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The functional network of the brain is known to demonstrate modular structure over different hierarchical
scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional
networks that are derived from the extent of phase synchronization among high-resolution EEG time series during
a visual task. In particular, we compare the modular structure of the functional network from EEG channels with
that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain
functional networks correspond well to those from the anatomical structures over different levels of hierarchy.
Most importantly, we find that the consistency between the modular structures of the functional network and
the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices
during the visual task, which implies that the strong modularity in these areas forms the functional basis for
the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time
series in the same anatomical group is much stronger than that of EEG time series from different anatomical
groups during the task and that the hierarchical organization of functional brain network may be a consequence

of functional segmentation of the brain cortex.

DOLI: 10.1103/PhysRevE.84.031923

I. INTRODUCTION

The human brain, which consists of ten thousand million
neurons and even more synapses, is perhaps the most complex
system ever known. Benefiting from the development of
brain anatomy since the 19th century, we now know that
the neuronal elements of the brain constitute an extremely
complex structural network, which subserves a wide variety
of cognitive functions and neural activities [1-3]. Recently, it
has gained great interests among scientists to investigate the
functional connectivity of brain based on complex network
theory in which the brain can naturally be abstracted as a func-
tional network. A brain functional network can be extracted
based on functional MRI (fMRI), electroencephalography
(EEG), magnetoencephalography (MEG), or multielectrode
array (MEA) data, which record electric, magnetic, or other
signals representing cortical activities of the brain [4]. Vertices
of brain functional network derived from fMRI data describe
anatomically localized regions of interest (ROIs) or voxels of
fMRI image, whereas the vertices of those derived from EEG,
MEG, or MEA data denote surface electrodes or sensors. The
functional connectivity (or edge) between pairs of vertices
is usually estimated using correlation between time series
recordings of the vertices.

It has been widely observed that the brain functional
networks demonstrate properties such as small-worldness [5]
and power-law degree distribution [6], which distinguish them-
selves from regular and random networks [7—12]. However, the
small-worldness and power-law degree distribution represent
only the global properties of brain functional networks. To
understand brain functional networks imposed by structural

*csm1981 @mail.ustc.edu.cn
tzqfu@ustc.edu.cn
tjzhang080 @ gmail.com

1539-3755/2011/84(3)/031923(7)

031923-1

PACS number(s): 87.19.1j, 87.19.1e, 87.19.1t, 89.75.Fb

and functional constraints more comprehensively, the hierar-
chical modular organization, which can reflect both local and
global organization of brain functional network, should be
fully investigated.

Hierarchical organization, also called community structure
and modular architecture, describes the fact that some nodes in
a network are densely connected as groups, and these groups
are only sparsely connected among themselves, which is a
common phenomenon in diverse networks such as World
Wide Web, scientist collaboration networks, genetic networks,
protein-protein interaction networks, and financial networks
[13-16]. A large number of algorithms have been developed
to detect the hierarchical organizations of real networks
[13,17-23] (also see the review in Ref. [24]). Interestingly,
several recent works have also found the hierarchical or-
ganization of the brain functional networks derived from
resting-state fMRI data [25,26] and epileptic MEG signals
[27], respectively.

Although there are many works devoted to the hierarchical
organization of the brain functional networks, most of them are
confined to the “ resting state.” The study of this organization
in the “task state” and the investigation of its functional
implications are rare. In this paper, we analyzed the brain
functional networks of the subjects during the visual task
which involves visual, sensory, and motor functions of the
brain cortex. In our work, the brain functional networks are
derived from high-resolution synchronous EEG time series,
which consist of 238 channels and are recorded during the
visual task. In the functional network, the vertices corre-
spond to surface electrodes (i.e., channels), while edges are
determined by the extent of phase synchronization of EEG
time series from pairs of channels, and we first analyze the
community structure of the brain functional networks by the
fast Girvan-Newman (GN) algorithm (i.e., functional cluster).
On the other hand, these electrodes can also be assigned into
the same group by their spatial positions on scalp and a priori
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knowledge of anatomical parcellation of the brain cortex (i.e.,
anatomical clusters). For instance, electrodes near the visual
cortex area mainly represent visual function and, therefore,
these electrodes can also be clustered together in this manner.
The anatomical parcellation of brain cortex is performed
according to the Brodmann segmentation scheme [28].

