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Simple biophysical model of tumor evasion from immune system control
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The competitive nonlinear interplay between a tumor and the host’s immune system is not only very complex
but is also time-changing. A fundamental aspect of this issue is the ability of the tumor to slowly carry out
processes that gradually allow it to become less harmed and less susceptible to recognition by the immune system
effectors. Here we propose a simple epigenetic escape mechanism that adaptively depends on the interactions per
time unit between cells of the two systems. From a biological point of view, our model is based on the concept
that a tumor cell that has survived an encounter with a cytotoxic T-lymphocyte (CTL) has an information gain that
it transmits to the other cells of the neoplasm. The consequence of this information increase is a decrease in both
the probabilities of being killed and of being recognized by a CTL. We show that the mathematical model of this
mechanism is formally equal to an evolutionary imitation game dynamics. Numerical simulations of transitory
phases complement the theoretical analysis. Implications of the interplay between the above mechanisms and the
delivery of immunotherapies are also illustrated.
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I. INTRODUCTION

Tumor cells are characterized by a vast number of genetic
and epigenetic events leading to the appearance of specific
antigens (e.g., mutated proteins, under- and/or overexpressed
normal proteins, and many others), triggering reactions by the
both the innate and the adaptive immune system (IS) [1,2].
These observations have provided a theoretical basis to the
old empirical hypothesis of immune surveillance, i.e., that the
IS may act to eliminate tumors [3]. Despite the accumulation
of much indirect experimental and epidemiologic evidence in
favor of this hypothesis [4], as yet no consensus has been
reached regarding it. However, we believe that this evidence
at least clearly shows that the IS is often a potent inhibitor of
tumor growth.

Of course, the competitive interaction between tumor cells
and the IS involves a considerable number of events and
molecules, and as such is extremely complex. Thus the time
course of the interplay between tumor cells and the IS is
strongly nonlinear.

However, besides nonlinearity, another important point to
stress is that the structure of the above-mentioned interactions
is also characterized by a series of adaptive phenomena. As
is well known, the IS is not in all cases able to eliminate a
neoplasm, which may escape from IS control. In other cases,
a dynamic equilibrium may also be established, such that
the tumor may survive in a dormant steady state, which is
undetectable by diagnostic equipment [5]. This was largely
inferred from clinical data, but recently Koebel et al. [6]
were able to experimentally show, through an ad hoc mouse
model, that adaptive immunity can maintain occult cancer in
an equilibrium state.
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It is quite intuitive that this equilibrium can be disrupted by
sudden events. Indeed, if disease-related impairments of innate
and adaptive immune systems occur or immunosuppressive
treatments preceding organ transplants, then tumors start
redeveloping [4,7]. This has been shown both by means of
mouse models and epidemiologic studies [4,7].

However, there is a major class of causes of disruption
of the equilibrium that is not related to immunosuppression.
Indeed, over a long period of time [4], the neoplasm may
develop multiple strategies to circumvent the action of the
IS [2,4], which may allow it to recommence growing into
clinically apparent tumors [6], which theoretically can reach
their carrying capacity [5]. From an ecological point of view,
we might say that the tumor has adapted itself to survive in a
hostile environment in which the antitumor immune response
is activated [4,5]. For example, the tumor may develop
mechanisms to spread by reducing its immunogenicity [2,4].
In other words, the immunogenic phenotype of the tumor is
ââsculptedââ by the interaction with the IS of the host. For this
reason, the theory of interaction between a tumor and the IS
has been called immunoediting theory in [4].

In the interaction between the tumor and the immune
system, the adaptation on the part of the prey and the
consequential temporal variation of parameters are aimed at
maximizing the final size reached by the tumor, whereas the
aim of the initial phase of the adaptive process of IS is the
opposite, i.e., minimizing the size of the tumor through fully
effective immune control.

