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Dynamical singularities in adaptive delayed-feedback control
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We demonstrate the dynamical characteristics of adaptive delayed-feedback control systems, exploiting a
discrete-time adaptive control method derived for carrying out detailed analysis. In particular, the systems exhibit
singularities such as power-law decay of the distribution of transient times and almost zero finite-time Lyapunov
exponents. We can explain these results by characterizing such systems as having (1) a Jacobian matrix with
unity eigenvalue in the whole phase space, and (2) parameters approaching a stability boundary proven to be
identical with that of (nonadaptive) delayed-feedback control.
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I. INTRODUCTION

The ability to adapt, as by learning, is indispensable for
the survival of living things, and can also be critical in other
real systems, e.g., ecological, economic, and social systems.
Extensive studies relating to the realization of such ability in
artificial systems have been carried out in diverse fields, in-
cluding physics. Neural networks have attracted particular at-
tention from physicists. Although these studies have achieved
significant success, some intractable aspects of such adaptive
systems as dynamical systems have also been reported. Not
just real biological systems, but even much simpler, artificially
constructed systems often exhibit highly dynamic and complex
behavior (see Refs. [1–3]); for example, we have previously
identified singular behavior (“neutral behavior”) different from
ordinary chaos, such as that exemplified by zero Lyapunov
exponents [4]. To understand highly dynamic phenomena,
e.g., of living things, it is necessary to analyze the complex
dynamics of such adaptive processes themselves, in contrast
to conventional treatments, which tend to focus on efficiency
or stability. However, relatively few such analyses have been
done so far, and these studies have been limited to reports
of individual phenomena observed numerically. This is in part
because an adaptive system itself, as well as its dynamics, tends
to be extraordinarily complex and thus difficult to analyze,
as reported previously for online learning of recurrent neural
networks [4]. In this paper, we study, not merely numerically
but also theoretically, a much simpler but sufficiently general
class of adaptive systems derived from controlling chaos. That
is, we study dynamical system characteristics of adaptive
delayed-feedback control, employing an adaptive control
method developed for performing rigorous analysis.

Delayed-feedback control (DFC) [5] is one of the two
standard methods for controlling chaos, allowing the sta-
bilization of an unstable periodic orbit. DFC can be used
without knowledge of the target orbits, in contrast to the
other standard method, proposed by Ott, Grebogi, and Yorke
(the OGY method) [6]. Since both methods are deterministic,
a control system (i.e., a total system where a dynamical
system is controlled by such a method) also becomes a
dynamical system. To carry out detailed analysis, we use
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DFC as the basis of our study because of its remarkable
simplicity. Indeed, this method can produce much simpler
dynamical systems as control systems than the OGY method
because DFC systems do not require reference signals, i.e.,
external inputs for specifying target orbits. For the purpose
of clarifying the dynamical features of adaptive processes, we
derived a discrete-time adaptive DFC method where the DFC
is expanded into adaptive control. Even with this modification,
our adaptive DFC is still far simpler, and thus far easier
to analyze, than the previously studied online learning of
recurrent neural networks [4]. However, even for (nonadaptive)
DFC, few investigations of the global dynamics of control
systems exist, except, e.g., Refs. [7,8], although their local
properties have been studied intensively [9–11].

In this paper, in order to clarify characteristics of adaptive
processes as dynamical system processes, we investigate both
the local and global properties of adaptive DFC systems by
linear stability analysis and numerical simulations using the
Hénon map. As a result, we show that the dynamics of adaptive
DFC systems are indeed singular (“neutral”), in strong contrast
to ordinary chaos, and, in particular, that this singularity is
well explained by two distinct characteristics, local and global,
demonstrated for adaptive DFC systems.