Comparing the community structure of the brain functional
network and that of the anatomical segmentation, we find
that there is a significant coincidence between the modular
architecture of the network derived from EEG data and that
from the anatomical organization of the cortex over different
levels of hierarchy. Furthermore, this coincidence turns out to
be more pronounced at the vision, sensory, vision-temporal,
and motor cortices of the brain during the visual task. This
result shows that vertices are more tightly coupled in the same
functional regions than those belonging to different ones, and
this is more evident in the vision, sensory, vision-temporal,
and motor cortices during the visual task. Our results suggest
that the patterns of neural activities of brain cortex in the task
are, to a large extent, determined by the anatomical, modular
architecture of the brain, and this anatomical structure forms
the functional basis of the brain during the task.

II. MATERIALS AND METHODS

A. Data acquisition

The high-resolution EEG time series were synchronously
recorded during the visual task by using a large number of
scalp electrodes (238 channels), which had a high spatial and
temporal resolution that can provide detailed information of
electrical activities of the cortical surface. This data set was
recorded by A. Delorme et al. at the Swartz Center at the
University of California at San Diego, with a sampling rate
of 256 Hz (using a Biosemi Active Two system [29]). To
further minimize the artificial responses from line noise, it was
digitally low pass filtered below 40 Hz before data analysis.
The experiments were performed as follows: In each session,
120 stimuli (filled white disks) were briefly displayed for
100 ms inside one of the five empty squares in a pseudorandom
order with interstimuli intervals being 250-900 ms, and one
of the five outlines was colored green to mark the square as
a visual target, and then the candidate made a motor response
by pressing a mouse button with their right hand as quickly as
possible whenever the filled white disk appeared at the attended
location. It is noted that each visual target was recorded by a
synchronous EEG time series with five sessions of trials, and
the candidate was given breaks between sessions. The more
detailed description of the experiment can be found in several
previous works [30,31]. In this data set, a total of 25 sessions
were therefore collected, and about 3000 trials of experiment
were performed. In addition, there are 235 channels of EEG
used in our work by dropping 3 channels of EOG.

B. Network construction based on phase synchronization

The concept of phase synchronization is introduced to
study synchronization of coupled oscillators and has gained
particular interests to investigate coupling among nonlinear
complex systems [32-34]. The phase ®(¢) of a real-value
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time series X(¢) is defined using Gabor’s analytic signal
approach [35]:

V()= X(t)+iXu(t) = Ae'®D, (1)

where the imaginary part X;(¢) is the Hilbert transformation
of X(¢). Hence, the degree of phase synchronization between
time series X;(¢) and X;(¢) can be evaluated by a bivariate
phase-coupling index [36,37]:

T
1 &
_ i(pi(t)—; (1))
T D e :
t=1

which is in the interval [0, 1]. If the phases of two time series
are completely synchronized, then the phase-coupling index
will be at maximum.

One advantage of phase synchronization is that it can reduce
the nonstationary effect in EEG time series compared with
linear correlation. The functional connectivity (edge) between
pairs of electrodes (vertices) is first estimated using the
measure of phase synchronization, and then it is thresholded
to generate a binary functional network. Herein each vertex
is connected to its N nearest neighbors (i.e., those channels
that are most phase synchronized with it) [38]. Note that
the resulting brain functional networks are not necessarily
symmetric, i.e., if vertex i is a neighbor of vertex j, vertex
j may not necessarily be a neighbor of vertex i and vice
versa. Here we take the network as an undirected network
for convenience. The mean degree of network is generally
determined by N. However, since the directed edges are
identified as undirected ones, the actual mean degree is
a little larger than N. In this way, the connectivity of
brain functional network is naturally guaranteed without
dense connections, which will otherwise disturb the hierarchy
detection.

R; ;= , 2)

C. Clustering EEG channels by both the GN algorithm
and the anatomical parcellation of the brain

The EEG time series recorded through each channel
mainly represents the electrical activities of neurons near
the corresponding electrode. Thus, the EEG channels can
be directly clustered into groups according to the spatial
position of electrodes and anatomical parcellation of brain
cortex (e.g., Brodmann segmentation scheme). We used the
Brodmann template image distributed with MRIcro, which
is restricted to the standard MNI space [39]. Resolution
of the image is 181 x 217 x 181 and the size of voxels
is 1 x x1 x 1 mm. Each hemisphere is partitioned into 41
areas according to Brodmann segmentation scheme, with
the same label suggesting the same functional area of brain
cortex in two hemispheres. The 3D-coordinate locations of
electrodes are mapped to the standard MNI space using SPM$§
toolbox (open-source software) [40]. Hence, we can achieve
the mapping relation between electrodes and Brodmann areas
by matching the 3D coordinates in the standard MNI space.
The EEG electrodes that lie in the same Brodmann area
are clustered together (i.e., labeled by the same Brodmann
area index). At last, these 235 channels are clustered into
25 anatomical groups corresponding to 25 Brodmann areas.
Some Brodmann areas are absent in this case because they are
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TABLE I. Number of EEG channels restricted to each Brodmann
area.