As far as the mathematical description of tumor and immune
system interaction is concerned, many works have appeared
using an approach based on specific differential-equations
models with constant [8–11] or stochastically varying [12,13]
parameters and, more recently, based on a family of models
[5,14]. The basic idea of [8,9] as well as of [5,14] is simple:
tumor cells and the effector cells of IS are seen as two
competing populations. Tumor cells are mainly the prey of the
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immune effectors, whose proliferation and local recruitment
is stimulated, in turn, by the presence of the tumor. However,
malignant cells also induce a loss of effectors, and there is an
influx of effectors whose intensity may depend on the size of
the tumor [14].

Another very interesting way of studying immuno-
oncological dynamics is the approach by Bellomo and co-
workers [15,16], where cellular interactions are represented by
generalized kinetic (Boltzmann) models of nonlinear statistical
mechanics. This approach allows tumor dynamics to be studied
in far greater detail than do classical models.

In [5] the immunoediting phenomenon was empirically in-
cluded in the theoretical framework of [14] simply by allowing
the presence of slowly time-varying generic parameters in the
metamodels (time scales significantly longer than those typical
of the tumor-IS interaction). In other words, the behavioral
strategies interrelated with phenotype changes were described
by means of meta-modelling similar to the Lotka-Volterra
models with adaptively changing interaction strength [17–19],
particularly with slowly varying parameters [18], and in [20]
all the phases were considered by means of nonmonotonically
varying parameters.

Recently, in the framework of his above-mentioned ki-
netic approach, Bellomo proposed a generic model for the
“learning” of immune effectors and for the “hiding” of tumor
cells based on the concept of mutual change of the levels of
activities [16].

Here we propose a different and specific dynamic approach
for the description of tumor evasion, based on the concept that
a tumor cell that has survived an encounter with a cytotoxic
T-lymphocyte (CTL) has an information gain that it transmits
to the other cells of the neoplasm. The consequence of this
information increase is a decrease in the probabilities of being
killed and of being recognized by a CTL.

This hypothesis, although new, is in line with the general
schema of tumor escape from the immune response. Indeed,
as stressed by Stewart and Abrams [7], tumor cells may
escape from immune control through two general paradigms:
(a) mechanisms that involve the secretion of soluble factors;
(b) mechanisms that are dependent on the contact between the
tumor cells and the effectors and that are aimed at reducing
antigen recognition/adhesion and apoptotic resistance. In cur-
rent experimental knowledge the above-mentioned factors are
primarily aimed—apart from, in many cases, their mitogenic
action—at inducing the emergence of immunosuppressive
networks [21]. We propose here that soluble factors might
be used in the intercellular communication of the information
acquired in the contact with the immune effectors. This could,
for example, be related to the experimental findings by Kurnick
et al. [22], who showed that melanoma cells produce soluble
factors that diminish Melanoma-A/MART-1 Ag expression
with the concomitant loss of recognition by the specific
CTLs.

II. MODELS OF TUMOR-CTL INTERPLAY

In this section we briefly summarize the definition and
main properties of the well-known model by Kuznetsov et al.
[9,10] describing the growth of an immunogenic tumor and its

interplay with cytotoxic T-lymphocytes:

x ′ = rx
(

1 − x

K

)
− kxy + k−1C + k2(1 − p)C,

y ′ = f C

a + x
− μ0y − kxy + k−1C + k2pC + σ, (1)

C ′ = kxy − δC − k−1C − k2C,

where
(1) x(t) is the tumor size at the time t and y(t) is the size

of CTL compartment at time t , C(t) is the size of TC-CTL
complexes.

(2) The rate of binding between tumor cells and immune
effectors is kxy.

(3) The complexes have a loss rate δ and have a total rate
of unbinding k−1 + k2, where k−1 is the rate at which neither
the tumor cell nor the effector are damaged, and k2 is the
rate at which either the tumor cell or the effector are lethally
damaged.

