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Phase-noise-induced resonance in a single neuronal system
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Phase-disorder-induced resonance has been recently uncovered in an ensemble of coupled excitable neurons
with weak external signal, where each neuron takes a constant initial signal phase [Phys. Rev. E 82, 010902(R)
(2010)]. However, it is unclear how the initial phase disorder influences the behavior of a single or isolated
neuron, which constitutes the ensemble. In order to answer this question, we here consider the case of a single
neuron with phase noise originated from the time-varying initial signal phase, in contrast to the constant initial
phase in each neuron studied in the above referenced paper. Interestingly, we find that the phase noise can
induce resonance even in the single neuronal system with subthreshold signal. Moreover, we reveal that, with the
presence of phase noise, the neuron also shows another resonance behavior by varying the period of the external
signal. An analysis is conducted to uncover the mechanisms behind these resonance phenomena.
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I. INTRODUCTION

The sensory organs of biological systems from insects to
mammals have evolved to accurately detect and locate the
external stimuli, even if these are very weak ones. For example,
it was experimentally demonstrated that the paddlefish is very
sensitive to weak electric fields evoked by its prey in a muddy
river with the aid of electroreceptor cells on its rostrum [1].
A subsequent experiment reported that the fly Ormia ochracea
can localize a salient sound source with a precision up to
2◦ azimuth [2]. How can they achieve such an impressive
ability? Perhaps the first step toward answering this question
is to understand how neurons extract a faint but relevant signal
from a noisy environment.

Neurons are inherently information processing devices.
This feature demands them to have specialized mechanisms
for reliably detecting extremely weak signals at complex situ-
ations. Stochastic resonance (SR) is one of such mechanisms,
commonly known by the surprising role of noise in enhancing
the detection and the transmission of weak signals. SR has been
first discovered for explaining why the earth ice ages occurred
periodically [3]. After that, this mechanism has been widely
employed in explaining the phenomenon of signal detection in
biological systems [1,3–7]. In Ref. [5], Douglass et al. reported
that the crayfish mechanoreceptor has a better performance at
detecting distant fin movements of predatory fish when the
water is turbulent rather than still. In Ref. [6], Simonotto et al.
showed that humans are more efficient to recognize a faint
image on a screen with the help of added noise. Except noise,
feedback is another mechanism found to play a significant
role in stochastic resonance in neurons or bistable oscillators
[8–10]. In contrast to regular periodic signals, Collins et al.
generalized the theory of stochastic resonance to aperiodic
stochastic resonance, given that real-world external signals are
often irregular [11,12]. Recently, Liang et al. uncovered that
phase-disorder-induced resonance may serve as a simple but
efficient method for an ensemble of coupled excitable neurons
to catch weak signals [13]. In that work, the received signals
of neurons have different constant initial phases satisfying a
given distribution. It is the difference of the initial phases

among neurons which results in the resonance. However,
the mechanism of phase disorder is unclear yet for a single
neuronal system. Since an individual neuron is a basic signal
processing unit, its performance gives an important cue for
understanding the whole system. Thus an interesting question
is what happens if a single neuron has a time-varying initial
phase rather than a constant one.

Actually, in real situations, the initial phase of received
signals may change with time. For instance, the variation of
the distance to the signal source makes the neuron sensors
receive external signal with continuous phase shift. To pinpoint
prey in a dark environment, the barn owl adjusts the direction
of its head toward the sound source for obtaining optimal
interaural time difference between both ears. During the
adjustment, the arriving times and intensities of sound between
the ears change accordingly [14,15]. In addition, a periodic
wave traveling through a fluctuating medium or interface also
may generate phase variation [16]. In addition, some sensory
organs are very sensitive to phase difference of the received
stimulus [2,17–19]. For example, the weakly electric fish
Eigenmannia has a sensory capability of discriminating subtle
time disparities on the order of 10−8–10−5 s [17,18], by which
it can keep changing its signal phase in order to avoid jamming
among signals coming from other nearby fishes. Eigenmannia
is not the only one to have such an ability; surface-feeding fish
also can determine the prey’s angle with excellent accuracy
by discriminating the target signal’s arriving time or phase
difference between the distributed lateral line organs [19].
Summing up all these facts, it is necessary for us to know
how the variation of the initial phase influences the neuronal
performance in signal detection.