II. ADAPTIVE DELAYED-FEEDBACK CONTROL

While DFC was originally proposed as a method for
controlling chaos in continuous-time dynamical systems [5],
it can also be applied to discrete-time systems [12,13] such as
x(t + 1) = f (x(t)) + K[x(t − T ) − x(t)], where x(t) ∈ Rn is
a state at discrete times t = 0,1,2, . . . , f is an n-dimensional
map to be controlled, K is an n × n constant matrix called
a gain matrix, and T is the period of an unstable periodic
orbit of f to be stabilized. If we can determine an appropriate
K, unstable periodic orbits with period T will be stabilized.
However, such a determination is generally difficult [13,14].
Thus, we require an adaptive control method that automatically
adjusts parameters, such as elements of K. As far as we know,
no adaptive DFC method has previously been proposed for
discrete-time systems, while there are several for continuous-
time systems. In order to simplify the following analysis, next
we derive a discrete-time adaptive DFC method, which is a
discrete-time version of the continuous-time adaptive DFC
method proposed by Nakajima et al. [15].
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In the following, we focus on the stabilization of unstable
fixed points (T = 1)

x(t + 1) = f (x(t)) + K(t)[x(t − 1) − x(t)] (1)

because stabilization of period-T orbits of f can be reduced
to that of fixed points of the T -times composed map f (T ). The
update of K is based on a gradient descent of the squared error
E(t) = 1

2‖x(t − 1) − x(t)‖2, where E implicitly depends on
K through x. Suppose the (i,j )th element kij of K is one of
the adjustable parameters; the update rule for kij is given by

kij (t + 1) = kij (t) − ε
∂E(t)

∂kij

∣∣∣∣
K(t)

= kij (t) − ε[x(t − 1) − x(t)] · [vij (t − 1) − vij (t)],

(2)

where ε > 0 denotes a learning rate and vij (t) denotes ∂x(t)
∂kij

. By
assuming that K is constant in time, the approximate equation
for vij (t) is derived from differentiating Eq. (1) by kij , yielding

vij (t + 1) = D f (x(t))vij (t) + K(t)[vij (t − 1) − vij (t)]

+ [xj (t − 1) − xj (t)]ei , (3)

where D f (x) is a Jacobian matrix of f at x, xj is the j th
element of x, and ei is the ith unit vector.1 We now accomplish
the derivation of the discrete-time adaptive DFC method by
Eqs. (1)–(3).2

For simplicity, we arrange all the parameters (i.e., the
adjustable elements of K) as a d-dimensional vector κ , where
d is the number of the parameters. Equations (1)–(3) then
constitute a dynamical system with delay, with dynamical
variables {x(t),κl(t),vl(t)} (l = 1,2, . . . ,d), where κl is the lth
element of the κ and vl(t) is ∂x(t)

∂κl
. This dynamical system with

delay can be rewritten as a dynamical system without delay
by introducing new variables y(t) and wl(t) for x(t − 1) and
vl(t − 1), respectively, as follows:

x(t + 1) = f (x(t)) + K(t)[y(t) − x(t)],

y(t + 1) = x(t),

κl(t + 1) = κl(t) − ε[y(t) − x(t)] · [wl(t) − vl(t)], (4)

vl(t + 1) = D f (x(t))vl(t) + K(t)[wl(t) − vl(t)]

+ [yj (l)(t) − xj (l)(t)]ei(l),

wl(t + 1) = vl(t),

where l = 1,2, . . . ,d. Also, i(l) represents the row index and
j (l) the column index of kij , which corresponds to κl . We call
this dynamical system an adaptive DFC system.

III. LINEAR STABILITY ANALYSIS

In this section, we demonstrate the local properties of
adaptive DFC systems by using linear stability analysis. We

1The initial value for vij is given by vij (0) = vij (−1) = 0.
2This online update scheme is the same as that used in the

continuous-time adaptive DFC and the online learning of recurrent
neural networks, and has been successfully applied to various
temporal adaptation tasks [15–17].

state below three facts (Facts 1–3); a detailed description of the
Jacobian matrix of the adaptive DFC systems [Eq. (4)], which
is necessary to prove Facts 1 and 3, is provided in Appendix A.

First, we demonstrate the uniqueness of the adaptive DFC
systems as dynamical systems by showing the distinctive
feature of the Jacobian matrix of Eq. (4).

