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We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations
of coarse-grained polymer melts (I. Y. Lyubimov, J. McCarty, A. Clark, and M. G. Guenza, J. Chem. Phys. 132,
224903 (2010)). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig projection
operator technique, we derive the generalized Langevin equations (GLEs) for the coarse-grained representations
of the liquid. The chosen slow variables in the projection operators define the length scale of coarse graining. Each
polymer is represented at two levels of coarse graining: monomeric as a bead-and-spring model and molecular as a
soft colloid. In the long-time regime where the center-of-mass follows Brownian motion and the internal dynamics
is completely relaxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from
the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained representation
to recover the monomeric description. Change in entropy and change in friction are the two corrections to be
accounted for to compensate the effects of coarse graining on the polymer dynamics. The solution of the memory
functions in the coarse-grained representations provides the dynamical rescaling of the friction coefficient.
The calculation of the internal degrees of freedom provides the correction of the change in entropy due to
coarse graining. The resulting rescaling formalism is a function of the coarse-grained model and thermodynamic
parameters of the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene,
represented as soft-colloidal particles, by applying our rescaling approach shows a good agreement with data of
translational diffusion measured experimentally and from simulations. The proposed method is used to predict
self-diffusion coefficients of new polyethylene samples.
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I. INTRODUCTION

The last few years have witnessed a growing interest in
the design and application of coarse-graining methods to
simulate complex fluids [1]. This effort has been motivated
by the need for improving computational efficiency with the
purpose of investigating complex systems on the numerous
length scales on which their properties develop [2–6]. Com-
puter simulations have the capability of providing detailed
microscopic information on the static and dynamics of the
systems under study [7], but they are limited in the range
of time scales and in the number of molecules that can be
simulated because the precision of the calculations degrades
with the number of computer iterations with a behavior that
depends on the Lyupanov exponent of the system. Once
the number of particles is set, the window of achievable
time scales that can be investigated becomes defined [8,9].
Because the maximum number of iterations decreases with
increasing number of simulated particles, it is particularly
difficult to simulate systems where characteristic length scales
are diverging, such as a system approaching a second-order
phase transition [10,11].

Recent improvements of computational machines have
led to a considerable extension of the maximum time and
length scales that can be reached by simulations where the
system is described at the atomistic level. However, for many
complex systems, including liquids of high-molecular weight
macromolecules, the computational power is still inadequate
to describe, at the atomistic level, the long-time dynamics. For
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example, the most recent and advanced simulations of long
chains that have an extended number of entanglements adopt
a simplified model, which treats the structure of the polymer
as a collection of beads and springs interacting through a finite
extensible nonlinear elastic (FENE) potential. This model
allows for the simulations of a large number of polymers,
which is important for the proper calculation of viscoelastic
properties, and reaches full relaxation for all but the longest
chains simulated [12].

Progress has been made when the focus is on quali-
tative behavior and scaling exponents [10,13]. For exam-
ple, if the complex intra- and intermolecular nonbonded
interactions are simplified into an identical potential, the
computational efficiency improves dramatically as the code
does not need to identify and treat uniquely different pairs
of interacting sites. This strategy, however, has the dis-
advantage that the thermodynamics of the system is not
properly described because the interactions are too drastically
simplified.

The need for methods that are fully predictive of the
physical properties of a system on the basis of the specific
chemical structure of the sample and its thermodynamic
conditions has stimulated new interest in developing fast quan-
titative simulations. Such predictive approaches are useful, for
example, to evaluate a priori the structure and dynamics of
newly synthesized polymeric materials, in relation to their
technological applications. Following this perspective, several
procedures have been proposed to speed up atomistic simula-
tions, while conserving their power of predicting quantitative
properties [14,15]. A few simulations of long entangled chains
have been performed using united atoms (UAs) [14,16–18].
For UAs the effective unit is very close to the atom is size,
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i.e., CHx with x = 1,2,3, which allows for some gain in the
computational time.

A useful strategy to improve the outcome of simulations
on the long time scale and large length scale is the use of
coarse-graining procedures [2,19]. A coarse-graining proce-
dure averages out irrelevant degrees of freedom, which occur
on length scales smaller than a designated cutoff length,
and this allows for the extension toward large scales of
the simulations. Another way to put it is that, because the
interaction potentials become softer, the maximum time and
length scale increase as the basic timestep of the mesoscale
(MS) simulations becomes larger. The characteristic length
scale of coarse graining has to be defined on the basis of the
properties that need to be investigated. In this paper we discuss
a first-principles way of selecting meaningful length scales for
the structural and dynamical coarse-graining.

Several considerations need to be made to properly develop
a coarse-graining procedure. As the coarse-grained liquid is
represented as a function of new coordinates, an effective
potential needs to be derived to be used as an input to the
MS simulation. Care has to be taken to make the potential
reproduce the structure of the system, namely, pair distribution
functions, and to be thermodynamically consistent. A common
procedure to optimize the coarse-grained description is to
use self-consistent numerical methods that are optimized to
reproduce atomistic descriptions through iterative procedures.
Usually the target is the optimization of specific quantities,
such as the pair distribution function [20], the forces generated
by the soft potential [6], or directly the thermodynamic
properties [21].

We recently proposed an approach that starts from the
Ornstein-Zernike (OZ) equation where the atomistic sites
are defined as real sites, and the coarse-grained sites are
defined as auxiliary sites [22–28]. Because our procedure
is analytical, and no optimization of parameters is needed
in our approach as the potential is explicitly dependent
on the thermodynamic and molecular parameters, it opens
up the possibility of deriving a formal solution to key
problems. For example, it is straightforward to show that the
structural properties are consistent between the two levels of
description, i.e., atomistic and coarse grained [22]. Moreover,
the thermodynamic properties of the coarse-grained polymer
liquid (e.g., isothermal compressibility [22], pressure in the
virial and in the compressibility routes, total and cohesive
energy) are shown to be formally consistent in the two
levels of coarse graining [29]. Local structure is easily
included a posteriori through a multiscale modeling procedure
[28,30]. Finally, it is possible to derive an analytical rescaling
factor for the dynamics, which is the main focus of this
paper.