In this paper, we examine the effect of phase noise on
the dynamics of a single excitable neuronal system, where
the initial phase is time-varying by noise. We find that even a
small phase noise can assist the neuron to efficiently detect sub-
threshold external signals. Moreover, we show the existence of
an optimal value on both the phase noise and the signal period,
where the detection can be significantly improved, resulting
in a double-resonance-like behavior. Finally, we analyze the
underlying mechanisms behind these phenomena. As reported
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by a recent research that noise can act as a controller in signal
transmission in a multithread semiconductor neuron [20], we
hope that our findings are useful not only for understanding
the signal processing of biology systems but also for making
artificial devices.

II. MODEL AND SIMULATIONS

As a paradigmatic model, the FitzHugh-Nagumo (FHN)
model is usually used to describe the firing activities of sensory
neurons. Here, we use it to investigate the effect of phase noise,
considering the following system:

εẋ = x − x3

3
− y,

(1)

ẏ = x + b + A sin

[(
2π

T
t + ϕ(t)

)]
,

where x is a fast variable, y is a slow variable, ε is a
small parameter allowing one to separate the fast and slow
dynamics, and A sin[ 2π

T
t + ϕ(t)] is the external signal received

by the neuron. When the amplitude A is not strong enough
to stimulate spikes, the signal is called subthreshold. For a
single neuron without external signal, the system is excitable
if b > 1; otherwise, the system generates a stable periodic
sequence of spikes. As real signals are often irregular, we here
pay attention to the case of subthreshold signal with phase
noise, i.e., the initial signal phase ϕ(t) of the signal phase
2π
T

t + ϕ(t) is not constant but noiselike. For simplicity, ϕ(t) is
set to be varied as a Wiener process. The other parameters are
set as b = 1.02, ε = 0.01, A = 0.05. References [21,22] show
that the threshold for firing depends on the signal frequency.
To ensure that the external signal is subthreshold, we let T be
in the range [3,15] where there is no firing for Eq. (1) with
ϕ(t) = 0.

In numerical simulations, Eq. (1) is discretized as follows
[23,24]:

x(t + �t) = x(t) + 1

ε

[
x(t) − x(t)3

3
− y

]
�t,

y(t + �t) = y(t) + [x(t) + b + A sin[z(t)]]�t, (2)

z(t + �t) = z(t) + 2π

T
�t +

√
2D�tζ,

where ζ is a random number with standard Gaussian distribu-
tion and �t = 0.001 is the step size. The last term in the third
line of Eq. (2) represents a phase noise, where the parameter
D governs its intensity. In the numerical simulations of this
paper, Eq. (2) is integrated by Euler’s method with the initial
condition (x(0),y(0),z(0)) = (−1.02, − 0.67,0).

Let the signal period T = 5. If the initial phase is constant,
i.e., D = 0, Eq. (1) does not have spikes because the subthresh-
old signal is incapable of inducing firing. Surprisingly, we find
that it is possible for the neuron to generate spikes when D

increases to 10−3.5; see Fig. 1(a). This means that the phase
noise can improve neuronal response to a weak signal. As D is
increased to 10−2, we find that the firing rate is enhanced and
the intervals between two successive spikes are more regular
and close to the period of the external signal; see Fig. 1(b).
Further increasing of D to 1 results in the increase of the firing
rate but decrease of the firing regularity; see Fig. 1(c). When

FIG. 1. Time series of the FHN model for b = 1.02 and A = 0.05.
Left panels with T = 5: (a) D = 10−3.5, (b) D = 10−2, (c) D = 1, and
(d) D = 100. Right panels with D = 10−2: (e) T = 3, (f) T = 3.5,
(g) T = 7, (h) T = 12.