(4) The probability that, at the end of the short lifespan of
a complex, the tumor cell is killed is p. As a consequence
the probability that the tumor cell survives (and the effector is
lethally damaged or inactivated) is (1 − p). As a consequence,
the influx of surviving tumor cells is (1 − p)k2C and the influx
of surviving effectors is k2pC.

(5) In the absence of an immune reaction the tumor follows
a logistic law: x ′ = rx(1 − x

K
).

(6) The recruitment rate of CTLs is given by f C/(a + x),
their baseline death rate is μ0, and σ is their external inflow.
Since the lifespan of the complexes is very short, in [9] it is
supposed that complexes are at quasiequilibrium so that

(δ + k−1 + k2)C ≈ kxy,

thus leading to the following bidimensional system:

x ′ = rx
(

1 − x

K

)
− k

k2

δ + k−1 + k2
pxy

(2)

y ′ = βx

a + x
y −

[
μ0 + k

k2

δ + k−1 + k2
(1 − p)x

]
y + σ.

In [9,10] and, for a class of models extending (2), in [14]
it was shown that the above models, whose dynamics are
characterized by a vast repertoire of nonlinear behaviors, can
summarize well the complex interactions between tumors and
CTLs.

III. THE IMMUNOEVASIVE PROCESSES

In previous works [5,20] one of the authors (d’Onofrio)
stressed that one of the critical points of models of tumor-
immune system interplay is that the number of tumor cells
killed per time unit [k2pC in the model (1)] as well as the
number of tumor-stimulated effectors born and/or recruited
per time unit [f C/(a + x) in the model (1)] are static in the
sense that these functions do not directly depend on time.
Initially focusing on the interpretation of the biological natural
history of tumors, a rough “kinematic” approach was employed
by qualitatively introducing some time-varying parameters,
which were explicitly given. In [5], for example, in order
to model immunoediting, in the family of bidimensional
models [14] some time-decreasing parameters were introduced
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(namely, exponential functions of time) and both simulations
and a bifurcation analysis were performed. It was thus shown
that the re-explosion of a tumor may be read as a catastrophic
transition from a locally stable dormant state to a globally
attractive macroscopic steady state near the full carrying
capacity in the absence of immune reactions.

Here we are interested in offering an explicit and biophys-
ically grounded model of the processes of long-term evasion
from immune control. Our main hypothesis is that at each
encounter between a tumor cell and a CTL, if the tumor
cell survives, the information that the tumor cell now has
regarding immune control is increased, thus decreasing the
probability p:

p(t + dt) = p(t) − η(p) × {dt[k−1 + k2(1 − p)]C} × p,

where η(p) � 0, so that

p′ = −η(p)[k−1 + k2(1 − p)]Cp. (3)

It is important to stress here that we implicitly assumed that the
information acquired by each surviving cell after its successful
detachment from a CTL is then transmitted to the other cells
via intercellular communication, which is a rapid process. Of
course, the same mechanism might also act upon encounter
with effectors, for example, of the innate IS.

Note that with p(t) being a probability, Eq. (3) must be such
that if p(0) ∈ [0,1] then p(t) ∈ [0,1] for all times −∞ < t <

+∞. This is trivially verified for t � 0, whereas in order that
it may be true also for t < 0, it has to be the case that

η(1) = 0. (4)

Thus we set

η(p) = η0(p)(1 − p), (5)

where η0(p) � 0 is bounded, for example: η0(p) = const .
Thus Eq. (3) reads

p′ = −η0(p)[k−1 + k2(1 − p)]C(1 − p)p. (6)

In the hypothesis that the dynamics of the complexes C is
very fast (k−1 + k2) � 1, and that, as a consequence, they may
considered at quasiequilibrium, i.e., C ≈ kxy/(δ + k−1 + k2),
Eq. (6) becomes

p′ = −η0(p)[δ + k−1 + k2(1 − p)]
k

k−1 + k2
xy(1 − p)p.

