑ,s0) = − 3h

2β
√

2π
e−i[2α(ẑ+4αs0)−4(α2+β2)s]

[ ∫ ∞

−∞
dk

{
k4eikẑ[1 − cos 4β2(1 + k2)s0][(k + i tanh ẑ)2 + (sech2ẑ)]

(1 + k2)3 cosh
(

πk
2

)
+ i

k4eikẑ sin[4β2(1 + k2)s0][(k + i tanh ẑ)2 − (sech2ẑ)]

(1 + k2)3 cosh
(

πk
2

)
}]

. (87)

The integrals in the right-hand side of the above equation are evaluated with the aid of residue theorem. The integrands have
poles of order 3 at k = ±i. In addition, we have a simple pole at k = (2n + 1)i for n = 0,1,2,3, . . .. The only pole lying within
the contour is the simple pole at k = +i for n = 0. After evaluating the integral using the different integral values found in the
Appendix, we get the first-order perturbation correction as follows:

F
(1)
1 (ẑ,s0) = −3ihπ

64β

{{tanh ẑ(1 + tanh ẑ)}s2
0e

−{ẑ+i[2α(ẑ+4αs0)−4(α2+β2)s0]}}. (88)

The perturbed one soliton solution is written by adding Eqs. (33) and (88):

F1 = 2βsech[2β(Z + 4αT )]e−2i{αX+2(α2+β2)T } − 3ihπ

64β
e
−2β{( 2ω

ω2−k2 )
1
2 (ωZ−kT )+4αT }

×
(

tanh

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωZ − kT ) + 4αT

]}(
1 + tanh

{
2β

[(
2ω

ω2−k2

) 1
2

(ωZ − kT ) + 4αT

]}))
T 2. (89)

Using the value of F1, φ is computed as

φ = 2βsech[2β(z + 4αt)] cos{(2α − k)z + [2(α2 + β2) + ω]t}

− 3hπ

64β
tanh

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

]}(
1 + tanh

{
2β

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt

]})

× cos

{
2α

[(
2ω

ω2 − k2

) 1
2

(ωz − kt) + 4αt − 4(α2 + β2)t − (kz − ωt)

]}
e
−2β{( 2ω

ω2−k2 )
1
2 (ωz−kt)+4αt}

. (90)

The perturbed one soliton solution for the rotational angle
φ of the bases is plotted in Fig. 6 by choosing the helicity
parameter as h = −15.0. The above value of h has also
been chosen for molecular dynamic simulation [83]. All the
other parameter values are chosen as the same values used
in the inhomogeneous cases. From the perturbed one soliton
solution given in Eq. (90) and from Fig. 6, we can observe
that, initially, the helical character of the molecule introduces
fluctuation only in the tail of the soliton without affecting
the robust nature of the soliton. We also observe the same
effect for different values of helicity. Thus, the helical nature
of the DNA chain does not affect qualitatively the propaga-
tion of bubblelike base pair opening generated by soliton,

even while the DNA molecule is treated as coupled linear
chains.

VII. EFFECT OF FLEXIBILITY IN DNA STRANDS
(PHONON) ON DNA DYNAMICS

The base pair opening via nonlinear molecular excitations
in an inhomogeneous DNA chain and a helicoidal DNA is
so far understood by considering the DNA strands as rigid
lattices. However, in nature, the force between purine bases
in consecutive base pairs is repulsive and this force is resisted
by stress in the helical backbones of DNA. Also, the presence
of elastic strain forces in both the strands of DNA [84,85],
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FIG. 6. (Color online) The perturbed one soliton representing
base pair opening with helicity h = −15.0. The other parameter
values are the same as those used in the case of inhomogeneity.

