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Multifractal analysis of thermal denaturation based on the Peyrard-Bishop-Dauxois model

S. Behnia*

Department of Physics, Urmia University of Technology, Orumieh, Iran

A. Akhshani
School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia and

Department of Physics, IAU, Orumieh Branch, Orumieh, Iran

M. Panahi and A. Mobaraki
Department of Physics, IAU, Orumieh Branch, Orumieh, Iran

M. Ghaderian
Department of Biotechnology and Plant Breeding, College of Agriculture, Zanjan University, Zanjan, Iran
(Received 7 February 2011; revised manuscript received 15 August 2011; published 19 September 2011)

The theory of DNA dynamics is exceedingly complex and not easily explained. In the past two decades, by
adapting methods of statistical physics, the dynamics of DNA in contact with a thermal bath is widely studied.
In this paper, the thermal denaturation of DNA in the framework of the Peyrard-Bishop-Dauxois (PBD) model
through the Rényi dimension is investigated. As a result, the Rényi dimension spectrum of the melting transition
process reveals the multifractal nature of the dynamics of the Peyrard-Bishop-Dauxois model. Also, it can be
concluded that the Rényi dimension (Dq ) at negative values of q is the characteristic signature of pre-melting and
thermal denaturation of DNA. Furthermore, this approach is in excellent agreement with previous experimental
studies.
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I. INTRODUCTION

DNA is not only an essential object of study for biologists;
it also raises very interesting questions for physicists [1]. In
the past decade, many analytical studies have been conducted
to understand the dynamics of DNA [2–7]. A hierarchy of
the most important models for nonlinear DNA dynamics was
presented by Yakushevich [8]. DNA is a highly dynamic
molecule, and it has a large number of degrees of freedom.
Hence, the dynamical properties of the Hamiltonian system
are not fully understood. Furthermore, most of the introduced
Hamiltonians and the corresponding equations of motion for
DNA are extremely nonlinear and highly sensitive to physical
parameters, especially the thermal bath temperature. There-
fore, it is important to investigate the effects of temperature
in the theoretical studies [1]. A very simplified model was
proposed in 1989 by Peyrard and Bishop [2] to describe
DNA denaturation. Unfortunately, this model does not give
rise to a sharp first-order-like denaturation that is observed
experimentally. This issue was addressed later by Dauxois,
Peyrard, and Bishop [9,10] by the addition of an anharmonic
term to the stacking interaction. In this sense, the mechanism
of the DNA chain in contact with a thermal bath is investigated
by using Langevin molecular dynamics simulations [11,12].
But due to the thermal fluctuations in the DNA molecule,
exact solutions for the nonlinear excitations of the DNA model
have never existed. Hence, new methods are also required
for the investigation of the effect of temperature on DNA
dynamics.
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In previous studies, multifractal methods have been used to
analyze the structure of DNA sequences and proteins [13–18].
In this paper, for a better description of the DNA denaturation
temperature in the framework of the Peyrard-Bishop-Dauxois
(PBD) model, a method based on the multifractal approach is
proposed. The obtained results demonstrate that the Rényi
dimension spectrum can be considered a signature of the
DNA denaturation temperature in the PBD model. Also, this
spectrum can be used to find the pre-melting region of the
short DNA sequences that provide important insight into
biological processes. Furthermore, this approach is in excel-
lent agreement with the other theoretical and experimental
studies [12,19,20].

II. DNA IN A THERMAL BATH

The thermal behavior of DNA denaturation based on the
PBD model is investigated. For simulating dynamics of the
DNA model with the Hamiltonian in contact with a thermal
bath, Langevin molecular dynamics is applied to the PBD
model [11,21].