While the structure is well described by simulations of the
coarse-grained system on the scale larger than the scale of
coarse graining, the dynamics in MS simulations is unrealisti-
cally fast. Because local degrees of freedom are averaged out,
the coarse-grained molecules move rapidly over a simplified
free-energy landscape. As the system explores efficiently this
“reduced” configurational landscape, the measured dynamics
is artificially sped up by the smoothness of the potential.
This is useful when coarse-grained representations are used
to rapidly reach an equilibrated state of the system before

starting the atomistic molecular dynamics (MD) simulation.
However, to directly collect information on the dynamics of
systems from MS MD simulations, it is necessary to develop
formalisms that rescale the unrealistically fast dynamics into
the slower dynamics at atomistic resolution. In this paper we
discuss in detail an analytical procedure we recently proposed
to rescale the mesoscale dynamics. The procedure is able
to predict center-of-mass dynamics in quantitative agreement
with experiments and atomistic simulations [31].

The common strategy to rescale the dynamics is to build
a “calibration curve.” The latter is obtained through the
numerical fitting of dynamical quantities and optimization
of the related parameters until the agreement of dynamical
properties calculated in an all-atom and in an MS simulation
is obtained [32,33]. However, the numerical calculation of
optimized calibration curves for the dynamics is quite difficult
to achieve for macromolecular systems, as the dynamics is
mode dependent: There are in principle N internal modes
in any molecule formed by N units, and the degree of
polymerization of a long chain can be of the order of one mil-
lion monomers. Moreover, numerically optimized parametric
quantities are in general not transferable between systems in
different thermodynamic conditions or with different chemical
structure or increasing degree of polymerization. To overcome
this problem, it is common to select as coarse-grained units
ones that are very close in size to the atomistic units, so
that the needed corrections to reach consistency in dynamic
properties are minimal. In this case, corrections to the
measured dynamics can be evaluated through a perturbative
formalism, which should rapidly converge to the desired value.
The resulting computational gain is, however, still limited.
Recently a numerical Ornstein-Zernike-based approach, with
atomistic-level coarse graining and the Percus -Yevick closure
approximation, has been proposed, which shows different
rescaling factors depending on the time correlation func-
tion under study [34]. Another coarse-grained approach for
polyethylene melts describes a polymer chain as a collection
of soft blobs connected by elastic bands, which enforce chain-
chain uncrossability. Simulations follow an effective Langevin
equation, whose parameters, i.e., effective potential, frictions,
and random forces, are obtained by numerical optimization
from an atomistic MD simulation. The optimized equation
of motion (EOM) reproduces well experimental data of the
system [35].

Our approach is different from others in several ways. First,
it is analytical rather than numerical, providing the formal
rescaling factor by solving the EOMs in the two levels of
representation. In this way, there is no need of performing
an atomistic simulation to input numerical quantities in our
formalism. Second, thermodynamic and molecular parameters
enter directly into the rescaling procedure, which therefore
can be applied directly to predict diffusion coefficients in
different thermodynamic conditions and for homopolymer
melts with different degrees of polymerization. It is important
to note that the molecular radius of gyration, which is an
input to the theory, is also density and temperature dependent:
This has to be taken into account when the theory is used
as a predictive tool. The tests of our rescaling approach,
presented in this paper and in the previous publication [31],
show that the proposed procedure is accurate in the range of
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temperatures (T = 400−509 K) and densities (ρm = 0.031–
0.033 sites/Å3) considered.

The dynamics measured in MS simulations of coarse-
grained systems is directly rescaled into its atomistic coun-
terpart using approximate closed-form expressions of friction
and entropy. The two levels of coarse graining, which allow
for a straightforward analytical solution, are here two simple
isotropic models: a soft sphere description for the molecular
coarse graining, and a bead-and-spring description for the
monomer level coarse graining. More sophisticated coarse-
grained models can be developed for intermediate length
scales [26,27]; however, the formalism can become more
involved [36]. At the atomistic level the polymer is described
as a “bead-and-spring” type of approach where the chain is a
collection of friction points connected by harmonic springs.
This is an implementation of the most popular model to treat
unentangled polymer melt dynamics, i.e., the Rouse model,
and maps well into the dynamics of polymers described not
only by UA simulations, but also by atomistic simulations
and experiments, as it contains both local chemical structure,
semiflexibility, and finite size effects [37–39]. It is a very
accurate and molecular specific model, which has been shown
to describe well, for example, the dynamics of the protein
CheY, by testing its predictions of nuclear magnetic resonance
(NMR) relaxation against experiments [37,40].

In our coarse-grained model a polymer chain is represented
as a soft-colloidal particle [22,42–44]. Because the length scale
of the coarse graining is of the order of the molecular radius of
gyration, i.e., the size of the molecule, the direct predictions
of the rescaling procedure are suitable for properties on length
scales larger than Rg and on time scales longer than the longest
time of intramolecular relaxation, i.e., the longest correlation
time in the Rouse theory. Internal dynamics cannot be obtained
directly from the coarse-grained simulation; however, the
rescaled diffusion coefficient leads to the monomer friction
coefficient, which can be used as an input to well-tested
theories of polymer dynamics, and indirectly recovering the
dynamics in the complete spectrum of polymer relaxation. An
example of this kind of calculation is presented in this paper
in Sec. VI C. The extended level of coarse graining provides a
good test of our procedure, as large deviations could result from
the rescaling if the method were not correct. Furthermore, our
procedure can be useful in the study of long-time relaxation,
given that large length scales and long time scales are most
difficult to simulate for polymeric systems.

Although the outline of our rescaling theory has been
published recently in a short paper [31], this paper presents
a detailed derivation and discussion of our approach, which
includes the prediction of the dynamics for new samples. After
introducing our coarse-grained model input to the mesoscale
simulations, we formally derive the rescaling approach for
the dynamics, starting from the Liouville equation and using
projection operators. Friction coefficients in the two descrip-
tions are derived from the solution of the memory functions,
while the rescaling of the simulation time is obtained from the
entropic contribution, which accounts for the intramolecular
degrees of freedom neglected in the soft-colloid representa-
tion. Theoretical predictions compare well against UA MD
simulations [14,45–47] and experiments [39,48–51]. We also
calculate the diffusion coefficient for new polyethylene (PE)

samples in thermodynamics conditions for which UA MD data
are not available. The purpose of these calculations is to show
that our method is not a simple rescaling of the mesoscale
data through a shift of the diffusion coefficient to bring
dynamical results to coincide with atomistic simulations, as is
conventionally done. Instead our approach is fully predictive
and can be used to calculated the diffusion coefficient, and the
monomer friction, for new samples.