indicates the nonrigidity of the strands leading to the formation
of phonons, which plays an important role in energy transfer
in biological systems. It should be pointed out that the DNA
molecule has elastic properties, which is unusual due to its
helicoidal symmetry and the sequence of base pairs. Xiao and
his co-workers [86] studied the effect of longitudinal vibrations
and its coupling with hydrogen bonding and stacking by
considering the dynamic plane-base rotator model of Takeno
and Homma [26,27]. In the continuum limit, the dynamics
is governed by a perturbed sine-Gordon equation and it was
solved using the method of successive approximation. The
results showed that the effect of longitudinal vibration of
the lattice on the soliton is small. Very recently, Daniel and
his co-worker [46], while studying the effect of longitudinal
vibration of bases in the strands on the DNA dynamics, found
that the dynamics is governed by a perturbed sine-Gordon
equation coupled with a linear wave equation representing
the lattice deformation which modulates the velocity of the
kink-antikink soliton that represents base pair opening. In
this section, we study the effect of flexibility of homogeneous
strands on DNA dynamics by solving the associated perturbed
NLS equation (27) by setting f1 = g1 = h = 0 along with the
wave equation found in Eq. (21b) for the lattice displacement.
In particular, we investigate the effect of periodic lattice
deformation on the solitonlike base pair opening in the DNA
double helix. On assuming f1 = g1 = h = 0, the perturbed
NLS equation (27) coupled with the linear wave equation (21b)
in the transformed variable become

iF1s + F1XX + 2|F1|2F1 = iλ1[k(α̂k2 + 6β̂)]yXF1, (91a)

yss − v2yXX = 0. (91b)

Here α̂ and β̂ measure the coupling strengths of the phonon
with the stacking and the hydrogen bonds, respectively.
Equation (91b) is the well known one-dimensional linear
wave equation which admits wave solution in the form
y = f (X − vs) + g(X − vs). The perturbed NLS equation
(91a) is solved after substituting the above wave solution in
it. The formation of phonons due to elastic deformation of the
DNA strands coupled with DNA molecular excitations will
perturb the solitonlike base pair opening in DNA. As before,
the perturbation is expected to modulate the parameters of the
soliton, namely, amplitude, velocity, position, and phase. In
order to understand this, we solve Eqs. (58)–(61) using the

same procedure which we used in the case of inhomogeneity
and helicity and evaluate the soliton parameters which then
will be used to derive the first-order perturbation correction
to the one soliton. From Eqs. (58)–(61), after using R(1) =
k(α̂k2 + 6β̂) cos(ẑ − vs)F1 and evaluating the integrals, we
obtain

βs1 = −βk(α̂k2 + 6β̂)πcsch

(
π

2

)
, αs1 = 0, (92a)

ξs1 = 0, δs1 = 0. (92b)

Rewriting the above, in terms of the original variable “s” up
to the first-order approximation (βs = βs0 + εβs1 ) and after
integration, we get

β = β0e
−εk(k2α̂+6β̂)πcsch( π

2 )s , α = α0, (93a)

ξ = ξ0 − 4α0s, δ = δs0 − 4
(
α2

0 + β2
0

)
s. (93b)

The first of Eq. (93a) says that coupling of phonon to
stacking and hydrogen bonds makes the amplitude of the
soliton to vary exponentially as time progresses. The quantity
ε[k(k2α̂ + 6β̂)πcsch(π

2 )] that appears in the exponential of β

is a small positive quantity, and hence the amplitude decays
exponentially as time progresses. However, the velocity of the
soliton remains unaltered. On the other hand, the position and
phase of the soliton vary linearly as time progresses due to the
coupling of lattice distortion in terms of phonon with stacking
and hydrogen bonds. Also, the position of the soliton depends
on the initial velocity of the soliton and the phase depends
on the initial amplitude and velocity of the soliton as in the
previous cases.

Having evaluated the soliton parameters, the first-order
perturbation correction to the one soliton solution will be
derived now. For this, first, we evaluate a(1)(k) and b(1)(k)
from Eqs. (55a) and (55c) and get

a(1)(k) = β̂k
√

π(α̂k2 + 6β̂)

2
√

2(k2 + 1)
[k2(π2 − 1) − 2], (94a)

b(1)(k) = 0. (94b)

Upon substituting Eqs. (94a) and (94b) in Eqs. (62a) and (62b),
we obtain,

c(1)(s0,k)

= k(α̂k2 + 6β̂)[πk2(π2 − 1) − 2π ] sin 4β2(1 + k2)s0

(8
√

2π )β(1 + k2)2
,

(95a)
d (1)(s0,k)

= −k(α̂k2+6β̂)[πk2(π2−1)−2π ][1−cos 4β2(1+k2)s0]

(8
√

2π )β(1+k2)2
.