Fact 1 The Jacobian matrix of the adaptive DFC systems
[Eq. (4)] has eigenvalue unity at all points in phase space,
except for points where the matrix is not defined.

A proof of Fact 1 is presented in Appendix B. For
discrete-time dynamical systems, the eigenvalue unity of
the Jacobian matrix at some point indicates the existence
of one-step neutral stability of dynamics around that point.
Fact 1 reveals that the adaptive DFC systems have such neutral
stability over the entire phase space, which is a unique situation
compared to other dynamical systems. As will be shown in
the next section, we also observe unique behavior in adaptive
DFC processes numerically: The behavior is neutral behavior
different from ordinary chaos, such as power-law decay of
the distribution of transient times and almost zero finite-time
Lyapunov exponents. The local characteristic stated in Fact
1 can allow us to understand why adaptive DFC systems so
widely exhibit such neutral behavior.3

While Fact 1 holds true throughout the whole phase space,
we can conduct further analysis on the adaptive DFC systems,
in particular around fixed points. In fact, we can prove the
following two facts, for the fixed points of Eq. (4):

Fact 2 Let x∗ be a fixed point of f , and let z1,z2, . . . ,zd

be eigenvectors associated with the eigenvalue unity of
D f (x∗). Then every fixed point of Eq. (4) takes the
form (x,y,κ1,κ2, . . . ,κd,v1,w1,v2,w2, . . . ,vd ,wd ) = (x∗,x∗,
c1,c2, . . . ,cd,z1,z1,z2,z2, . . . ,zd ,zd ), where c1,c2, . . . ,cd are
constants. If D f (x∗) does not have the eigenvalue unity, then
z1,z2, . . . ,zd are all 0.

See Appendix C for the derivation of the fixed points of
Eq. (4).

Since our control task is to stabilize a fixed point, we require
the state of the adaptive DFC systems themselves to converge
to a fixed point, after the control ends in success. Conversely,
Fact 2 reveals that all fixed points of Eq. (4) are successful
states because the x component, corresponding to the original
variable of the undelayed system, equals the original fixed
point x∗. In the case of the adaptive DFC, therefore, we
can identify success of control with convergence to a fixed
point, and the stability of the fixed points becomes a matter of
concern.

3As far as we know, at least for dynamical systems that we
usually encounter, power-law decay of the distribution of transient
times implies existence of a finite-time Lyapunov exponent around
zero (the exponent is not necessarily the largest one, and possibly
exhibits irregular oscillation around zero [4]). Several mechanisms are
well known to generate such neutral behavior; for example, various
intermittency mechanisms at a critical point [18]. In contrast, for a
given dynamical system exhibiting neutral behavior, it is still difficult
in general to identify the mechanism explaining the observed neutral
behavior. In Sec. IV D, we provide another reason (a global reason)
for the neutral behavior observed in adaptive DFC processes.
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Fact 3 Consider the map for nonadaptive DFC systems

x(t + 1) = f (x(t)) + K[y(t) − x(t)],
(5)

y(t + 1) = x(t),

which has a fixed point (x,y) = (x∗,x∗). Let �(λ) be the
characteristic polynomial of the Jacobian matrix of Eq. (5)
at the fixed point. Then, the characteristic equation of the
Jacobian matrix of Eq. (4) at the fixed points described in
Fact 2 is given by

(λ − 1)d [�(λ)]d+1 = 0. (6)

A proof of Fact 3 is presented in Appendix D.
In particular, Fact 3 reveals that the stability condition for

the fixed points of the adaptive DFC is identical with that of
the nonadaptive DFC, except for the eigenvalue unity, from the
factor (λ − 1)d in Eq. (6).4 Later, we will exploit this identity
to provide another reason (a global reason) for the neutral
behavior that we now move on to consider.

IV. NUMERICAL SIMULATIONS

In the following, we explore the global properties of the
adaptive DFC systems by numerical simulations.5 As a typical
example, we present results obtained using the Hénon map
(x1,x2) �→ (a − x2

1 + bx2,x1) with parameter values (a,b) =
(1.4,0.3), although similar results have been obtained in other
cases using different parameters or different chaotic maps (e.g.,
the logistic, tent, and Lozi maps).