(7)

Note that in a macroscopic tumor where the process of
immunoevasion is not yet appreciable, it has to be the case
that p(0) ≈ 1. Since the adaptive rate of the tumor at each
encounter must, per force, be small, it follows that for a long
time-interval it is p′ ≈ 0, which matches well the fact that
immune evasion is a phenomenon with long time scales.

Note that the total number of complexes that do not lead
to the death of the involved tumor cell, i.e., the number of
nonlethal encounters for tumor cells, is given by

N ′(t) = {k−1 + k2[1 − p(t)]}C(t). (8)

Thus by using both (6) and (8), one straightforwardly obtains
that

d

dN
p = −η0(p)p(1 − p). (9)

In the case of constant η0, Eq. (9) yields

p(N ) = p(0)

p(0) + [1 − p(0)]exp(η0N )
, (10)

which is simply the mathematical counterpart of the intuitive
fact that the probability q is a decreasing function of the total
number of nonlethal complex-forming encounters N .

Remark. Equation (6) is formally the model of an evolution-
ary imitation game [23], which in this case is asymmetric since
the positive payoff is 0 and the negative payoff is proportional
to the encounter rate kxy.

Note now that the parameter k encodes two distinct
phenomena: the baseline rate k0 at which a tumor cell meets
an immune cell and also the probability z that an immune cell
may recognize the tumor cell, so that k should be modelled as
a time-varying function as follows:

k(t) = k0z(t).

The probability z may also be subject to evolutionary changes.
Thus, similarly to (3) we may write

z′ = −γ0(z)[k−1 + k2(1 − p)]C(1 − z)z. (11)

Quite interestingly, the use of a quasiequilibrium approxima-
tion sheds some further insight into the dynamics of z:

z′ = −γ0(z)[δ + k−1 + k2(1 − p)]
k0

k−1 + k2
xy(1 − z)z2.

(12)

Finally, here we briefly link the release of immunosup-
pressive factors by tumor cells with our hypothesis on the
onset of immunoediting. Namely, we assume that tumor cells
that were not lethally hit acquire and transmit information
allowing an increased production of an immunosuppressive
factor inducing the apoptosis of the CTLs. At variance with
the previous case, the modeling of these immunoediting
phenomena preliminarily requires the inclusion of new terms
in the equation for y(t) of the static model [10]. Indeed, we
suppose that tumor cells produce a factor W , which is taken
up by CTLs, and which is toxic to them. The production rate
of this factor is β(t), and it is adaptively changed by the tumor
cells so that

W ′ = β(t)x − qyW − dW,

where q is the uptake rate by CTLs and d is the degradation
rate of the chemical. Assuming, finally, that the chemokine W

degrades sufficiently rapidly, we may set W ≈ [β(t)/d]x/(1 +
εy), where ε = q/d. By assuming that the additional CTL
death rate induced by the factor W is proportional to its uptake
rate γ ∗qyW , it follows that CTL dynamics is given by

y ′ = f C

a + x
− μ0y − kxy + k−1C + k2pC

+ σ − b(t)bM

x

1 + εy
y, (13)
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where bM = (γ ∗ε)βM , βM being the maximum production rate
of W , and 0 � b(t) � 1. Thus proceeding as in the previous
section yields the following equation:

b′ = ξ0(b)[k−1 + k2(1 − p)]C(1 − b)b, (14)

where the term (1 − b) follows from the saturation in the
production of the immunotoxic factor.

IV. SIMULATIONS

In the previous section we did not analyze the asymptotic
behavior of the model since it is trivial in the sense that
limt→+∞ p(t) = 0+ and limt→+∞ z(t) → 0. Indeed, what
matters in this and other biological contexts is to assess
the typical transitory behaviors during a simulated realistic
lifespan of the host organism.