(95b)

Substitution of Eqs. (95a) and (95b) in Eq. (64) yields
the following integral for the first-order perturbation
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correction:

F
(1)
1 (ẑ,s0) = − e−iθ

16πβ

∫ ∞

−∞
dk

[
[πk3(π2 − 1) − 2π ](α̂k2 + 6β̂)eikẑ

(1 + k2)3
{sin[4β̂2(1 + k2)s0]

× [(k + i tanh ẑ)2 + sech2ẑ] + i{[1 − cos 4β2(1 + k2)s0][(k + i tanh ẑ)2 − sech2ẑ]}}
]
. (96)

The integrals involved in the above expression are evaluated using the residue theorem by first finding the poles. Here the
integrand has a pole of order 3 at k = i. Even though the number of terms involved in the integration is very large, yet, it is
evaluated using the technique of integration by parts with much attention. Finally, we get the first-order perturbation correction
as

F
(1)
1 (ẑ,s0) = −2iπ (6β̂ − α̂)

1149
(1 + tanh ẑ)[128β2 tanh ẑ{5(π2 − 1) − 4α̂(π2 − 512π − 249)

− 4iα(7π2 − 256π − 503)}e−ẑ + 5πβ2(2 + i(1 − π2))]s0e
−i[2β(ẑ+4αs0)−4(α2+β2)s0]. (97)

Using the above first-order perturbation correction, the corresponding perturbed one soliton solution is obtained by adding
Eq. (97) to the unperturbed one soliton solution given in Eq. (33):

F1 = 2βsech[2β(Z + 4αT )]e−i[2αZ+4(α2−β2)T ] − 2iπ (6β̂ − α̂)

1149
(1 + tanh ẑ)[128β2 tanh ẑ{5(π2 − 1)

− 4α̂(π2 − 512π − 249) − 4iα(7π2 − 256π − 503)}e−ẑ + 5πβ2[2 + i(1 − π2)]]s0e
−i[2β(ẑ+4αs0)−4(α2+β2)s0], (98)

with ẑ = 2β[( 2ω3

ω2−k2 )
1
2 (Z − k

ω
T )]. Using the above perturbed one soliton solution for F1, 	 is calculated using Eq. (24) and

consequently, the perturbed one soliton for the angular rotation of bases is obtained as

φ = 4βsech[2β(z + 4αt)] cos[2(αz + 2(α2 − β2)t) − (kz − ωt)]

+ 8π (6β̂ − α̂)

1149
sin

{
(kz − ωt) + 2β

[(
2ω3

ω2 − k2

)1/2(
z − k

ω

)
t + 4αt

]
− 4(α2 + β2)t

}

×
{

− 2 tanh

[(
2ω3

ω2 − k2

)1/2(
z − k

ω

)
t

]{
1 + tanh

[(
2ω3

ω2 − k2

)1/2(
z − k

ω

)
t

]}

× e
−2β[( 2ω3

ω2−k2 )1/2(z− k
ω

)t−4αt][πβ2t{−π2[α̂ + 340] + (α̂ − 325)}]
}
. (99)

The perturbed one soliton for the rotational angle φ of the
bases is plotted in Fig. 7 by choosing the coupling strengths
of the phonon with the stacking and the hydrogen bonds, re-
spectively, as α̂ = 0.01 and β̂ = 0.1. All the other parameters

FIG. 7. (Color online) The perturbed one soliton due to flexibility
when α̂ = 0.01 and β̂ = 0.1. All the other parameters are chosen as
in the inhomogeneous case.

are chosen by the same values as in the inhomogenous case.
From the perturbed one soliton solution given in Eq. (99)
and from Fig. 7, we observe that the elastic motion due to
flexibility of the strands introduces small quakelike motion in
the localized region of the soliton, which damps out slowly as
time progresses. This kind of quakelike motion may produce
a hole which will be the entrance for intercalators into the
DNA [87]. The relation φ′ = −φ introduces similar pattern of
soliton in the complementary strand, thus forming a bubble
containing fewer base pairs. Thus, the coupling of phonon
to the stacking and hydrogen bonds modulate the bubble.
However, the modulation dies out slowly and the robust nature
of the bubble is maintained asymptotically.