The paper is structured as follows: After introducing our
coarse-grained model in Sec. II and the projection operator
technique to derive the equations of motion in the two levels
of coarse graining in Sec. III, we formally derive the rescaling
approach for the dynamics from the solution of the memory
functions in Sec. IV. We then present the MS simulations
(Sec. V), as well as the results obtained from the same,
and apply the rescaling procedure to the data from MS
simulations (Sec. VI). Predictions of dynamical quantities and
direct comparison for several samples, both from atomistic
simulations and from experiments, provide a stringent test of
the approach and show good quantitative agreement. A brief
discussion in Sec. VII concludes the paper.

II. COARSE GRAINING OF POLYMERIC LIQUIDS:
STRUCTURAL PROPERTIES

In this section we briefly review the theoretical background
of the pair distribution functions that are input to our rescaling
equation. The structure of a polymeric liquid, at length scales
equal or larger than the monomer size, is fully specified by the
momomer total distribution function, h(r), which for polymer
melts depends on two characteristic length scales, namely, the
density fluctuation length scale, which is the atomic length, and
De Gennes’s correlation hole length scale [52]. The latter is of
the order of the molecular radius-of-gyration, Rg = √

N/6l,
which is the overall dimension of the polymer, where N is
the degree of polymerization and l is the statistical bond
length. We select l and Rg because these are the two length
scales that define the structural properties of the polymeric
liquid.

At the monomer level traditional dynamical approaches,
such as the Rouse model and semiflexible models, adopt a
bead-and-spring representation where each monomer can be
modeled as a friction point connected by springs (Fig. 1). A
similar model, where the polymeric chain is described as a
collection of “sites” centered at the center of the monomeric
unit, is also in conventional theories of polymer liquids [53,54].
Although “site” is the word most used in the liquid state
community and “monomer” or “bead” is the common wording
in the literature on polymer dynamics, in this paper they

FIG. 1. (Color online) Illustration of monomer and overall coarse
graining of a homopolymer linear chain.
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identify the same CHx unit and henceforth they will be used
interchangeably. It is important to notice that all the CH2 units
are assumed to be equivalent and independent of the position
along the chain.

The coarse graining of a polymer at the Rg length scale
represents each molecule as an interacting soft-colloidal
particle with symmetric or asymmetric shape [42–44]. In our
model [22–25], the macromolecular liquid is represented as a
liquid of symmetric soft-colloidal particles interacting through
a pair potential. This potential has a range of the order of
few Rg , and each soft-colloidal particle is centered at the
center-of-mass (cm) of a polymer (Fig. 1).

The coarse-graining procedure that translates the monomer
description into the solf-colloidal representation is performed
starting from an OZ equation where monomers are assumed
to be real sites, while the cm are auxiliary sites [41]. The
cm-cm total intermolecular correlation function is expressed
as a function of the polymer parameters as [22,23]

hcc(r) = 3
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where erfc(x) is the complementary error function. Here ξ ′
ρ =

Rg/(2πρ∗
ch) = 3/(πρl2) with ρ∗

ch ≡ ρchR
3
g being the reduced

molecular number density, ρch = ρ/N the molecular density,
ρ the site number density, and l the statistical segment length.
The length scale of density fluctuations ξρ is defined as
ξ−1
ρ = ξ−1
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ρ , and ξc = Rg/

√
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correlation hole [52].
In the limit of long chains, N → ∞, Eq. (1) reduces to

hcc(r) ≈ −39
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For polymers with N � 30, a plot of h(r) shows that the two
equations, Eqs. (1) and (2), are indistinguishable [22,23].

The structure of the liquid on the length scale of the polymer
radius-of-gyration and larger, as represented by hcc(r), is in
quantitative agreement with the output of both the atomistic
UA MD and the MS MD simulation of the coarse-grained
liquid. The theory recovers identical analytical expressions of
the compressibility in the atomistic and the coarse-grained rep-
resentations, indicating thermodynamic consistency between
the two levels of description [22,23].

Equations (1) and (2) are de facto coarse-graining equa-
tions, which translate the atomistic description of a polymer
liquid onto its representation as a liquid of interacting soft-
colloidal particles of size Rg . The advantage of our coarse-
graining approach is that it is analytical and general as it applies
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FIG. 2. Cm mean-square displacement, for a polyethylene melt
with N = 44, from MS MD simulations (triangles) and UA MD
simulations (squares). Dashed lines show the diffusive limits of the
two samples.

to systems with different thermodynamic conditions, different
degree of polymerization, and different bond length [22–30].

III. DYNAMICAL COARSE GRAINING: FROM THE
LIOUVILLE TO THE LANGEVIN EQUATIONS

While the structure of the polymeric liquid, as represented
by the total correlation function, is identical in the atomistic
and coarse-grained descriptions [22,23], the dynamics of the
coarse-grained system, as measured in the MS MD simulations
of the soft-colloidal particles, is unrealistically accelerated.
In Fig. 2 we show, for a polyethylene chain with N = 44,
the mean-square displacement of the cm obtained in MS MD
simulations of the polymer liquid represented as soft-colloidal
particles and the mean-square displacement directly measured
in UA MD simulations. The dynamics in the coarse-grained
representation is several orders of magnitude faster than the
atomistic description. Because the level of coarse graining
of the model presented here is extended, this effect is more
evident than in other models; however, accelerated dynamics
is present in any simulation of coarse-grained systems.

It has been argued that there are two main effects of
coarse graining that accelerate the dynamics: namely, the
change in entropy and the change in the friction coefficient.
Öttinger has presented an approach for systems far from
equilibrium that accounts for those effects [55]. We propose
here a procedure, based on first-principles theory, to properly
account for both contributions through the introduction of
the necessary corrections for systems where the fluctuation
dissipation theorem applies, e.g., close to equilibrium.