We first simulated models (1)–(6) by using for the param-
eters the numerical values that were estimated in [10] for the
model (1) with constant p, which refers to chimeric mice
with murine B cell lymphoma, an experimental tumor that is
often in quiescence. For the sake of notation simplicity we
adimensionalized the values of x, y, and c by using as a unit
106 cells (note that in [10] the steady-state value for the tumor
size to adimensionalize x, y, and z). As a consequence, the
values of the parameters are [10]

r = 0.18day−1,K = 500, k ∈ (0.1,0.4)day−1

f = 29.88day−1, a = 20.19

μ0 = 0.0412day−1, σ = 0.0136day−1

k−1 = 24.0day−1, k2 = 7.2day−1, δ = 0day−1.
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FIG. 1. Panel (a): Baseline behavior of tumor size x(t) in the
absence of dynamical changes in p and z(t) in the case of k =
0.4day−1, γ0 = η0 = 0 z(t) = 1, and p = 0.9997. Panels (b–d):
Effects of dynamical changes in p(t) in the case η = 4.5 × 10−3.
Panel (b): Behavior of x(t), immunoevasion onsets at t ≈ 850. Panel
(c): Behavior of the CTLs. Panel (d): Time changes of p(t). Other
parameters as in [10]. Time is measured in days.

0 1000
0

500

t

x

FIG. 2. Effect on x(t) of varying η0 in the case of k = 0.4day−1,
γ0 = 0 z(t) = 1, and p(0) = 0.9997. Solid gray line η0 = 0.86 ×
4.5 × 10−3; solid black line: η0 = 4.5 × 10−3; dashed line: η0 = 2 ×
4.5 × 10−3; dot-dashed line: η0 = 4 × 4.5 × 10−3; dotted line: η0 =
8 × 4.5 × 10−3. Other parameters as in [10]. Time is measured in
days.

In [10] the estimated constant value for p in model (1) was
p = 0.9997, which we use in our simulations as the initial
value for p.

Since the lifespan for chimeric mice is approximately
3 years, we simulated the model up to t = 1000 days. In
Fig. 1 we set k = 0.4day−1. In the baseline case of constant
p (first panel), i.e., η0 = 0, the tumor size (as well as the
immune effectors) exhibits damped oscillations around a small
value, indicating tumor dormancy. However, (second panel) for
η0 = 4.5 × 10−3 there is the onset of a sudden immunoevasion
at t ≈ 850 days. The corresponding behavior for the effectors
is shown in the third panel. The final panel shows the dynamics
of p(t). Note that at the onset of immunoevasion p ≈ 0.82,
which is very far from zero. With reference to the parametric
values used in Fig. 1, Fig. 2 shows how the onset of the
immunoevasion depends on η0, and one may see that for
4.5 × 10−3 < η < 3.6 × 10−2 the onset starts at times that
are adequately long, whereas for η0 < 0.86 × 4.5 × 10−3 the
onset of immunoevasion is at nonrealistic times greater than
1000 days.

In Fig. 3 we set k = 0.25day−1. Unlike the previous
simulation, in the baseline case of constant p (first panel),
i.e., η = 0, the tumor size (as well as the immune effectors)
exhibits sustained oscillations spacing from relatively small
tumor sizes up to quite large sizes. However, (second panel) for
η = 1.1 × 10−3 there is the onset of a sudden immunoevasion
at t ≈ 850 days. The corresponding behaviors for the phase
planes are shown, respectively, in the third and fourth panels.