Brodmann EEG channel Brodmann EEG channel
area number area number
20 29 4 7

19 26 10 7

6 19 8 5

18 16 22 5

9 14 38 5

37 13 44 5

45 12 43 4

40 11 48 4

7 10 1 3

21 9 2 3

46 9 5 2

17 8 47 1

39 8

deeply beneath the cortex where there are no corresponding
EEG electrodes. The size of anatomical group (i.e., the number
of electrodes it contains) varies from 1 to 29, as shown in
Table I. Moreover, Brodmann areas can also be roughly scaled
into 9 major substructures according to specific physiological
functions, by which the EEG channels can be further clustered
at this higher hierarchy, as shown in Table II. Hence, the EEG
channels are organized into two levels of hierarchy according
to the above-mentioned segmentation.

The hierarchical or modular organization of network from
EEG channels can be analyzed in two ways: (i) the modular
structure of brain functional networks that can be detected
by fast GN algorithm and (ii) the modular structure of the
EEG channels according to anatomical parcellation of brain
cortex based on the Brodmann segmentation scheme. The
former is a functional clustering structure and the latter is an
anatomical clustering structure. Thus, the relationship between
these two kinds of hierarchical/clustering structures (e.g.,
the overlap between the communities from both clustering
structures) is a key question that is expected to shed light
onto the relationship between the structure and function of the
brain.

TABLE II. Number of EEG channels restricted to the anatomical
substructure.

Functional Brodmann EEG channel
substructure area number
Broca’s (B) 44, 45 17
Audition (A) 22 5
Cognition (C) 9, 10, 46, 47 31
Emotion (E) 38 5
Vision (V) 17,18, 19 50
Vision-parietal (Vp) 7,39 18
Vision-temporal (Vt) 20, 21, 37 51
Motor (M) 4,6,8 31
Sensory (S) 1,2,5,40 19
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FIG. 1. (Color online) Average cluster coefficient and character-
istic path length as a function of N.

III. EMPIRICAL RESULTS

We calculate the phase-synchronization index matrix of all
the sessions that consist of continuously recorded multichannel
EEG time series. An average is performed over all 25 sessions.
The brain functional networks then are generated using a
tunable N (the number of nearest neighbors). The average
cluster coefficient (CC) and characteristic path length (CPL)
are also computed as a function of N (see Fig. 1), and we find
that the brain functional networks behave large CC and short
CPL, which suggests the small-world property in consistency
with previous works.

Community structure and modular architecture are two
crucial properties of brain functional networks during the
visual task. The fast GN algorithm is applied to explore these
hierarchical organizations of the brain functional networks.
Results are shown in Fig. 2 for different N, of which the
minimum value is 3. Figure 2 shows that the maximum
modularity monotonously decreases with N, all above 0.5
even when N < 30, which obviously differs from that of the
randomly connected network. Furthermore, small maximum
modularity also corresponds to a large mean degree of network,
which suggests that more edges bridge the communities to
reduce gaps of clusters and render the community structure less
visible. Obviously, the number of communities corresponding
to maximum modularity is also a monotonously decreasing
function of N. With these considerations in mind, we mainly

T T T T o
—8— Maximum modularity I =]

0.8+ —4&— Corresponding community number 20 @

5

2 s
£ 2
g 0.7 r15 2
] 8
: : .
S 0.6 10
£ \I 3.
: T g
= m 2
0.5 -5 3

@

FIG. 2. (Color online) Maximum modularity and corresponding
community number as a function of N.
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FIG. 3. (Color online) The distributions of (C) and (k,,) as a
function of k. Network is generated with N = 3.

investigate the community structure and modular architecture
of the brain functional network with N = 3.