A. The PBD model in the Langevin dynamics framework

In the PBD model, the complexity of DNA is reduced to
the study of the dynamics of the N base pairs of the molecule.
For each base pair we define the variable yn associated with
the transverse stretching of the hydrogen bonds between
complementary bases. The index n labels the base pairs
along the DNA chain. The model is defined by the following
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Hamiltonian [11,21]:

H =
N∑

n=1

(
1

2
mẏ2

n + V (yn) + W (yn,yn−1)

)
. (1)

The potential energy of the system consists of two parts:
the on-site interaction V(yn) within each base pair and the
stacking interaction W(yn,yn−1) between adjacent base pairs.
A Morse potential is used for the on-site energy, V (yn) =
Dn[exp(−αnyn) − 1]2, where Dn is the dissociation energy
of the nth base pair and αn denotes the spatial range of
the potential. Standard, empirically found base-pair-dependent
parameter values are customarily employed: DCG = 0.075 eV,
αCG = 6.9 Å

−1
for a G-C base pair and DAT = 0.05 eV,

αAT = 4.2 Å
−1

for an A-T base pair. A nonlinear potential
describes the stacking interaction,

W (x,y) = K

2
(1 + ρe−β(x+y))(x − y)2, (2)

where K = 0.025 eV Å−2, ρ = 2, and b = 0.35 Å
−1

. A
prominent alternative description of DNA denaturation and
breathing is the PBD model based on the set of Langevin
equations [11],

mÿn = −V ′(yn) − W ′(yn,yn+1) − W ′(yn−1,yn)

−mγ ẏn + ξn(t), (3)

where m is the mass of the pair, γ is the effective damping
of the system, ξ (t) accounts for thermal noise, 〈ξn(t)〉 = 0,

and 〈ξn(t)ξk(t ′)〉 = 2mγkBT δnkδ(t − t ′), with T as the bath
temperature.

III. RÉNYI DIMENSION SPECTRUM

From a purely geometric point of view, several methods
have been introduced to characterize strange attractors. All
the methods rely on concepts developed in the fractal theory
[22]. A multifractal structure is characterized by one of two
equivalent fractal dimension spectra: (i) the Ŕenyi dimension
spectrum Dq or (ii) the spectrum of scaling indices f (α)
[23]. Generally, different parts of a strange attractor may be
characterized by different values of the fractal dimension.

In the context of dynamical systems theory the Rényi
dimensions Dq have been shown to be good candidates to
describe the geometric and probabilistic features of the strange
attractors [24,25]. The Rényi dimensions are commonly used
to characterize the scaling properties of a distribution of points
on an M-dimensional space [26,27]. The Rényi dimension
spectrum is then given by

Dq = lim
r→0

1

q − 1

ln
∑N(r)

j=1 p
q

j

ln r
. (4)

Note that the Rényi dimension (Dq) involves the probabilities
(pj ) raised to the qth power. The definition Eq. (4) was
introduced in the context of natural measures occurring in
dynamical systems by Grassberger [24] and Hentschel and
Procaccia [28]. In practice, almost all calculations of Dq

use the generalized correlation sum rather than box-counting
method. Therefore, to estimate the Rényi dimension, the

generalized correlation sums for various q’s is calculated. The
generalized correlation sum is defined as [29]

Cq(r) = 1

N

N∑
j=1

⎛
⎝ 1

N − 1

N∑
(k=1,k �=j )

�(r − |xj − xk|)
⎞
⎠

q−1

. (5)

The Rényi dimension (Dq) in terms of the generalized
correlation sum can be defined as

Dq = lim
r→0

1

q − 1

ln Cq(r)

ln r
. (6)

To estimate the Rényi dimension, the generalized correlation
sums for various q’s is calculated. We have chosen the interval
q ∈ [−40,40]. The resulting Rényi dimension spectrum is a
nonincreasing function and is most easily viewed in a Dq vs q

plot.
The singularity spectrum f (α) and the generalized di-

mensions Dq can be derived from each other. The explicit
relationship between the set of dimensions Dq and the
singularity spectrum f (α) is given by the following Legendre
transform [23]:

f (α) = αq − τ (q), α(q) = d

dq
τ (q). (7)