VIII. CONCLUSIONS

In this paper, base pair opening in an inhomogeneous (in
stacking and hydrogen bonds) DNA double helical molec-
ular chain with flexible strands is investigated through an
understanding of the underlying internal dynamics of the
molecule. To study the internal dynamics of the system, a
generalized model with the Hamiltonian containing energies
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TABLE II. Variation of soliton parameters and nature of perturbed soliton due to inhomogeneity, helicity, and flexibility.

Soliton parameters

Nature of perturbation Amplitude Velocity Position Phase Perturbed soliton solution

Localized Unaltered Unaltered Varies linearly Varies linearly Localized
inhomogeneity with time with time aperiodic fluctuation appears

in the tail of the soliton
Periodic Unaltered Unaltered Varies linearly Varies linearly Periodic fluctuation

inhomogeneity with time with time in the tail of the soliton
Helicity Unaltered Unaltered Varies linearly Varies linearly Fluctuation

with time with time appears in the tail of the soliton
Flexibility Diminishes Unaltered Varies linearly Varies linearly Quakelike motion develops

with time with time in the localized region
and diminishes

corresponding to the stacking, hydrogen bonds, phonons and
their coupling, along with inhomogeneity in stacking and
hydrogen bonds and helicity is proposed. In fact, the model is
based on an analogy with the Heisenberg model for two antifer-
romagnetically coupled twisted site-dependent ferromagnetic
spin chains or, equivalently, two antiferromagnetically coupled
inhomogeneous helical spin systems under the plane base
rotator model. As the physical properties of both the strands
of DNA are equal, all the energy coefficients and the moments
of inertia of the complementary strands have been assumed to
be equal. The Hamilton’s equations of motion are then con-
structed for the angular rotation of bases in a plane normal to
the helical axis, for both the strands, and for the lattice (strand)
distortion. The hydrogen bonds connecting the two strands of
the DNA molecule are broken easily, when the complementary
bases open through rotational motion. Since the two DNA
strands are asymmetric in nature, the open state configuration
is easily formed when the two complementary bases rotate
in opposite directions (φ = −φ′). When it is assumed that
the bases open for a small angle, in the continuum limit,
the dynamical equations reduce to a generalized sine-Gordon
equation coupled with a linear wave equation for lattice
distortion. Under strong approximation of homogeneous, rigid,
and nonhelical molecular chains, the dynamical equation will
reduce to the completely integrable sine-Gordon equation,
which admits kink-antikink-type of solitons representing base
pair opening in the DNA molecule. However, since the above
topological soliton will accommodate a large number of base
pairs during opening, it is attempted here to reduce the
dynamical equation to a perturbed NLS equation which will
possess perturbed pulselike soliton solution so that fewer base
pairs take part in the opening. This has been achieved by
using a derivative expansion for the independent variables
combined with a modulated wave solution for the dependent
variable of the dynamical equation. In the resultant perturbed
NLS equation, the perturbation corresponds to the effects due
to inhomogeneity in stacking and hydrogen bonds, helicity,
and flexibility of the strands. The problem then boils down
to solving the perturbed NLS equation using the multiple
scale soliton perturbation theory to understand the effect
of (i) the inhomogeneity in stacking and hydrogen bonds,
(ii) the helical nature of the strands, and (iii) the flexibility
of the strands on the NLS-soliton that represents base pair