To coarse-grain the dynamics of the polymeric liquid on
the length scale of the radius of gyration, we adopt a Mori-
Zwanzig projection operator technique, where the selected
slow variables are the position and momentum coordinates
of the polymer cm. This description should represent well cm
diffusion [56–58].
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The atomistic level representation is obtained following
the same Mori-Zwanzing procedure, but choosing as the slow
relevant variables the ensemble of position and momentum
coordinates of the cm of the monomeric unit, which for a
polyolefin is the CHx unit, with x = 1, 2, or 3. This model is
consistent with the representation of the polyethylene chain in
UA MD simulations [59,60], and it has been shown to describe
at a high level of accuracy the dynamics of polyolefins at the
monomer length scale [37,62,63].

In the long-time regime the two descriptions, soft-colloid
and monomeric (UA) should be identical as they both recover
the diffusive dynamics of the cm [64]. In fact, they are not,
as the soft-colloidal description is heavily coarse grained and
its dynamics is accelerated. The analytical rescaling factor is
derived directly from the comparison between the soft-colloid
and the monomer dynamical equations.

As this coarse-graining and rescaling procedure is general,
it can be adopted to formalize the dynamics of the molecular
liquid at the desired level of coarse graining. However,
the projection operator technique rests on a separation of time
scales between the slow relevant variables onto which the
dynamics is projected, and the fast irrelevant variables that are
averaged out. If no separation of time scales is observed, it is
necessary to include corrections to the projected dynamics,
which appear as contributions to the friction coefficient,
expressed as memory functions. In the system investigated
here, polymer melt dynamics, no clear separation of time scales
occurs between the dynamics of the “tagged” chain and the
dynamics of the surrounding molecules [59]. For this reason,
the generalized Langevin equation (GLE) generated from this
procedure needs to account for the correction terms to the
projected dynamics, which are represented by the memory
function contributions [65].

For a liquid of n macromolecules containing N monomers,
the first-principle Liouville equation is simply written as

∂f (R,P,t)

∂t
= iLf (R,P,t) , (3)

with

f (R,P,t) =
n∏

j=1

{
N∏

a=1

δ(rj
a(t) − Rj

a)δ[pj
a(t) − Pj

a]

}
, (4)

the instantaneous distribution in reduced phase space, and
Ri

a and Pi
a are the phase-space variables associated with the

Cartesian position and momentum coordinates of the bead a

belonging to molecule i, namely, ri
a(t) and pi

a(t). The formal
solution of Eq. (3) is

f (R,P,t) = e−iLtf (R,P) , (5)

with the shorthand notation f (R,P) = f (R,P,0) .

The Liouville operator is defined as

iL = −
n∑

j=1

N∑
a=1

(
∂Uj

∂rj
a

· ∂

∂pj
a

− pj
a

m
· ∂

∂rj
a

)
, (6)

where the total energy Uj in the Hamiltonian H contains both
intramolecular U 0

j and intermolecular Wij pairwise decom-
posable potential contributions. The intermolecular potential
contains both interactions between the n tagged chains W 0

jk

and between the tagged chains and the surrounding ones Wjk ,
so that the usual condition applies that L0f (R,P) = 0. The
statistical average of the phase-space density is defined as

〈f (R,P)〉 =
∫

dr
∫

dpf (R,P) ψ (r,p) , (7)

with the equilibrium distribution of particle positions and
coordinates

ψ (r,p) = e−βH

(∫
dr

∫
dpe−βH

)−1

, (8)

where β = (kBT )−1, kB the Boltzmann’s constant, and T the
absolute temperature. Following Mori-Zwanzig, we define the
projection operator P̂ for the coarse-grained model we adopt,
namely, the monomer and the soft-colloidal.

A. Monomer-level representation of the polymer chain

In our atomic-level description each macromolecule is
represented as a collection of connected beads, or friction
points. In the field variables for one molecule (n = 1),

g (R,P,t) =
{

N∏
a=1

δ (ra(t) − Ra) δ [pa(t) − Pa]

}
, (9)

the projection operator is defined as

P̂ h(R,P,t) =
∫

dR′
∫

dP′
∫

dR′′
∫

dP′′〈h(R,P,t)g(R′,P′)〉

× 〈g(R′,P′)g(R′′,P′′)〉−1g(R′′,P′′), (10)

where P̂ = (P̂ )2 and P̂ g(R,P) = g(R,P). Here we use for the
field variable the symbol g(R,P,t) to indicate that the slow
variables in the projection operator can be different than the
ones in the general formalism of the preceding section. By
applying the projection operator to both the left and the right
sides of the Liouville equation, one recovers a GLE [57–60].

Briefly, the GLE in the phase space is then transformed into
its analog equation in space coordinates, yielding

m
d2ra(t)

dt2
= β−1 ∂

∂ra(t)
ln ψ(r)

−
∫ t

0
dτ

N∑
b=1

βpb

3m

〈
Fa(t) · FQ̂

b (t − τ )
〉 + FQ̂

a (t),

(11)

where ψ(r(t)) is the intramolecular distribution function. The
inertial contribution in Eq. (11) can be discarded, as the liquid
has a low Reynolds number and the dynamics is overdamped.
The GLE is simply written as

ζm

dra(t)

dt
= 1

β

∂

∂ra(t)
ln ψ(r) + FQ̂

a (t), (12)

with the averaged friction coefficient, in the Markov limit,

ζm ≈ β/3 N−1
N∑

a,b=1

∫ ∞

0
dτ

〈
Fa(t) · FQ̂

b (t − τ )
〉
. (13)

This equation describes how the monomer friction coefficient
is generated from the space and time correlation of the random
forces that act on two different segments of the “tagged”
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polymer chain, a and b. The extent of the correlation depends
on the propagation of the forces through the macromolecule, its
structure, and local flexibility. The forces are generated by the
monomers of the surrounding molecules randomly colliding
with the monomers of the tagged chain: The collision strength
depends on the structure of the liquid and on the interparticle
potential. A more explicit definition of the friction coefficient
is given in the following sections.