D is increased to relatively large values, Fig. 1(d) shows that
the spikes vanish. Therefore we observe here an interesting
phenomenon that the firing pattern is purely induced by phase
noise in a single neuron and it is enhanced when the intensity
of phase noise is at the intermediate level. Next, we study
how the signal period T influences the behavior of neural
firing in the presence of phase noise. Interestingly, we note
a similar resonant behavior on T shown by Figs. 1(e)–1(h).
From these figures, we see that the spikes are more regular at
the intermediate values of T , which is quite different from
the cases of small or large values of T . In addition, the
spike intervals for T = 3.5 and T = 7 are very close to their
respective external signal periods.

To characterize the firing rate shown by Fig. 1, we introduce
an indicator f , which is defined as the average number of
spikes within each signal period T :

f = lim
n→∞

N

n
, (3)

where n is the number of periods and N is the total number of
spikes within nT intervals. f = 0 means there are no spikes,
while f ≈ 1 indicates that the neuron generates one spike in
each period T . In the simulations throughout the paper, n = 50
is used and f is averaged over 20 realizations. For T = 5,
Fig. 2(a) shows that the firing rate f quickly approaches 1
until D < 10−2, it slowly increases until D = 100.6, and it
decreases to 0 as D is further increased, forming a finite range
of firing. Figure 2(b) shows that f always grows with T except
at the intermediate values, where f seems independent of
T and remains at 1, confirming the observations shown by
Figs. 1(f) and 1(g). The plateaus of f ≈ 1 in Fig. 2(b) is
a typical feature of phase locking, i.e., phase-noise-induced
firing rhythm coincides with the driving period [21,25–27]. To
systematically investigate the phase locking behavior, Fig. 2(c)
depicts the effective locking region (|�f | < 0.01) of f ≈ 1.
We see that the f ≈ 1 region continuously extends as T is
increased, but it shrinks considerably at large D.

As mentioned above, the neuron exhibits different re-
sponses to weak external signals with phase noise. A common
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FIG. 2. The firing rate per period f of the FHN model. (a) f

versus D for T = 5. (b) f versus T for D = 10−2. (c) Phase locking
regions of f ≈ 1 for different pairs of D and T .

measure to characterize such responses is to quantify the output
at the input frequency. Thus we define the signal amplification
Q at the signal frequency ω = 2π

T
as follows [13,28–30]:

Q =
∣∣∣∣ 2

nT

∫ nT

0
x(t)eiωtdt

∣∣∣∣. (4)

Here, n = 50 and Q is calculated over 20 realizations. The
numerical results of Q on D and T are plotted in Figs. 3(a)
and 3(b), respectively. We see that both figures show the bell
shape, which is the signature of SR. Moreover, the optimal
D and T corresponding to the maximal values of Q are D =
10−2 for T = 5 and T = 3.5 for D = 10−2, respectively. These
quantities are supported by the regular firing activities shown
by Figs. 1(b) and 1(f). To see how the resonance behavior
depends on the phase noise D and the period T , we plot Q

in Fig. 3(c) by changing both D and T . Clearly, the plateau
of high values of Q appears at the intermediate intensities
of D. Moreover, we see that Q starts to increase when D is

FIG. 3. (a) Signal amplification Q versus D for T = 5. (b) Signal
amplification Q versus T for D = 10−2. (c) Signal amplification Q

versus both D and T . (d) Critical Dc versus T . The slope of fitting
line is −0.57.

beyond a critical value Dc for each T , indicating the onset
of successful signal detection. Besides this, we find that Dc

appears to decrease as a function of T . Let Q > 0.1 as the
onset of successful detection; Fig. 3(d) shows the relationship
between T and Dc, which approximately obeys Dc ∼ e−μT

with μ = 0.57. This function means that the longer the external
period T is, the less the intensity D is demanded for signal
detection.