A. Basin structure

First, we study the basin structure of adaptive DFC systems.
Figures 1(a) and 1(b) show a two-dimensional slice through
initial condition space using adaptive and nonadaptive DFC,
respectively, for stabilization of an unstable fixed point x∗ of
the Hénon map.6 The horizontal and vertical axes correspond
to y1(0) and y2(0), respectively. The other initial values are
x(0) = f (y(0)) and K(0) = (−0.8 0

0 0) (cf. footnote 1). For the
adaptive control, we choose to update all four elements of K
as adjustable parameters, with ε = 0.0001. In this setting, the
adaptive DFC system is a 24-dimensional map from Eq. (4),
whereas the map for the nonadaptive DFC is 4 dimensional
from Eq. (5). In either figure, each initial condition on a 103 ×
103 grid is followed until 105 time steps. Grid points are plotted
as black dots for initial conditions from which control ends
in success (i.e., from which control achieves convergence to
x∗); otherwise, points are left blank. These figures show fine

4Note that Fact 3 holds true only for the fixed points, whereas
Fact 1 holds true throughout the whole phase space, including the
fixed points.

5While we have examined the adaptive DFC only through numerical
simulations, it can be applied to various physical systems, as can the
nonadaptive DFC.

6In fact, the Hénon map with (a,b) = (1.4,0.3) has two unstable
fixed points. However, because of the odd number limitation [13],
DFC can stabilize only one of them, i.e., the fixed point x∗ = (α,α)T,
where α = 1

2 {b − 1 + [(b − 1)2 + 4a]1/2} ≈ 0.883 896 . . . .
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FIG. 1. Initial conditions with success, plotted as black dots, for
(a) adaptive DFC and (b) nonadaptive DFC.

structure, which implies sensitivity to the initial conditions
of whether control results in success. Furthermore, the basin
volume (area) shown in Fig. 1(a) increases over that in Fig. 1(b)
by 14.1%, indicating the superior efficiency of our discrete-
time adaptive DFC method.

B. Distribution of control times

Next, we shift our focus to the construction process of such
fractal basins. In particular, we study the distribution of control
times (transient times). Figures 2(a) and 2(b) show control time
distribution of adaptive and nonadaptive DFC, respectively. In
each case, y(0) is uniformly chosen from a bounded region (the
region [−2,2] × [−2,2]). The other settings are the same as
the basin’s case before. As a result, in the case of the adaptive
DFC, a fraction of the initial points from which control ends
in success with control time τ , denoted as p(τ ), is found to
decay according to a power law. This “slow” decay is in strong
contrast with “fast” decay observed in transient chaos: In
general, distribution of transient times decays exponentially for
transient chaos (i.e., construction process of ordinary fractals)
[19]. Indeed, p(τ ) decays exponentially in nonadaptive DFC.

C. Time evolution

The slow decay indicates the existence of underlying long
transients. To clarify the underlying dynamics of the observed
power-law distribution [Fig. 2(a)], we further give results on
the time evolution of long-transient orbits of adaptive DFC
systems using a finite-time Lyapunov exponent. The time-t
Lyapunov exponent is the average exponential expansion rate
along the trajectory of length t [19]. In this paper, we focus
on the largest exponent. Figure 3(a) presents x1(t) versus t

τ
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FIG. 2. Distributions of control times for (a) adaptive DFC
(log-log plot) and (b) nonadaptive DFC (semilog plot).
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FIG. 3. Time evolution for the adaptive DFC. (a) x1(t) vs t .
The dashed line for the position of the x1 component of x∗
(cf. footnote 6). (b) The time-6 Lyapunov exponent vs t . Inset: A
magnification for 2000 � t � 8000.