Here, to focus on the role of z(t), we report some
baseline simulations where we set constant p(t) = 0.997
(i.e., we assumed η = 0), γ0 = const > 0, and z(0) = 0.9999.
Including the dynamics of z(t) revealed that the system is more
robust with respect to this time-varying parameter than with
respect to p(t). Indeed, the immunoevasion onsets only for
small values of z(t). Moreover, the dynamics of z(t) was slower
than those of p(t) obtained in the other set of simulations; thus
the ranges of (constant) γ0 required to onset immunoevasion
were quite larger than those of η0 used in Figs. 1 and 3. For
example, to reproduce a behavior similar to that reported in
Fig. 1, we had to set γ0 = 0.013. In Fig. 4 we report the
simulations done for the case k0 = 0.25 [as in Fig. 1, where,
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FIG. 3. Panels (a) and (c): Behavior of, respectively, tumor size
x(t) and of the phase plane [x(t),y(t)] in the absence of dynamical
changes in p and z, in the case of k = 0.25day−1, z(t) = 1, γ0 = 0,
and p = 0.9997. Panels (b) and (d): Effects of dynamical changes
in p(t) in the case η = 1.1 × 10−3. Panel (b): Behavior of x(t),
immunoevasion onsets at t ≈ 850. Panel (d): Corresponding phase-
plane plot. Other parameters as in [10]. Time is measured in days.

we recall, z(t) = 1]. Immunoevasion is triggered at t ≈ 850
for γ0 ≈ 0.0030, when z(850) ≈ 0.2. With reference to the
parametric values used in Fig. 4, Fig. 5 shows how the onset of
the immunoevasion depends on γ0, suggesting that γ0 should
range in 3.47 × 10−3 < γ0 < 1.56 × 10−2. Note that here the
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FIG. 4. Behavior of tumor-CTLs in the presence of dynamical
changes in z(t) with constant γ0(z) = 0.0039, k = 0.25day−1, z(0) =
0.9999, η0 = 0, and p = 0.9997. Panel (a): Behavior of x(t),
immunoevasion onsets at t ≈ 800. Panel (b): Behavior of the CTLs.
Panel (c): Time changes of p(t). Panel (d): (x,y) phase plane plot.
Other parameters as in [10]. Time is measured in days.
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FIG. 5. Effect on x(t) of varying γ0 in the case of k = 0.25day−1,
η0 = 0, z(t) = 0.9999, and p(0) = 0.9997. Solid gray line: γ0 =
0.89 × 3.9 × 10−3; solid line: γ0 = 3.9 × 10−3; dashed line: γ0 =
2 × 3.9 × 10−3; dot-dashed line: γ0 = 4 × 3.9 × 10−3; dotted line:
γ0 = 8 × 3.9 × 10−3. Other parameters as in [10].

onset depends on γ0 by means of a sharp saturation, reached
at approximatively γ0 ≈ 3.9 × 10−3.

Regarding the strategy of evasion through the production of
factors that are toxic to CTLs, we performed some numerical
simulations that had a behavior that is qualitatively similar to
those we reported above (see Fig. 6 ).

Finally we illustrate the negative effect of the proposed
immunoevasion mechanisms on the outcome of an im-
munotherapy, also in the case of a highly idealized and
efficient therapy (see Fig. 7). Here we consider an aggressive
tumor characterized by a smaller influx of CTLs. Namely,
we set σ = 0.00136day−1, i.e., one tenth of the value we
used in the other simulations. The other parameters were
not changed. In the absence of immunoevasion, the tumor
rapidly grows, reaching in 80 days about 80% of its theoretical
carrying capacity, so that the animal dies. In the presence of
immunoevasion with η = 0.0005, the full carrying capacity
is reached at t = 90day. In both cases we simulated a highly
idealized adoptive cellular immunotherapy, whose effect is
modelled by increasing by twentyfold the rate σ up to the
value σ = 0.0272day−1. The therapy starts at t = 14day and is
uninterrupted, which is, of course, an idealized scenario. Both
in the presence and absence of immunoevasion, the therapy is