III. ANALYSIS

We now analyze the mechanism of neuron firing patterns
induced by phase noise. We plot the phase portrait of the FHN
model in Fig. 4, where the dotted lines x = −b and y = x − x3

3
denote the nullclines. The intersection of the two nullclines
is the resting state. Without phase noise, the forced neuron
oscillates around the resting state along a limit cycle orbit, see
the inset of Fig. 4, where the two “points” L and R denote the
left and right boundaries of the orbit. When the external signal
increases from −A to A, x remains negative and decreases
from −b + A to −b − A. Thus the trajectory from R and
L represents continuous hyperpolarization. Instead, with the
decrease of external signal from A to −A. the trajectory from
L and R corresponds to depolarization since x increases. Due
to the slow depolarization by the external signal, the system (1)
can remain silent even when b + A sin( 2π

T
t) < 1, i.e., the firing

threshold is increased by the slow depolarization [31,32]. Here
the mechanism of increased firing threshold by external signal
is only valid for small value of the period T . For relatively large
value of T , such as T → ∞, the external signal is so slow that
the neuron does not remain silent when b + A sin( 2π

T
t) < 1

even without phase noise. From the inset of Fig. 4, we
also see that the hyperpolarization and the depolarization
are approximately separated into upper and lower parts by
the nullcline y = x − x3

3 . For small intensity of phase noise,

FIG. 4. Phase portrait of the FHN model at ε = 0.01, b = 1.02.
Dotted lines correspond to the nullclines of the FHN model and
solid lines with arrows correspond to deterministic trajectories. Inset:
Trajectory of system (1) at T = 5 and D = 0 in the vicinity of resting
state, where the arrows represent trajectory direction and dots L and
R denote the left and right boundaries of trajectory.
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the system cannot generate spikes because the variance of the
initial phase is not sufficient to disturb the orbit. For slightly
stronger, but still small intensity of phase noise, there exists a
low probability to suddenly change the wave of the external
signal. During the depolarization, such change of the external
signal may force the system into a new orbit. As a result,
the system state will be deviated far from the original orbit
and thus is unstable. Then, the trajectory goes to the right
branch of the nullcline y = x − x3

3 , which induces a spike. On
the contrary, the system is more robust to perturbation during
the hyperpolarization since the left branch of the nullcline
y = x − x3

3 is attractive. So the trajectory perturbed by phase
noise will go back to the original orbit without firing. Since
the phase noise is still small now, it is insufficient to maintain
the regular firing pattern. However, for large intensity of phase
noise, it is easier for the phase noise to disturb the trajectory.
Therefore the firing rate is sharply increased. When the noise
intensity is sufficiently large, the external signal is dominated
by the phase noise. Thus it turns out to be a bounded noise, but it
is not a signal anymore. Consequently, the trajectory oscillates
around the resting state and no spikes are generated. Summing
up, when the intensity D is at its optimal value, the neuron
can fire more regularly at the forcing rhythm, yielding the best
detection performance in this regime. In the case of fixed phase
noise D, the resonancelike behavior is due to the frequency
matching between the intrinsic period T ′ of the neuron and
the period of the external signal T . The intrinsic period T ′ is
the duration of the excursion time after firing [21,26,27,33].
When the external period T matches the intrinsic period T ′,
the response of the neuron can be significantly enhanced;
otherwise, the response is relatively small. This situation is
shown by Fig. 2(b). In this case, the intrinsic period is T ′ ≈ 3.5;
we see that the largest amplification occurs when T closes to
T ′. Therefore we can draw a conclusion that phase noise can
significantly change the firing pattern of the neuron.

In order to quantitatively explain the above arguments, we
consider a simple external signal A sin( 2π

T
t + ϕ′) and feed it

to a single FHN model. We let the initial signal phase ϕ′ vary
as

ϕ′ =
{

0, t < t1,

kπ, t � t1,
(5)

where k and t1 denotes the strength and the onset of the initial
phase variation, respectively. When k = 0, the external signal
is perfectly regular. In the following, we examine the effect of
k 	= 0 on the dynamics of neuron system.

Let T = 5 and k = ±0.02. We first consider the case of
t1 = 2.5. This is the depolarization process, since the signal
A sin( 2π

T
t + ϕ′) decreases for 1.25 < t < 3.75 and thus results

in the increase of x. We find that the trajectory goes to the
limit cycle orbit from the initial condition when k = 0; see
the black line in Fig. 5(a). However, when k is changed to
k = ±0.02 at t1 = 2.5, such small change of external signal
makes the trajectory deviate from the original orbit during
the depolarization process. When the depolarization process
is finished, the orbit becomes unstable and goes to the right
branch of the nullcline y = x − x3