There are several physical meanings in the f (α). In particular,
the f (α) value at the maximum of the singularity spectrum
corresponds to the capacity dimension (Dq=0). The existence
of a phase transition is, however, best indicated by measuring
the derivatives of τ (q) with respect to q [30,31]. By following
the thermodynamic formulation of multifractal measures,
Canessa showed that the form of Cq resembles a classical
phase transition at a critical point [32,33]:

Cq ≡ − ∂2

∂q2
τ (q) ≈ 2τ − τ (q + 1) − τ (q − 1). (8)

IV. RESULTS

In this paper, the variation of the Rényi dimensions with
respect to the system temperature is investigated. In fact,
the objective of this study is to evaluate the ability and
efficiency of the Rényi dimension spectrum to characterize the
DNA denaturation temperature based on the PBD model. The
obtained results indicate that the Rényi dimension spectrum
is highly sensitive to changes in the temperature of the
system. Therefore, the Rényi dimension spectrum can be
considered a signature when DNA is denatured. Moreover, this
method is more accurate for predicting the critical temperature
(denaturation temperature) and interpreting the pre-melting
region of short-chain DNA compared to the previous methods
[34–38].

Figures 1 and 2 show the calculated Dq for the sequence
CCGCCAGCGGCGTTATTACATTTAATTCTTAAGTATTA
TAAGTAATATGGCCGCTGCGCC [12] that implies
the following results: The Rényi dimensions analysis
demonstrated that there is an inverse relationship between Dq

and q at a given temperature. In general, for homogeneous
fractals Dq = Dq ′ while for multifractals Dq > Dq ′ for q ′ > q

[28]. Therefore, it can obviously be concluded that DNA
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FIG. 1. (Color online) The Rényi dimensions spectrum.
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FIG. 2. (Color online) The Rényi dimensions spectrum at various temperatures..
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FIG. 3. (Color online) Phase space diagram for 30th base pair.
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FIG. 4. (Color online) Generalized correlation sum for different temperatures at q = −40.
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FIG. 5. (Color online) Scaling of the generalized correlation sum for T = 345 K, q = −40.
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FIG. 6. (Color online) Singularity spectrum [f (α)] for T = 345 K.
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FIG. 7. (Color online) The plot of the function α vs q for T = 345 K.
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FIG. 8. (Color online) Cq curve for T = 345 K.
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thermal denaturation in the Peyrard-Bishop-Dauxois
model exhibits multifractal scaling behavior. It is worthwhile
noting that for negative values of q, there is a maximum value
for the Rényi dimensions (Dq) at the denaturation temperature
(T = 345 K) and sharp changes in the behavior of the Rényi
dimensions for the pre-melting region (320 K < T < 335 K).
For positive moments q > 0, the results of the analysis
indicate that there were no significant changes in the values
of Dq with respect to q. In general, negative q is important
for revealing the geometry of low-density regions [39].

Moreover, the phase space reconstruction of the 30th base
pair of the sequence at some selected temperatures is shown
in Fig. 3: T = 300 K before denaturation; T = 345 K during
denaturation, and T = 360 K after denaturation. These figures
confirm that the size of the attractor and the phase space density
distribution directly depends on the temperature.

Figures 4 and 5 show, respectively, the generalized cor-
relation sums and the scaling regions for some selected
temperatures for different q’s. These plots clearly show that
there is a region of scaling for some selected temperatures, but
to quantify this scaling range more clearly the local slope of
ln Cq (r)

q−1 vs ln(r) is determined.
Selected examples of singularity spectra, f (α) vs α and α

vs q for T = 345 K, are shown in Figs. 6 and 7, respectively.
We find that for q = 0, the capacity dimension Dq=0 = 1.762,
which is equal to the maximum of the singularity spectrum. In
all temperatures, the dimension of the support of the measure
Dq=0 = fmax(α) is lower than 2, ranging from 1.319 to 1.789.
As shown in Fig. 6, there is a double back for the domain
of large α. The technical reason for this is because the Dq