B. Solution of the GLE in the monomer representation

The intramolecular distribution function is approximated in
our description by a Gaussian distribution

ψ(r) = [(2π )N det(A−1)]−3/2e
− 3

2l2
rT Ar

, (14)

which holds for polymer chains longer than about 30
monomers [37]. This leads to a GLE where the intramolecular
contribution is linear in the monomer coordinates

ζm

dra(t)

dt
= −3kBT

l2

N∑
b=1

Aa,brb(t) + FQ̂
a (t) (15)

and is simply solved through transformation into normal
modes of motion [37,64]. The matrix A is defined, for a
semiflexible polymer represented as a freely rotating chain
(FRC), as the product of two matrices, M and U,

A = MT

(
0 0
0 U−1

)
M, (16)

with the connectivity matrix, with dimensions N × N , defined
as

M =

⎛
⎜⎜⎜⎝

N−1 N−1 N−1 ... N−1

−1 1 0 ... 0
0 −1 1 ... 0
... ... ... ... ...

0 ... 0 −1 1

⎞
⎟⎟⎟⎠ , (17)

and the U matrix defined as a function of the stiffness parameter
g as

Uij =
〈

li · lj
|li ||lj |

〉
= g|j−i|. (18)

Here g = −〈cos θ〉 and θ is the angle between two consecutive
bonds in the FRC representation of a homopolymer [64]. The
stiffness parameter g is specific of the chemical structure and
thermodynamic conditions of the sample under study.

C. Cm-level representation of the polymer chain

In the soft-colloidal particle representation the projection
operator targets the cm of the polymer. The field variable (n =
1, N = 1, a = cm) is simply defined as

g (R,P,t) = {δ [rcm(t) − R] δ [pcm(t) − P]} . (19)

Applying the projection operator in the new field variable to
the Liouville equation, where U = 0 and Wij �= 0, leads to the
GLE

∂

∂t
g (R,P,t) = −

∫ t

0
ds

∫
dR′

∫
dP′M(R,P,R′,P′)g

× [R′,P′,(t − s)] + F (R,P,t) , (20)

which reduces, following the procedure briefly outlined in
Sec. III A, to

m
d2rcm(t)

dt2
= −

∫ t

0
dτ

βpcm

3m

〈
Fcm(t) · FQ̂

cm(t − τ )
〉 + FQ̂

cm(t).

(21)

In the overdamped regime,

ζsoft
drcm(t)

dt
= FQ̂

cm(t), (22)

where ζsoft is the friction coefficient for the colloidal par-
ticle, ζsoft

∼= β/3
∫ ∞

0 dτ 〈Fcm(t) · FQ̂
cm(t − τ )〉. Equation (22)

obeys the fluctuation-dissipation relation 〈Fcm(t) · Fcm(t ′)〉 =
δt−t ′6kBT ζsoft.

The choice of the field variables in the projection operator
defines the length scale of coarse graining and the variables in
which the resulting GLE is expressed. Because the derivation
just presented depends on the basic assumption that the
correlation function of the bath variables are short lived
in the presence of heavy particles, and correction terms
represented by the memory functions are minimized when
a clear separation of time scale is observed between the slow
variables in the projection operator and the fast variables that
are averaged out, these criteria provide a way of selecting the
relevant length scales for the coarse graining, when dynamical
properties are under study.

For example, as far as polymer dynamics is concerned, we
know that for times longer than the longest Rouse correlation
time, τR ≈ R2

g/D, polymer internal dynamics is fully relaxed
and the monomer dynamics follows the motion of the cm,
which is long lived. This suggests that the cm coordinates
are a good choice to represent the projected slow dynamics
for time t  τR . This reasoning holds for both unentangled
and entangled polymer dynamics as the longest relaxation
time, after which free diffusion and Brownian motion set in, is
τR with the proper diffusion coefficient, i.e., for unentangled
chains Dunent ∝ N−1 and for entangled chains Dent ∝ N−2.5.

IV. ANALYTICAL RESCALING OF THE
COARSE-GRAINED DYNAMICS

The two Langevin equations, Eqs. (15) and (22), display
the two levels of coarse graining of the macromolecular
liquid that are adopted in this paper. The comparison of the
two equations, which in the long-time regime should predict
identical dynamics for the polymer cm, shows that the two
equations differ because of the presence of the intramolecular
free energy in the monomer description, which is absent in
the soft-colloidal approximation, and because of the different
friction coefficients in the two representations.

A. Free-energy rescaling

The elimination of degrees of freedom increases the entropy
of the system, as every coarse-grained state corresponds to
a number of preaveraged microstates. In an extreme picture
we can imagine that the preaveraging due to the coarse-
graining procedure is in effect transforming the energy of
the system, expressed, for example, in the Liouville equation
by an Hamiltonian, into a free energy in the corresponding
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Langevin equation. While the Hamiltonian contains kinetics
and potential energy, the free energy includes an entropic
contribution due to the preaveraged microstates for each
coarse-grained state.

As far as the free-energy correction is concerned, the system
described by the larger cutoff length scale is the one where
the level of coarse graining is most extensive and the highest
entropic correction has to be included. This correction can be
calculated from the comparison of the two equations. Because
the system described at the monomer level is exploring in
time the intramolecular energy states of the configurational
landscape, its dynamics is slowed with respect to the colloid
representation where intramolecular degrees of freedom are
not present. To take this effect into account we calculate
the correction that has to be included in the soft-colloid
representation to take into account the time spent by the atomic
system to explore the internal degrees of freedom.

Consistent with the monomer-level model adopted in our
study and with UA MD simulations, the polymer is described
as a collections of beads, or friction points, connected by
harmonic springs. Each bead corresponds to a CHx moiety,
with x = 2 or 3, depending if the unit is imbedded in the chain
or is terminal. This model has been shown to provide a real-
istic representation of the dynamics of numerous polymeric
systems with different chemical structure [37,38,40,62,63].

The intramolecular potential is defined as

U (r) = 3kBT

2l2

N∑
i,j=1

Ai,j ri · rj , (23)

with U (r) not to be confused with the semiflexibility matrix of
Eq. (18). Here A is the connectivity matrix of Eq. (16), which
represents the structure and local flexibility of the polymer
[66,67], ri the position of bead i in a chain of N beads or
united atoms, and li = ri+1 − ri the bond vector connecting
two adjacent beads.