of an orbit starting from the initial condition [y1(0),y2(0)] ≈
(−1.350 32,0.609 88), which is chosen to generate a long-
transient orbit from the data of Fig. 2(a). In this example,
the orbit has a transient of nearly 104 time steps, and shows
period-6 motion in most of the transient time, but the control
results in success. Figure 3(b) shows the time-6 Lyapunov
exponent versus t , with the same conditions as in Fig. 3(a).
As a result, the finite-time Lyapunov exponent is almost
0. However, more precisely, its value changes sign from
slightly negative to slightly positive [inset in Fig. 3(b)],
indicating a corresponding slight change of the stability
of the pseudo-period-6 orbit. Similar dynamical behavior
dominated by periodic or quasiperiodic motion with almost
zero finite-time Lyapunov exponents is typically observed for
other long-transient orbits, independently of other choices of
initial values, parameter values, arrangement of adjustable
elements in K, and controlled chaotic maps.

D. Dynamics in parameter space

The above observations indicate that the dynamics of
adaptive DFC systems are neutral in the sense that (i) transient
time (control time) distribution decays according to a power
law and (ii) the finite-time Lyapunov exponent is almost 0.
In the following, we investigate dynamics in parameter space
and give another reason why such neutral behavior is observed
in adaptive DFC processes, from the viewpoint of global
dynamics.

To demonstrate parameter dynamics, we use only two
elements, k11 and k12, of K as adjustable parameters for the
purpose of visibility. In this case, we obtain a 14-dimensional
map from Eq. (4). The other settings are the same as before.
In Fig. 4, trajectories in parameter space are displayed for
several orbits with long transients. All of these start from the
same initial parameters [k11(0),k12(0)] = (−0.8,0) but from
different y(0), indicated by different colors (gray levels). In
this case, one can verify, by using the Jury criterion [20], that
the fixed point (x∗,x∗) of the nonadaptive DFC system [Eq. (5)]
is locally stable if and only if k11 and k12 satisfy the following
inequalities:

−k2
12 − (2α + 1)k12 + b + 1

k12 − 1
< k11 < k12 − 2α + b − 1

2
,

−1 < k12 < 1 (7)

where α ≈ 0.883 896 . . . and b = 0.3. The closed curve in
Fig. 4 shows the boundary of this stability region. As a
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k
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FIG. 4. (Color online) Trajectories in parameter space for
two-parameter adaptive DFC. All the trajectories originate from
[k11(0),k12(0)] = (−0.8,0) labeled as the plus sign. Different colors
(gray levels) indicate different initial conditions. The closed curve
represents the stability boundary given by Eq. (7).

result, the parameters (k11,k12) of all the long-transient orbits
approach and stay near the boundary, where the fixed point of
Eq. (5) is neutrally stable, and, accordingly, � in Eq. (6) itself
has a root of modulus unity. Similar approaches of parameters
to a stability boundary have been widely observed for other
adaptive DFC systems with various different conditions. Thus,
the neutral behaviors in the adaptive DFC systems can be
also explained from the viewpoint of global dynamics, that
is, approaches of parameters to a stability boundary. In
general, various power-law distributions accompanied by zero
Lyapunov exponents are observed at a critical point (see, e.g.,
Refs. [21–23]).

V. SUMMARY AND DISCUSSION

In this paper, in order to clarify dynamical features of
adaptive processes, we have investigated adaptive DFC, both
theoretically and numerically, by exploiting a discrete-time
adaptive DFC method derived for carrying out detailed analy-
sis. In particular, we demonstrated that, as dynamical systems,
adaptive DFC systems exhibit singular behavior (“neutral
behavior”) different from ordinary chaos. Furthermore, we
have shown that these singularities can be explained by the
local characteristic that the Jacobian matrix has eigenvalue
unity in the whole phase space, and by the global characteristic
that parameters approach a stability boundary proven to be
identical with that of the nonadaptive DFC.