0 1000
0

500

t

x

FIG. 6. Evasion through the production of factors toxic for CTLs,
in the case of constant p(t) and k(t). Effect on x(t) of varying ξ0 in
the case of ε = 0.01, bM = k = 0.4 day−1 and p(0) = 0.9997. Solid
gray line: ξ0 = 4 × 10−3; solid line: ξ0 = 5 × 10−3; dashed line:
ξ0 = 7.5 × 10−3; dotted line: γ0 = 3.5 × 10−2. Other parameters
as in [10].
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FIG. 7. Behavior of tumor-CTLs under an ideal adoptive cellular
immunotherapy in the absence and in presence of dynamical changes
of p(t). Baseline influx rate of CTLs: σ = 0.00136day−1, k =
0.25day−1, p(0) = 0.9997. Panel (a): tumor growth in absence of
therapy and constant p(t) = 0.9997. Panel (b): controlled growth
of x(t) in presence of therapy such that for t � 14day it is σ =
0.0272day−1, but constant p(t). Panel (c): tumor growth in absence
of therapy and with time-varying p(t) with η = 0.0005. Panel (d):
growth of x(t) in presence of therapy such that for t � 14day it
is σ = 0.0272day−1, but time-varying p(t) with η = 0.0005. Other
parameters as in [10]. Time is measured in days.

initially very effective and in the case η = 0 the tumor remains
perfectly controlled at a small size. Conversely, although the
therapy is intensive and uninterrupted, in the case η = 0.0005
a relapse is observed at t ≈ 150day.

V. CONCLUDING REMARKS

In this work we have developed a model of immunoevasion
of tumors that is based on adaptive phenomena, which are of
importance in the biophysical study of interacting populations
[19,24]. Although our model is very simple and to some extent
oversimplified (as are many other well-known models [9–11]),
and although it uniquely focuses on the interplay of tumor
cells with cytotoxic T lymphocytes, it is nevertheless able to
qualitatively reproduce the phenomenon of immunoevasion.
Its main characteristics are that it is an epigenetic model and
that it is based on the adaptive ability of tumor cells.

However, we stress here that we only focused on two
contributions to the immunoevasive process, i.e., (i) the ability
of tumor cells to mitigate the probability p of being killed by
the immune effectors and (ii) the probability z that a tumor
cell is recognized by a CTL. Moreover, noticing that in the
reduced model (2) the total loss rate of effectors can be written
as μ(x) = μ0 + w(1 − p)x, where w = kk2/(δ + k−1 + k2),
it follows that the decrease of p indirectly increases the loss
rate of effectors. We note that one should take into account that
also the recruitment and proliferation of immune effectors is
evolutionarily modulated, and it decreases. This phenomenon
may be modelled in a similar way to the evolutionary decrease
of the killing rate here studied. However, we were interested

in proposing a model whereby all the state variables have a
well-defined biophysical meaning, and where all the involved
biological processes are clearly identified.

As far as the differences of the relative impact of z and p are
concerned, we would note here that our simulations on murine
B lymphoma suggest that: (i) the onset of immunoevasion is
extremely dependent on p(t): small changes in p can switch the
tumor state from a small equilibrium under control to a large
equilibrium; (ii) immunoevasion is not very sensitive even to
large changes in z and it is triggered when z(t) reaches small
values (e.g., z ≈ 0.2); and (iii) the dynamics of z(t) is slower
than that of p(t) in the case where setting γ0 = η. Thus, we
may speculate that in some cases (for example, for the murine
B lymphoma we simulated) the prevalent reason underlying
immunoevasion is the reduction of the probability of killing a
tumor cell, not the reduction of probability of recognizing a
tumor cell by a CTL.

In this work we dealt with the interplay between tumors
and specific immunity. We chose this approach because
of the experimental evidence on the relevance of CTLs in
determining dormancy or evasion of many major tumors such
as melanomas, ovarian carcinomas, and colorectal carcinomas
[25], where the presence of infiltrating lymphocite is a
useful prognostic marker. Moreover, we built up our model
on the tumor-CTLs model of [10], where parameters were
fitted to experimental animal data. However, embedding the
proposed evolutionary mechanism in a more complex setting,
where a more detailed description of both adaptive and
innate immunity is included, should lead to results that are
qualitatively similar to those illustrated here.