The statistically averaged internal energy for one molecule
consisting of N monomers is given by〈

U

kBT

〉
= N

∫
Ue

− 3
2l2

rT Ar
d r = 3N

2l2

∫
rT Are− 3

2l2
rT Ar

. (24)

After solving the integral by normal mode transformation, as
reported in Appendix A, this model predicts the average energy
dissipated in the internal modes to be 〈U/(kBT )〉 = 3N/2. The
soft-colloidal representation, instead, has no internal degrees
of freedom.

The simulation time t̃ , as measured in the MS simulation of
the coarse-grained system, translates into the real time t after
including the rescaling due to the energy, which is reduced
by the amount of energy dissipated in the fluctuations due to
internal degrees of freedom [68]. For our model

t = t̃Rg

√
m

kBT

3

2
N, (25)

with the particle mass m and size Rg . This rescaling slows
down the coarse-grained dynamics, but only partially accounts
for the observed phenomenon because the rescaling of the
friction needs to be included.

B. Monomer friction coefficient

The rescaling of the friction coefficient is calculated
considering the friction of the polymer cm in the monomer
(UA) representation, and comparing the result with the friction
of the cm of a soft-colloidal particle. The expression for each
of the friction coefficients is derived from its definition as the
integral of the memory function contribution to the GLE in the
two levels of representation.

The effect of coarse graining the Liouville equation, or
projection onto the slow degree of freedoms, is the appearance
in the Langevin equation of the dissipation terms, given by
the random force and the friction coefficient. Systems with
different levels of coarse graining have different friction and,
as a consequence, different diffusion coefficients.

For a particle in a liquid, the cm mean-square displacement
is defined as

〈�R2(t)〉 = 6 D t, (26)

with D the diffusion coefficient. For a polymer, the cm
diffusion coefficient is given by D = kBT /(Nζm), where ζm

is the friction coefficient of a monomer, while for a liquid of
soft-colloidal particles Dsoft = kBT /ζsoft, with ζsoft the friction
coefficient of the colloidal particle. The two should be identical
in the long-time limit, but they are not, as the diffusion
coefficient obtained from MS MD simulation is much larger
(much faster dynamics) than the one obtained from UA MD.
The correction factor to scale down the MS MD diffusion
coefficient, DMS, is ζsoft/(Nζm), which yields the rescaled
mean-square displacement

〈�R2(t)〉 = 6 DMS ζsoft

Nζm

t. (27)

The thermodynamic conditions of the system under study,
i.e., density and temperature, and its molecular structure, i.e.,
the radius-of-gyration, enter the equation above both directly
through the definitions of the friction coefficients, Eqs. (44)
and (49), and indirectly through the mesoscale simulation from
which the diffusion coefficient DMS is measured.

To solve Eq. (27) we start from the definition of the
monomer friction coefficient ζm, which is given in the Markov
limit by the memory function

ζm
∼= 1

N

N∑
a,b=1

∫ ∞

0
dτa,b(τ ). (28)

a,b(t) is the function that describes the correlation, through
the polymer chain between monomers a and b, of the random
forces generated from the random collisions of the surrounding
molecules undergoing Brownian motion, with [58–60]

a,b(t) ∼= β

3
ρ

∫
dr

∫
dr′g(r)g(r ′)F (r)F (r ′) r̂ · r̂′

×
∫

dR S
Q
a,b(R; t)SQ(|r − r′ + R|; t), (29)

where g(r) = h(r) + 1 is the monomer radial distribution
function, F (r) is the total force exerted by all the matrix
polymer on the monomer, and SQ(r; t) is the projected
dynamic structure factor of the matrix fluid surrounding the
polymer. The unit vectors r̂ and r̂′ define the directions of
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the total exerted forces. The derivation of Eq. (29) is not
completely new and is briefly reported in Appendix B.

Equation (29) rests on the approximations that the fluid
is isotropic and that many-body correlation functions can be
described with good accuracy as products of pair distribution
functions. The solution of this equation is sometimes carried
on by introducing a mode-coupling approximation [59–61];
however, we follow a different procedure. The dynamic
structure factor, which is ruled by the projected dynamics,
is approximated by its real dynamics counterpart, SQ(r; t) ≈
S(r; t), simplifying the solution of Eq. (29). This is an
acceptable approximation when the Langevin equation is
expressed as a function of the slow variables [65] and holds
for our system in the long-time, diffusive regime [62].

In order to separate the spatial coordinates of S(|r − r′ +
R|; t) in Eq. (29) it is convenient to use the Fourier transform

S(r; t) = 1

(2π )3

∫
eikrS(k; t) dk, (30)

where the dynamic structure factor is calculated in reciprocal
space as the sum of intra- and intermolecular contributions

S(k,t) = 1

N

∑
αγ

Sαγ (k,t)

= 1

N

∑
αγ

ωαγ (k,t) + ρ
1

N

∑
αγ

hαγ (k,t). (31)

Here ωαγ (k,t) is the time-dependent intramolecular proba-
bility distribution functions for monomers α and γ , on the same
molecule, to be separated by a reciprocal distance k, while
hαγ (k,t) is the corresponding intermolecular contribution.

Given that the dynamics on the global scale is driven by the
polymer diffusion, the intramolecular probability distribution
function in reciprocal space can be expressed, in the limit of
large length scales, k � 1/Rg , as

ωαγ (k; t) ≈ exp

[
−k2l2|α − γ |

6

]
exp(−k2Dt), (32)

where D is the polymer cm diffusion coefficient and l =
N−1 ∑N

i=1 |li | is the average segmental length.
Because in Eqs. (28) and (29) the order of the summation

and time integrals can be changed, the double summation
reduces the inter- and intramolecular distributions to their
averages over the bead distribution. The site-averaged in-
tramolecular probability distribution function ω0(k) is well
approximated by the Debye formula [64],

ω0(k) = 1

N

∑
αγ

ωαγ (k) = 2N (ek2R2
g + k2R2

g − 1)

k4R4
g

, (33)

or by its Pade’s approximation,

ω0(k) ≈ N

1 + k2ξ 2
c

. (34)

The site-averaged intermolecular probability distribution is
defined by the OZ equation

h(k) = 1

N

∑
αγ

hαγ (k) = ω2
0(k)c(k)

1 − ρc(k)ω0(k)
, (35)

where c(k) is the direct correlation function. At the monomer
level we follow Curro and Schweizer’s PRISM thread ap-
proach [53,54], where the polymer chain is modeled as a
thread of vanishing thickness, c(k) ≈ c0, with c0 = −(1 −
2ξ 2

ρ /R2
g)/(2N2ρchξ

2
ρ /R2

g). Substitution of c0 and Eq. (34) into
Eq. (35) gives

h(k) = h0(
1 + k2ξ 2

ρ

)(
1 + k2ξ 2

c

) , (36)

where h0 = h(k = 0) = (ξ 2
ρ/ξ 2

c − 1)/ρch is related to the
compressibility of the system [22,23].