opening. The analysis brings out the variation of the soliton
parameters such as amplitude, velocity, position, and phase. In
the perturbation analysis, the nonlinear evolution equation is
written as equivalent to a set of coupled eigenvalue problems
and the perturbed soliton solution is constructed by using
the eigenfunctions as the basis solutions. The perturbation
analysis is carried out for all the above three cases—namely,
inhomogeneity, helicity, and flexibility—separately by finding
the variation of soliton parameters and the perturbed soliton
solution. The inhomogeneity in the DNA molecule may
arise due to different reasons. A localized inhomogeneity in
DNA may arise due to defects caused by the presence of
additional molecules such as drugs, carcinogens, mutants, and
dyes in specific sites of the DNA sequence. Therefore, the
localized inhomogeneity is assumed in the form of “Asechz”
which is also amenable to analytical analysis. A periodic
inhomogeneity may arise due to periodic repetition of different
sites or simple defects along the strands. The helicoidal nature
of the DNA molecule was incorporated into the model by
including a twisting motion of the strands in analogy with twist
deformation in cholesteric liquid crytals. Since the strands of
DNA are flexible in nature, they deform elastically and the
resultant phonons due to longitudinal stretching couple to the
stacking and hydrogen bonds.

The variation of the amplitude, velocity, position, and phase
of the soliton and bubble due to inhomogeneity in stacking and
hydrogen bonds, helicity, and flexibility as perturbation have
been found. A survey of the key results of the perturbation
analysis is given in Table II. In all the cases with rigid strands,
the amplitude and velocity of the soliton and bubble are
unaffected due to perturbational effects. However, flexibility
of the strands and the elastic motion diminish the perturbed
amplitude. However, the position and phase of the soliton
vary linearly with time. Also, while the position of the
soliton depends on the initial velocity of the soliton, the
phase depends on the intial velocity as well as the initial
amplitude of the soliton. The results show that, when the DNA
molecule is considered as two coupled rigid homogeneous
linear continuum chains, in the limit of small angular rotation
of bases, the internal dynamics is governed by the completely
integrable NLS equation which admits N -soliton solutions.
The pair of solitons formed in the complementary strands form
a bubble and propagates along the molecule.
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When there is a localized inhomogeneity in the base
stacking and hydrogen bonds, it introduces small localized
fluctuations in the tail of the solitons and hence in the bubble
[see Fig. 3(a)]. However, the robust nature of the propa-
gating soliton and bubble are not affected. The breaking of
hydrogen bonds and opening of bases through rotation occurs
nonuniformly, because of the fluctuation due to inhomogeneity
in stacking and hydrogen bonds. On the other hand, if the
inhomogeneity in stacking and hydrogen bonds is in the
periodic form, the fluctuation in the tail of the soliton and
hence the bubble appear in a periodic pattern (see Fig. 5).
Bubbles start the transcription process by opening up a local
region of about 20 base pairs. While moving along the helical
strand, if a damaged site is recognized, these bubbles form
around it and the damaged site will be removed (see Ref. [80]).
In the same way, the helical nature of the DNA molecule
introduces fluctuation in the tail of the soliton and bubble (see
Fig. 6). When the strands of the DNA molecule are flexible,
phonon excitations are generated, which in turn introduces
fluctuation in the localized region of the soliton. The vibrations
along the strands which is responsible for the formation of
phonons increase the stretch of the hydrogen bonds and lead
to unzipping of the DNA strands. The base pair opening in the
form of solitons and bubble will lead to transcription process
in the DNA molecule in addition to local denaturation of the
molecule. Also, these phonon modes possess a number of
applications to biological problems such as drug intercalation
when there is inhomogeneity in the DNA molecule, dynamic
mechanism of allosteric transition in antibody molecules, DNA
radiosensitivity, DNA breathing, and protein-DNA interaction.
As localized and periodic inhomogeneities in stacking and
hydrogen bonds, the helical nature and flexibility of strands
do not affect the robust nature of the soliton and bubble, the
biological process in general will not be affected due to these
effects. This confirms that the generalized model proposed
here to understand the base pair opening in DNA molecule
through the internal dynamics is a right model for the study.
Having understood the base pair opening in an infinite DNA
molecular chain, the natural question arises as to how the
internal dynamics of a short DNA molecule with suitable
boundaries which may correspond to a specific biological
function contributes to base pair opening. Investigations based
on numerical simulation along this line are in progress and the
results will be presented elsewhere.