It is our conjecture that unique dynamical singularities such
as those reported here will be common in systems with the
ability of adaptation or learning. Indeed, not only the numerical
observation of similar singularity as mentioned already [4], but
also a theoretical argument similar to this study can be made for
the online learning of recurrent neural networks, which will be
reported elsewhere. Further clarification of such universality
will be crucial toward understanding highly dynamic and
complex phenomena observed in real systems such as brains.
(Indeed, a phenomenon resembling the present results, as well
as a conjecture that parameters are near a stability boundary,
has been reported in a study of human control of balance [24].)
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APPENDIX A: JACOBIAN MATRIX OF ADAPTIVE
DFC SYSTEMS

In order to determine the Jacobian matrix of adaptive DFC
systems [Eq. (4)], we first introduce several symbols. Let x̃ be
a state of the adaptive DFC systems given by

x̃ = (x,y,κ,v1,w1,v2,w2, . . . ,vd ,wd ),

and F be the map for the adaptive DFC systems. Then, Eq. (4)
can be represented by

x̃(t + 1) = F(x̃(t)).

We denote the components of F by Fx,Fy,Fκ ,Fv1 ,Fw1 ,

Fv2 ,Fw2 , . . . ,Fvd
,Fwd

, which assign, respectively, the com-
ponents x,y,κ,v1,w1,v2,w2, . . . ,vd ,wd of x̃. That is,

x(t + 1) = Fx(x̃(t)),

y(t + 1) = Fy(x̃(t)),

κ(t + 1) = Fκ (x̃(t)),

v1(t + 1) = Fv1 (x̃(t)),

w1(t + 1) = Fw1 (x̃(t)),

v2(t + 1) = Fv2 (x̃(t)),

w2(t + 1) = Fw2 (x̃(t)),
...

vd (t + 1) = Fvd
(x̃(t)),

wd (t + 1) = Fwd
(x̃(t)).

Also, we denote the m × m identity matrix by Im, and the
m × n zero matrix, having only zero elements, by 0m×n.

In order to closely investigate the Jacobian matrix DF of
F, we partition DF as follows:

2n + d︷︸︸︷ 2nd︷︸︸︷
DF(x̃) = 2n + d

{(
A B

C D

)
,

2nd
{

where A, B, C, and D are (2n + d) × (2n + d), (2n + d) ×
2nd, 2nd × (2n + d), and 2nd × 2nd matrices, respectively.
In the following, we carry out a determination of DF through
determination of each block in turn.

The block A of DF is given by

A =

⎛
⎜⎝

∂ Fx/∂x ∂ Fx/∂y ∂ Fx/∂κ

∂ Fy/∂x ∂ Fy/∂y ∂ Fy/∂κ

∂ Fκ/∂x ∂ Fκ/∂y ∂ Fκ/∂κ

⎞
⎟⎠

=

⎛
⎜⎝

D f − K K A1, 3

In 0n×n 0n×d

A3, 1 A3, 2 Id

⎞
⎟⎠ . (A1)

A1, 3 is a n × d matrix with the [i(l),l]th element yj (l) − xj (l)

for l = 1,2, . . . ,d, while the other elements are equal to zero.
[Note again that i(l) represents the row index and j (l) the
column index of kij , which corresponds to κl .] The d × n

matrices A3, 1 and A3, 2 are given by

A3, 1 =

⎛
⎜⎜⎜⎜⎝

ε(w1 − v1)T

ε(w2 − v2)T

...
ε(wd − vd )T

⎞
⎟⎟⎟⎟⎠ , A3, 2 =

⎛
⎜⎜⎜⎜⎝

−ε(w1 − v1)T

−ε(w2 − v2)T

...

−ε(wd − vd )T

⎞
⎟⎟⎟⎟⎠ ,

where the superscript T denotes transpose.
The block B of DF is given by

B =

⎛
⎜⎝

∂ Fx/∂v1 ∂ Fx/∂w1 . . . ∂ Fx/∂vd ∂ Fx/∂wd

∂ Fy/∂v1 ∂ Fy/∂w1 . . . ∂ Fy/∂vd ∂ Fy/∂wd

∂ Fκ/∂v1 ∂ Fκ/∂w1 . . . ∂ Fκ/∂vd ∂ Fκ/∂wd

⎞
⎟⎠

=

⎛
⎜⎝

0n×n 0n×n . . . 0n×n 0n×n

0n×n 0n×n . . . 0n×n 0n×n

B3, 1 B3, 2 . . . B3, 2d−1 B3, 2d

⎞
⎟⎠ . (A2)