As far as the temporal details of our model are concerned,
we note that in the proposed model we have many time
scales: (i) the average lifespan of immune effectors; (ii) the
growth of the tumor (the main process); and (iii) the escape
adaptive process, which is comparable with the lifespan of
the host organism. Moreover, there is another time scale: that
of the propagation of intercellular communication. However,
we stress here that since this time scale is extremely small in
comparison with all the other three scales, we neglected it.
One might encode it in the equation as a lumped or distributed
delay but without gain of physical information.

However, it is important to stress that our model is only
a rough deterministic approximation of the real stochastic
evolutionary scenario leading to immunoevasion. For the sake
of simplicity, let us use the modeling framework proposed by
[26], where phenotypes are modelled through a finite number
of parameters. Thus, we may say that our model assumes that
the tumor immuno-phenotype has an average given by the
vector f (t) = [p(t),k(t)], and a variance that is very small.
This is a consequence of our hypothesis that a very efficient
and rapid (with respect to the tumor growth) intercellular
communication exists between tumor cells. We are currently
working toward a more appropriate framework where we have
also added details on spatial dynamics. In the limit where the
complex’s tumor cell-CTL is at quasi-steady state, we showed
that the dynamics of p are ruled by an equation that, from a
mathematical point of view, is an imitation evolutionary game.

Although it is unclear to us which, and if any, underlying
biological process is linked to the imitation schema, the asym-
metry of the payoffs, where only the payoff corresponding to
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a utility in case of decrease of p, is clear: the neoplasm has
no interest in increasing the probability of being killed by an
immune effector. Interestingly, one of the anonymous referees
proposed to interpret the proposed model as an evolutionary
game between the tumor and the cytotoxic T cells.

It is known in the literature [27] that adaptive phenomena
may be linked to evolutionary game theory. However, Sato
et al. observed in [28] that adaptive agents may have no knowl-
edge of the game. This is not surprising in the context of games
played by cellular populations, because the implementation of
a strategy, in this case, is simply dictated by the genome and
by mutations and epigenetic changes, as clearly stressed by
Tomlinson and Bodmer [29].

Tomlinson and Bodmer were also the first to introduce
game theoretic methods in oncology [29]. Quite interestingly,
their models are also based on intercellular communications,
although considering scenarios and signals that are different
from those studied here. In fact, their models are based
on abstract games between “signal producer” tumor cells
and “signal nonproducer” tumor cells. Other examples of
applications of game theory in modeling tumor biology are
given in Ref. [30]. In this work we were essentially interested
in the basic facts of immune response to tumors. However,
a number of antitumor immunotherapies have been proposed
and also theoretically investigated (see Refs. [11,14,31,32]
and references therein). We believe that both the experimental
results concerning immunoevasion of tumors and the theoret-
ical findings we proposed here might have some relevance
to clinical applications. Indeed, our numerical simulations
confirm, also in very idealized immunotherapeutic settings,

the clinical intuition summarized by M. Rescigno et al. [32] as
follows: “immunoediting... can impair not only host-generated
immunosurveillance, but also attempts to harness the immune
response for therapeutic purposes, namely immunotherapies.”
More generally, we share the opinion of Zitvogel et al. [25],
who stressed that recent progresses in immuno-oncology have
not influenced the way anticancer therapies are conceived and
applied in clinics.

Finally, we should make one important observation: our
model, although based on a biological and biophysical
background, is speculative and requires experimental val-
idation. In the literature, to the best of our knowledge,
immunoediting is illustrated only by means of qualitative
clinical or molecular experimental findings. Indeed, a com-
plete quantitative study of the adaptive evasion from tumor
dormancy allowing, for example, the plotting of tumor growth
curves would be remarkably resource-consuming. Thus we
hope that this theoretical work may trigger experimental
investigations of this kind, which would allow validation of our
model.
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