To better understand the architecture of the brain functional
network N = 3, we study the average cluster coefficient (C)
for vertices with degree k. Their relation reveals a negative
correlation, which suggests that low-degree vertices generally
belong to well-connected clusters while the neighbors of
high-degree vertices belong to many different communities
that are not directly connected among themselves, namely hi-
erarchical organization (see Fig. 3). Meanwhile, the assortative
mixing pattern (degree-degree correlation of vertices) is also
investigated by using a measure of average nearest-neighbor
degree (K,,) that is defined as the average over vertices with
degree k (see Fig. 3). Degree mixing can be organized into two
patterns: assortative behavior if (K,,,) increases with k, which
indicates that high-degree vertices are preferentially connected
with other high-degree vertices, and disassortative behavior if
(Knn) decreases with k, which denotes that links are more
easily built between high-degree vertices and small ones [41].
In Fig. 3, we find that (K,,,) decreases with k, which indicates
a disassortative behavior of brain functional network.

The community structure of brain functional network is
further demonstrated by a dendrogram plot computed with the
fast GN algorithms, as shown in Fig. 4. In Fig. 4(a), the number
of communities corresponding to the maximum modularity is
20, which is marked by a dashed line. Thus, in Fig. 4(b),
the dendrogram plot only shows hierarchical tree that splits
the network into 20 communities. Note that we do not
present the whole dendrogram plot so that the end points of
hierarchical tree still denote communities that are randomly
ordered with numeric labels from 1 to 20 in Fig. 4(b).

After analyzing the functional community structure of
the EEG-channel network, we further investigate the relation
between its functional community structure and its anatomical
community structure (note that the anatomical community
structure is performed in Tables I and II). We examine the
overlap between community structures of brain functional
networks and anatomical networks of the brain cortex in
two ways. On the one hand, we check how many EEG
channels of the same functional community belong to the same
anatomical group, which is represented by the composition of
communities written as

c@,j) =1CEHNGDI/IC@I. 3)
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FIG. 4. (Color online) Modularity (a) and dendrogram plot (b)
when network is generated with N = 3.

On the other hand, we investigate whether EEG channels of the
same anatomical group are exactly clustered into an identical
functional community, which is described by the participation
of anatomical groups defined as

p@.j) =1CEH N GHI/IGU)I “

In Egs. (3) and (4), C(i) and G(j) denote the channel set of
community i and anatomical group j, respectively. If there is
a perfect one-to-one correspondence between the two kinds
community structures, we will have c(i,i) = p(i,i) = 1 and
c@i,j) = p@.j) =0.

Figure 5(a) shows the composition of communities from
different anatomical groups. This figure suggests that most
functional communities are composed of EEG channels that
are restricted to the same Brodmann area. For instance,
community 12 (numeric label) almost overlaps with Brodmann
area 9, i.e., the channels belonging to the same anatom-
ical group are densely connected, or strongly coupled, in
the corresponding brain functional network. In Fig. 5(b),
the participation of anatomical group reveals that most of
the channel sets restricted to the same Brodmann areas are
clustered into the same functional community. In particular,
Brodmann areas 10, 17, and 47 are completely overlapped
with communities 20, 10, and 1 (numeric labels), respectively.
It is noted that some channel sets of anatomical groups are
divided into several large communities because Brodmann
areas involved in these anatomical groups are distributed in
both the left and right cerebral hemispheres with a much larger
spatial distance. This reduces the coupling strength among
the EEG channels. For instance, Brodmann area 21 is mainly
divided into two larger communities with numeric labels 1
and 15, which are distributed in left and right cerebral
hemispheres, respectively. This explains why the one-to-
one correspondence between functional communities and
anatomical groups is not perfect [i.e., c¢(i,i), p(i,i) # 1].

The bright diagonal in Fig. 5 indicates the significant
correspondence between the community structure of func-
tional networks from EEG time series and the anatomical
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FIG. 5. (Color online) (a) Composition of communities from
different anatomical groups. (b) Participation of anatomical groups
in communities of functional networks (derived form EEG). The
result reveals the coincidence between modular architectures of
brain functional networks and anatomical groups based on anatomy
parcellation of brain cortex. Network generated with N = 3 is divided
into 20 communities. The communities and the Brodmann areas are
arranged so the brightness of the diagonal drops from left to right.

groups (by anatomical parcellations like the Brodmann areas)
of the brain. Note that some regions in the diagonal in
Fig. 5 are especially bright in color, suggesting an even more
pronounced consistency between functional and anatomical
structure in these areas. To see this more clearly, we examine
this consistency at a larger scale, i.e., over a higher level of
hierarchy. To do this we check the coincidence of modular
architectures of brain functional network and anatomical
substructures (i.e., a larger scale segmentation of the cortex
which involves 9 larger anatomical communities, see Table II)
in the same way. In Fig. 6(a) we can see that the diagonal
is especially brighter at vision, sensory, vision-temporal, and
motor cortices, indicating that the consistency between the
modular structure of functional networks from the EEG signal
and anatomical substructures is much higher at these four
areas. This result is consistent with the visual task that
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FIG. 6. (Color online) (a) Correspondence of community struc-
ture from functional networks (derived from EEG signal) to anatom-
ical substructure networks (anatomical network) at a higher lever of
hierarchy. (b) Participation of anatomical substructure in communities
of brain functional networks (derived from EEG signal). The result
shows the coincidence between modular architectures of brain
functional network and anatomical substructure according to specific
physiological functions of brain cortex. Network generated with
N = 3 is divided into nine communities.