B3, 2l−1 = ∂ Fκ/∂vl and B3, 2l = ∂ Fκ/∂wl (l = 1,2, . . . ,d)
are d × n matrices, where the lth rows are ε(y − x)T and
−ε(y − x)T, respectively. All other elements are equal to zero.
Thus, the forms of B3, 2l−1 and B3, 2l are as follows:

B3, 2l−1 =

⎛
⎜⎝

0(l−1)×n

ε(y − x)T

0(d−l)×n

⎞
⎟⎠ , B3, 2l =

⎛
⎜⎝

0(l−1)×n

−ε(y − x)T

0(d−l)×n

⎞
⎟⎠ .

The block C of DF is given by

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Fv1/∂x ∂ Fv1/∂y ∂ Fv1/∂κ

∂ Fw1/∂x ∂ Fw1/∂y ∂ Fw1/∂κ

...
...

...

∂ Fvd
/∂x ∂ Fvd

/∂y ∂ Fvd
/∂κ

∂ Fwd
/∂x ∂ Fwd

/∂y ∂ Fwd
/∂κ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C1, 1 C1, 2 C1, 3

0n×n 0n×n 0n×d

...
...

...

C2d−1, 1 C2d−1, 2 C2d−1, 3

0n×n 0n×n 0n×d

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

The n × n matrices C2l−1, 1 and C2l−1, 2 and the n × d matrices
C2l−1, 3 (l = 1,2, . . . ,d) take somewhat complex forms. In
particular, C2l−1, 1 contains second derivatives of f ; this fact
makes DF be defined at points where f in Eq. (4) is twice
differentiable. However, as long as DF is defined, the contents
of C2l−1, 1, C2l−1, 2, C2l−1, 3 are unrelated to the presented
discussion concerning Facts 1 and 3.
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The block D of DF has a block diagonal structure given by

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ Fv1/∂v1 ∂ Fv1/∂w1 . . . ∂ Fv1/∂vd ∂ Fv1/∂wd

∂ Fw1/∂v1 ∂ Fw1/∂w1 . . . ∂ Fw1/∂vd ∂ Fw1/∂wd

...
...

. . .
...

...

∂ Fvd
/∂v1 ∂ Fvd

/∂w1 . . . ∂ Fvd
/∂vd ∂ Fvd

/∂wd

∂ Fwd
/∂v1 ∂ Fwd

/∂w1 . . . ∂ Fwd
/∂vd ∂ Fwd

/∂wd

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D f − K K O

In 0n×n

. . .

D f − K K

O In 0n×n

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A4)

That is, (
∂ Fvl

/∂vl ∂ Fvl
/∂wl

∂ Fwl
/∂vl ∂ Fwl

/∂wl

)
=

(
D f − K K

In 0n×n

)

for l = 1,2, . . . ,d, and the other derivatives are equal to zero.
From Eqs. (A1)–(A4), we obtain the form of DF as follows:

DF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D f − K K A1, 3 0n×n 0n×n . . . 0n×n 0n×n

In 0n×n 0n×d 0n×n 0n×n . . . 0n×n 0n×n

A3, 1 A3, 2 Id B3, 1 B3, 2 . . . B3, 2d−1 B3, 2d

C1, 1 C1, 2 C1, 3 D f − K K O

0n×n 0n×n 0n×d In 0n×n

...
...

...
. . .