plot saturates quickly for the negative q, resulting in a rising
hump in the α vs q plot (see Fig. 7). Two different values
of q produce the same α in the rising hump region of Fig.
6; consequently, two different values of q produce the same
f (α), since f (α)
 (α, q) [40]. A reason for why Dq saturates
early for negative q may be the absence of low-probability
subsets in the data [41]. The existence of a phase transition is,
however, best indicated by measuring the derivatives of τ (q)
with respect to q. According to Fig. 8, this may be an indication
of some sort of phase transition [30–32].

V. CONCLUSIONS

DNA denaturation is one of the interesting issues for biol-
ogists and physicists [1,2,8,42–47]. Denaturation temperature
and the pre-melting phenomenon are very important questions
for experimental and theoretical studies from a biological
point of view. For instance, UV-Vis absorption spectroscopy
or the hyperchromic effect and laser light scattering have been
reported in the literature [43,48–50].

Accurate prediction of DNA thermal denaturation is very
important for several bimolecular techniques including poly-
merase chain reaction, sequencing by hybridization, antigen
targeting, and southern blotting [51]. Also, DNA thermal
denaturation plays an important role in DNA sequencing
by denaturation, which is a very significant development in
sequencing techniques [52]. Furthermore, the %GC content of
the DNA has determined from the denaturation temperature
[49,53].

In experimental studies, the actual melting temperature
(Tm) of a given piece of the DNA depends on several
factors, such as the length of the DNA sequence, the base
composition of the DNA, the topological structure, and
the salt concentration [48]. Because of the reasons stated
above, various denaturation temperatures are reported in the
literature [48].

Recently, very advanced and powerful methods have
been developed to study the denaturation temperature and
melting dynamics of DNA [54–56]. Concerning DNA de-
naturation temperature, previous methods based on nonlinear
Schrödinger equations or classical partition functions are
very complex [2,8,57], and sometimes they have reported
temperatures far from experimental results [57]. Also, in the
mentioned methods, the results would appear to highlight
the computational difficulties associated with the partition
function [56]. To overcome these difficulties and improve
the computational methods, Theodorakopoulos proposed a
novel approach based on matrix multiplication [55,56].
The results are in good agreement with the experimental
reports [56,58].

In this paper, the multifractal nature of the dynamics of the
PBD model is studied, and the Rényi dimension spectrum is
reported as a signature for DNA denaturation temperature.
Although no approximation has been done in the original
model (the PBD model), using multifractal analysis, the critical
temperature falls in a range that is in very good agreement with
experimental and theoretical reports [12,19,20]. The proposed
method has these advantages: it is straightforward, simple to
deal with, and more accurate to predict the critical temperature
compared to the previous methods [34–38]. In this method, the
obtained results are directly derived from the main equation
[Eq. (4)], and there is no need to use any approximation
methods.

Another important aspect of the PBD model is its potential
ability to describe local openings (denaturation bubbles) of the
double helix [59]. As shown in Fig. 2 it can be concluded that
the results obtained by use of the Rényi dimension spectrum
are in very good agreement with previous theoretical and
experimental studies [12,19,20].

In conclusion, it seems that multifractal analysis of the
PBD model can be an informative index for this model, yet far
from fully understood; the results described here are mostly
concerned with thermal denaturation. Many aspects are still to
be discussed.

In the future, it would be of interest to explore the link
between the Rényi dimensions as a measure and %GC content
of a chain. Because each G-C base pair has three hydrogen
bonds, it is more stable than an A-T base pair, which has
only two hydrogen bonds [60,61]. Moreover, the values of the
Morse potential parameters in the PBD model are different for
G-C and A-T pairs [12,62], and it depends on the proportion
of G-C base pairs.
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