involves visual, sensory, and motor functions of the brain.
This result indicates that the synchronization among the EEG
channels are much stronger in these anatomical substructures
that are activated during the visual task. In Fig. 6(b), most
of anatomical substructures are almost divided into unique
communities, except for the visual-temporal part, which is
symmetrically distributed in two hemispheres and is separated
into two communities.

Figure 7(a) plots the averages of phase-coupling index
between pairs of EEG channels within the same Brodmann
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FIG. 7. (Color online) The averages of both phase-coupling index
(a) and spatial distance (b) between pairs of EEG channels within the
same Brodmann area. The Brodmann areas order according to the
functional substructures in Table II, which are divided by the red dot
line.

area. We find that the averages of phase-coupling index in all
the Brodmann areas are mostly larger than 0.5. Specifically,
the averages of phase-coupling index in the Brodmann areas
7, 17, 1, 5, 8 (correspond to the visual task that involves
visual, sensory, and motor functions of brain) are significantly
higher than other Brodmann areas belonging to the remaining
anatomical substructures. The EEG channels tend to synchro-
nize naturally among spatial neighbors due to the underlying
sources affecting nearby channels fixed in the cerebral cortex.
To further demonstrate that the observed high modularity
in certain Brodmann areas is not an artifact of the spatial
adjacency of the EEG electrodes, we also compute the averages
of spatial distance d between pairs of EEG channels in each
Brodmann area, as shown in Fig. 7(b). We take Brodmann area
10 as a reference, because it has a similar d with Brodmann
areas 7, 17, 1, 5, and 8. Note that although Brodmann area 10
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has a comparable d with areas 7, 17, 1, 5, and 8, the averages
phase-coupling index of the former is significantly lower than
those from the latter (note specifically that Brodmann area
10 has a smaller d than Brodmann area 7, while its average
phase index is much smaller that that of Brodmann area 7),
which suggests that the high phase-coupling index, and thus
high modularity, of Brodmann areas 7, 17, 1, 5, and 8 is
not due to the spatial adjacency of the EEG electrodes in
these Brodmann areas. The pronounced consistency between
the modular structures of the functional and the anatomical
network in these Brodmann areas, therefore, is essentially due
to the performed task.

In addition, the electrical activity of neuronal networks
is known to oscillate at various frequencies and amplitudes.
The strongly correlated oscillators in same communities will
synchronize more easily than those in different communities,
which suggests that the synchronization reveals hierarchical
organization for a network with a nontrivial community struc-
ture [42-47]. Moreover, the simulation of neuronal activity
based on anatomical cat brain network determines that the
correlated clusters are consistent with anatomical areas of same
brain functions [48-50]. Thus, the coincidence of modular
architectures of brain functional networks and the anatomical
groups of brain cortex at two levels of hierarchy suggests that
the correlation of the EEG time series in same anatomical
groups is much stronger than that of the EEG time series in
different anatomical groups and the hierarchical organization
of the brain functional network may be a consequence of the
functional segmentation of the brain cortex.

IV. CONCLUSION

In conclusion, we have investigated the hierarchical mod-
ular organizations of the brain functional network that are
derived from the extent of phase synchronization among
high-resolution synchronous EEG time series during the visual
task. The resulting brain functional networks show common
small-world property and community structure organized in a
hierarchical way. Meanwhile, by clustering EEG channels into
functional communities and comparing it to the anatomical
parcellation of brain cortex, we find that the modular archi-
tecture of brain functional networks corresponds well to that
of the anatomical groups over different levels of hierarchy,
and this consistency is more pronounced at vision, sensory,
vision-temporal, motor cortices, which involve vision, sensory,
and motor functions of the brain during the visual task.
These interesting results suggest that the strong modularity
in vision and other related cortices forms the functional basis
in these areas and the structure-function relationship further
reveals that the strong synchronization among EEG channels
within the functional communities may be a consequence of
functional segmentation of brain cortex.
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