C2d−1, 1 C2d−1, 2 C2d−1, 3 D f − K K

0n×n 0n×n 0n×d O In 0n×n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

APPENDIX B: PROOF OF FACT 1

In order to prove Fact 1, we show that the determinant |DF − I2n+d+2nd | = 0 (see Appendix A for explanation of the symbols).
From Eq. (A5),

|DF − I2n+d+2nd | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D f − K − In K A1, 3 0n×n 0n×n . . . 0n×n 0n×n

In −In 0n×d 0n×n 0n×n . . . 0n×n 0n×n

A3, 1 A3, 2 0d×d B3, 1 B3, 2 . . . B3, 2d−1 B3, 2d

C1, 1 C1, 2 C1, 3 D f − K − In K O

0n×n 0n×n 0n×d In −In

...
...

...
. . .

C2d−1, 1 C2d−1, 2 C2d−1, 3 D f − K − In K

0n×n 0n×n 0n×d O In −In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By applying elementary column operations to DF − I2n+d+2nd , namely, adding the rightmost column block to the second
rightmost column block, we obtain a block-upper-triangular matrix with two diagonal blocks, the lower right diagonal block of
which is −In, as follows:

|DF − I2n+d+2nd | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D f − K − In K A1, 3 0n×n 0n×n . . . 0n×n 0n×n

In −In 0n×d 0n×n 0n×n . . . 0n×n 0n×n

A3, 1 A3, 2 0d×d B3, 1 B3, 2 . . . 0d×n B3, 2d

C1, 1 C1, 2 C1, 3 D f − K − In K O

0n×n 0n×n 0n×d In −In

...
...

...
. . .

C2d−1, 1 C2d−1, 2 C2d−1, 3 D f − In K

0n×n 0n×n 0n×d O 0n×n −In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Note that B3, 2d−1 + B3, 2d = 0d×n (see Appendix A). We
see that the upper left diagonal block is a block-lower-
triangular matrix, the lower right diagonal block of which
is D f − In. Because the determinant of a block-triangular
matrix is the product of the determinants of diagonal blocks, we
have

|DF − I2n+d+2nd | = |A − I2n+d |(|D f − In|| − In|)d
by repeatedly applying the above procedure to the remaining
upper left diagonal block of the block-lower-triangular matrix.
By applying elementary row and column operations to A −
I2n+d , it is not difficult to see |A − I2n+d | = 0. Therefore,
|DF − I2n+d+2nd | = 0, and we obtain the fact.

APPENDIX C: DERIVATION OF THE FIXED POINTS OF
ADAPTIVE DFC SYSTEMS

We can derive the form of the fixed points of Eq. (4)
by solving the equation x̃ = F(x̃) (see Appendix A for
explanation of the symbols). Since Fy is the n-dimensional
identity map, we have y = x. Then, the second term of Fx
vanishes, and we have x = y = x∗. Similarly, the second term
of Fκ vanishes, and κ becomes an arbitrary d-dimensional
constant vector. Since Fwl

is also the n-dimensional identity
map, we have wl = vl for l = 1,2, . . . ,d. Then, the second

and third terms of Fvl
vanish, and we have vl = D f (x∗)vl . If

D f (x∗) has eigenvalue unity, then we have vl = wl = zl for
l = 1,2, . . . ,d. Otherwise, vl = wl = 0.

APPENDIX D: PROOF OF FACT 3

In this appendix, a proof of Fact 3 is presented. Let x̃∗ be a
fixed point of Eq. (4), satisfying x̃∗ = F(x̃∗) (see Appendix A
for explanation of the symbols). From Fact 2, the x and y
components of x̃∗ coincide, that is, x = y = x∗. Then, A1, 3

and B3, i (i = 1,2, . . . ,2d) become zero matrices at x̃∗ (see
Appendix A), and DF(x̃∗) becomes a block-lower-triangular
matrix from Eq. (A5). Because the determinant of a block-
triangular matrix is the product of the determinants of diagonal
blocks, the characteristic polynomial of DF(x̃∗) is given by

|λI2n+d+2nd − DF(x̃∗)|

= (λ − 1)d
∣∣∣∣λI2n −

(
D f (x∗) − K K

In 0n×n

) ∣∣∣∣
d+1

.

Since

�(λ) =
∣∣∣∣λI2n −

(
D f (x∗) − K K

In 0n×n

)∣∣∣∣ ,
we obtain the fact.
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