3 , i.e., the neuron generates
a spike; see the red dashed and blue dotted lines in Fig. 5(a).
In order to investigate the effect of the initial phase variation

FIG. 5. (Color online) (a) Trajectories of the FHN model with
signal (5), k = ±0.02 and t1 = 2.5. (b) Trajectories of the FHN
model with signal (5), k = ±0.02 and t1 = 4. In both panels, the
red dashed and the blue dotted lines represent the results of k

and −k, respectively. (c) Trajectories of FHN model with signal
A sin( 2π

T
t − π

2 ) (red dashed and blue dotted lines), and (d) trajectories
of FHN model with signal A sin( 2π

T
t + π

2 ) (red dashed and blue dotted
lines). In all panels, black lines denote the trajectory without phase
noise. Arrows represent the trajectory direction. Black dotted lines
correspond to the nullclines of the FHN model. Parameter T = 5 is
used.

during hyperpolarization, we set t1 = 4. Figure 5(b) shows
the result, where the perturbed trajectory quickly returns to
the original orbit. Thus we conclude that the instability of
the deviated orbit during the maximum depolarization plays
a key role to cause spikes. To confirm it, we check the
system stability at the region of maximum depolarization and
maximum hyperpolarization, respectively. Specifically, we use
the deviated states [see the red and blue “dots” in Figs. 5(c)
and 5(d)] as initial conditions to integrate the FHN model with
external signal A sin( 2π

T
t − π

2 ) and A sin( 2π
T

t + π
2 ), respec-

tively. Here, the starting value A sin( 2π
T

t − π
2 ) corresponds to

the maximum depolarization, while A sin( 2π
T

t + π
2 ) represents

the case of maximum hyperpolarization. It can be seen from
Fig. 5(c) that the trajectories display a similar behavior during
the maximum depolarization as shown in Fig. 5(a). Unlike
Fig. 5(c), the trajectories in Fig. 5(d) quickly go to the left
branch of the nullcline y = x − x3

3 and then are confined to the
limit cycle orbit during the maximum hyperpolarization. In this
way, Figs. 5(c) and 5(d) again confirm our analysis. We have
also changed k and t1 to other values and we have observed
a similar phenomenon. Note that our finding is similar to the
phenomenon of postinhibitory rebound (PIR), where the neu-
ron fires after being released from hyperpolarization [34,35].
The mechanism of PIR is that, due to the hyperpolarization,
the resting state of the neuron is shifted. When the neuron is
suddenly released from the hyperpolarization, the trajectory
is far from the resting state and is unstable. Thus it makes
a long excursion to go back to the resting state, i.e., the
neuron generates a transient spike. The main difference is
that, in our case, the firing is caused by phase noise as shown
above.
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Finally, we explain the relationship between Dc and T . For
a large T , the external signal varies so slowly that a small
intensity of phase noise may significantly change the signal
wave, in contrast to the case of small T . Thus it is easier for a
small phase noise to disturb the trajectory of the neuron at large
T . Then, we perceive that the threshold of noise intensity Dc

decays with period T and the decay rate reduces as T increases,
obeying the relationship Dc ∼ e−μT .

IV. CONCLUSIONS

In conclusion, we have investigated the effects of phase
noise in relation to the firing pattern of a single excitable
neuron with subthreshold signal, where the phase noise mimics
the time-varying initial phase of the received signal. The
signal amplification factor Q shows bell-shaped behavior by
varying both the phase noise and the signal period, indicating
that we have uncovered a double resonance phenomenon.
The former resonance implies that biological systems may
exploit the power of randomness to enhance signal detection,

while the latter demonstrates that the detection is frequency
selective. Finally, we explain the mechanism of phase noise
in signal amplification. Here the mechanism is different from
Ref. [13]. In that case, the initial phases are not time-varying
and their influences on the firing pattern of the neuron
ensemble are realized through the coupling strengths in a
network of interactive neurons. Both findings indicate that
the initial phase of external signal plays a key factor to induce
resonance no matter whether the system is a single neuron
or an ensemble. Since noise is inevitable in real systems, our
findings are useful to study the capability of signal detection
by neural sensors. This topic deserves further experimental
and theoretical investigation.
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