Because in the large length scale regime, of interest here, the
relaxation of the liquid is dominated by the polymer diffusion,
the dynamic structure factor is approximated as

S(k; t) ≈ S(k) exp (−k2Dt). (37)

Finally, after introducing the integral representation of the
delta function∫

dR eiR(k1+k2) = (2π )3 δ(k1 + k2), (38)

the last integral in Eq. (29) simplifies to∫
dR S(R; t)S(|r − r′ + R|; t)

= 1

(2π )6

∫
dk1

∫
dk2 S(k1; t) S(k2; t)eik2(r−r′)

×
∫

dR eiR(k1+k2). (39)

Because the functions ω0(k) and h(k) are even with respect
to k, the equation reduces to three contributions: the first is
due to intramolecular interactions ω2

0(k), the second includes
the cross product ω0(k)h(k), and the last is due to the
intermolecular contribution h2(k). This leads to the following
expression:∫

dR S(R; t)S(|r − r′ + R|; t)

= 1

(2π )3

∫
dk

[
ω2

0(k) + 2ρh(k)ω0(k)

+ ρ2h2(k)
]
e−2k2Dtei k(r−r′). (40)

Because we are assuming that monomers are interacting
through a hard core potential, which is consistent with the
PRISM thread model [53,54], the force is a delta function, and
therefore

g(r)F (r) = g(d)β−1δ(r − d), (41)

where d is a hard core diameter, identical for any CH2 bead in
the chain, in the spirit of the UA-MD description and PRISM
approach. When we compare our equations with data of
experimental or simulated systems, where monomers interact
through a Lennard-Jones potential, the latter has to be mapped
onto a hard-core potential with the effective diameter, d [69].

The final expression for the monomer friction coefficient is
given by

ζm = 1

48 π3
ρg2(d) (βD)−1{J [ω0(k),ω0(k)]

+ 2ρJ [ω0(k),h(k)] + ρ2J [h(k),h(k)]}, (42)
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with the function

J [α(k),β(k)] =
∫

dr
∫

dr′
∫ ∞

0
dk

sin(k|r − r′|)
k|r − r′|

× r̂ · r̂′ δ(r − d)δ(r ′ − d) α(k)β(k). (43)

The solution of Eqs. (42) and (43) is given by a lengthy but
analytical expression, which is a function of the molecular
parameters, ξρ , Rg , thermodynamic parameters, ρ, β, the
diffusion coefficient D, and of the hard-core diameter d, as

ζm ≈ 2

3
(Dβ)−1ρg2(d)

(
1

12
πN2d2Rg

[
15

√
2 + 40

d

Rg

+ 12
√

2

(
d

Rg

)2
]

+ ρπNh0
1

3
√

2
(
R2

g − 2ξ 2
ρ

)2

{
12

√
2ξ 7

ρ + 12d4R3
g

[
1 − 2

(
ξρ

Rg

)2
]

+ 4
√

2d3R4
g

[
5 − 14

(
ξρ

Rg

)2

+ 2

(
ξρ

Rg

)4
]

+ 3d2R5
g

[
5 − 14

(
ξρ

Rg

)2

− 4
√

2

(
ξρ

Rg

)5
]

− 12
√

2e
− 2d

ξρ ξ 7
ρ

(
1 + d

ξρ

)2
}

+ ρ2πh2
0

1

12
(
R2

g − 2ξ 2
ρ

)3

{
40d3R6

g + 15
√

2d2R7
g

− 24
√

2d4R3
gξ

2
ρ − 144d3R4

gξ
2
ρ + 6

√
2d4R5

g

[
2 − 9

(
ξρ

d

)2
]

+ 12R2
gξ

7
ρ

[
4

(
d

ξρ

)3

− 7

(
d

ξρ

)2

+ 9

]
− 8ξ 9

ρ

[
4

(
d

ξρ

)3

− 9

(
d

ξρ

)2

+ 15

]

− e
− 2d

ξρ 12ξ 4
ρ (d + ξρ)

[
R2

g(d + 3ξρ)(2d + 3ξρ) − 2ξ 2
ρ

(
2d2 + 5ξρd + 5ξ 2

ρ

)]})
. (44)

This expression is general and holds for any homopolymer
melt represented as a collection of identical beads interaction
through a hard-core potential of range d. The value of d is
specific of the monomeric structure of the homopolymer.

C. Friction coefficient for a liquid of interacting
soft-colloidal particles

The friction coefficient for a point particle interacting
through a soft repulsive potential is much smaller than the
friction of the macromolecule before coarse graining. In fact,
the friction coefficient of an object can be estimated using
Stokes’s formula where ζ = 6πηrH , with η the fluid viscosity
and rH the hydrodynamic radius. The latter can be evaluated
from the surface area of the object exposed to the solvent,
which can be estimated by “rolling” a solvent molecule on the
object. It is evident that the surface available to the solvent
in a bead-spring representation of a polymer is much higher
than the surface available to the solvent for a point particle
interacting through a soft, long-ranged potential.

To calculate the friction coefficient for a soft-colloidal par-
ticle, we start from the GLE that describes the time evolution
for the position coordinate of the molecular cm, i.e., Eq. (22),
where the friction coefficient for soft particles is given by

ζsoft
∼= (β/3) ρch

∫ ∞

0
d t

∫
dr

∫
dr′g(r)g(r ′)F (r)F (r ′) r̂ · r̂′

×
∫

dR S(R; t)S(|r − r′ + R|; t). (45)

Equations (29) and (45) look identical, with just a different
form of the density prefactor. In reality the form of the pair-
distribution function, g(r), the force exerted by the surrounding
molecules on the tagged chain, F (r), and the dynamic structure
factors, S(R,t), are different quantities in the monomer and
soft-colloid representations.