ACKNOWLEDGMENTS

The work of M.D. forms part of a major research project
sponsored by DST. M.V acknowledges Bharathidasan Univer-
sity and University Grants Commission for financial support.

APPENDIX

In this appendix, we evaluate several integrals which
appear in the perturbation analysis, while evaluating the
soliton parameters and the perturbed soliton using the residue
theorem. Before evaluation of the actual integrals, let us

calculate the following integral, which will be the basis for
evaluation of all the other integrals:

I1(k) =
∫ ∞

−∞
e−ikẑ tanh ẑdẑ. (A1)

Consider a closed path “c” in the plane � = z̃ + iϒ noted
as follows: ∮

c

f1(�)d� =
∮

c

e−ik� tanh �d�. (A2)

Here tanh � is a periodic function with an imaginary period iπ

and the closed integral c has the boundary −∞ < z̃ < ∞ and
0 � ϒ � π and the integrand is analytic except for a simple
pole at � = iπ

2 . The integrand (A1) is divergent, but in physical
problems, the integral limits are, of course, convergent. To keep
the integral convergent, we assume e−ikẑ replaced by e−(ik+h̃)ẑ

for (ẑ < 0) and by e(−ik−h̃)ẑ for (ẑ > 0), where “h̃” is a very
small positive number. Since h̃ is so small that the only effect
is the integral along the two straight line segments being zero,
we obtain ∮

c

f1(�)d� = [1 − e−kπ ]I1(k). (A3)

From the definition of residue theorem, we have∮
c

f1(�)d� = 2πiResf1(�0). (A4)

Using the standard procedure, we obtain the value of the
residue corresponding to the pole � = iπ

2 as

Resf1(�) = lim(� − �0) = e
kπ
2 . (A5)

Substituting the residue found in Eq. (A5) into (A4) and then
comparing with (A3), we get

I1(k) =
∮

c

e−ik� tanh �d� = −iπ

sinh( kπ
2 )

. (A6)

Starting from Eq. (A6), using integration by parts, we obtain
the following formulas successively:

I2(k) =
∫ ∞

−∞
e−ikẑsech2ẑdẑ = kπ

sinh
(

kπ
2

) , (A7)

I3(k) =
∫ ∞

−∞
e−ikẑ tanh ẑsech2ẑdẑ = −iπk2

2 sinh
(

kπ
2

) , (A8)

I4(k) =
∫ ∞

−∞
e−ikẑ tanh2 ẑsech2ẑdẑ = −πk(2 − k2)

6 sinh
(

kπ
2

) , (A9)

I5(k) =
∫ ∞

−∞
e−ikẑsech4ẑdẑ = πk(k2 + 4)

6 sinh
(

kπ
2

) , (A10)

I6(k) =
∫ ∞

−∞
e−ikẑ cos ẑsechẑdẑ = 2π cosh

(
kπ
2

)
cosh

(
π
2

)
cosh(kπ ) + cosh π

,

(A11)

I7(k) =
∫ ∞

−∞
e−ikẑ cos ẑsech3ẑdẑ

= π
[
(2 + k) cosh

(
kπ
2

)
cosh

(
π
2

)−2k sinh
(
kπ
2

)
sinh

(
π
2

)]
cosh(kπ ) + cosh π

,

(A12)

031928-19



M. DANIEL AND M. VANITHA PHYSICAL REVIEW E 84, 031928 (2011)

I8(k) =
∫ ∞

−∞
e−ikẑ cos ẑ tanh ẑsechẑdẑ

= 2π [−ik cosh
(

kπ
2

)
cosh

(
π
2

) + i sinh
(

kπ
2

)
sinh

(
π
2

)
]

cosh(kπ ) + cosh π
,

(A13)

I9(k) =
∫ ∞

−∞
e−ikẑsechẑdẑ = −π

cosh
(

πk
2

) , (A14)

I10(k) =
∫ ∞

−∞
e−ikẑ tanh ẑsechẑdẑ = −ikπ

cosh
(

πk
2

) , (A15)

I11(k) =
∫ ∞

−∞
e−ikẑ tanh2 ẑsechẑdẑ = π

2 cosh
(

πk
2

) . (A16)
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