We assume that the dynamic structure factor in reciprocal
space has the form

S(k; t) ≈ S(k) e−Dtk2 = [1 + ρchh
cc(k)] e−Dtk2

, (46)

where hcc(k) is the cm total pair correlation function

hcc(k) = h0

(
1 + k2R2

g/2

1 + k2ξ 2
ρ

)
e− k2R2

g

3 , (47)

with h0 = (ξ 2
ρ /ξ 2

c − 1)/ρch, as defined in the previous section.
Equation (47) is just the Fourier transform of Eq. (1). Equation
(46) indicates that in the long-time regime, which is of interest
here, the relaxation of the liquid is largely driven by the cm
diffusion, while internal dynamics and local modes of motion
are already fully relaxed. This is a reasonable assumption given
that the length scale of our treatment is the overall polymer
dimension, and no structural or dynamical information is
retained on the local scale.

To perform our calculation we need to define an approxi-
mate analytical form of the effective force. To do so we adopt
the simplified form of hcc(r), Eq. (2). Then, we reduce further
the expression by neglecting the small attractive component of
the potential. Finally we approximated the real potential, v(r),
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with its mean-force counterpart w(r) ≈ −kBT ln [h(r) + 1]
properly rescaled. The real potential, calculated through the
HNC approximation as described in the following section, is
a complicated function of h(r). However, it can be related, in
an approximated way, to the simpler potential of mean force
through the equation

v(r) ≈ v(0)

w(0)
w(r), (48)

where v(r) ≈ √
3w(r) for all the samples considered in this

study. These approximations define the force F (r) and the pair
distribution function, g(r) = h(r) + 1, entering the equation
for the friction coefficient.

The resulting expression for the friction coefficient of the
soft-colloidal particle is expressed as a function of the diffusion
coefficient D, β, ρch and the two length scales Rg and ξρ as

ζsoft
∼= 4

√
π (Dβ)−1ρchRgξ

2
ρ

(
1 +

√
2ξρ

Rg

)2

× 507

512

(√
3

2
+ 1183

507
ρchh0 + 679

√
3

1024
ρ2

chh
2
0

)
. (49)

This expression is an approximated analytical form for the
friction coefficient of a soft-colloidal particle.

V. MESOSCALE SIMULATIONS

Here we present numerical calculations to illustrate and
discuss the rescaling procedure of the preceding sections. We
first perform MS MD simulations of the coarse-grained poly-
mer liquid, where each chain is represented as a soft-colloidal
particle, centered at the cm of a chain, and interacting with the
surrounding particles through a soft repulsive potential of the
order of few times the chain dimension Rg . The simulations
of the soft-colloidal liquid produce dynamical properties that
are accelerated due to the soft nature of the potential in the
coarse-grained representation. These properties are rescaled
following our procedure, and then compared with existing
data, when they are available.

In a previous paper we briefly presented calculations of
the rescaled dynamics for a variety of systems including
UA MD simulations and experimental data of PE diffusion
available in the literature, that we use to test the accu-
racy of our procedure. We selected UA MD simulations
as our test (Table I) because they have been shown to
reproduce with a high level of accuracy the dynamical
properties of PE melts, such as diffusion and viscosity
[71,72]. We also compared predictions of rescaled MS-MD
simulations with experiments for samples with temperature
T = 509 K, monomer site density ρ = 0.0315302 sites/Å3,
and N = 36, 72, 106, 130, 143, 192, and 242 [39,48–51].
Our MS-MD simulations, properly rescaled, provided good
quantitative predictions of the diffusion coefficient for those
systems [31].

In this paper we use those same systems to illustrate
our procedure. Moreover we present new results for PE
samples, not present in the literature, to underline the predictive
power of the theory, where no calibration curve is necessary.
Once a system is selected, its structural and thermodynamic

TABLE I. Polyolefin melts UA MD simulation parameters.

System T [K] ρ [sites/Å3] (RUA
g )2 [Å2]

PE 30a 400 0.0317094 63.5695
PE 44a 400 0.0323951 110.3197
PE 48b 450 0.0314487 111.0832
PE 66a 448 0.0328993 177.5348
PE 78b 450 0.0321465 205.9221
PE 96a 448 0.0328194 281.7989
PE 122b 450 0.0325479 346.2655
PE 142b 450 0.0326600 420.7070
PE 174b 450 0.0327680 525.1816
PE 224b 450 0.0328835 690.5038
PE 270b 450 0.0329520 856.4648
PE 320b 450 0.0330034 980.1088

aFrom Refs. [45–47].
bFrom Refs. [14,15].

parameters are defined and are used as input to the MS MD
simulation so that the whole procedure is free of adjustable
parameters, with the exception of the parameter d that is fixed
for PE once and for all samples [14,45–47].

Systems that we simulated include liquids of chains with
increasing degree of polymerization, as described above. As
the molecular weight of the polymer increases, the systems
cross the threshold from unentangled to entangled dynamics.
For entangled systems the dynamical rescaling approach that
we propose is modified to include a one-loop perturbation
that accounts for the presence of entanglements. Simulations
of soft-colloidal liquids are performed for entangled systems,
and the rescaling applied to predict diffusion.

Details about our MS MD simulations have been reported
in previous papers of ours and will not be repeated here
[28,30,31]. Briefly, MS MD simulations were implemented
in the microcanonical (N,V,E) ensemble on a cubic box with
periodic boundary conditions. We used reduced units such
that all the units of length were scaled by Rg (r̃ = r/Rg)
and energies were scaled by kBT . Temperature and radius-
of-gyration were utilized for dimensionalizing the results
obtained from the MS MD simulations, after they were
performed.

The number of particles, i.e., polymer chains, in our
simulations varies from 1728 (N = 40) to 46 656 (N = 1000)
depending on the system. This number is determined by
the box size, which is larger than twice the range of the
potential, and by the liquid density. The potential is long-
ranged, due to the many-body effects entering through the OZ
equation.

Each simulation evolves for about 50 000 computational
steps. For the entangled melts the potential is longer ranged
than for the unentangled systems, and therefore it is cut at
larger distances requiring a bigger box size. The reduced
density used in simulations, ρsim = ρR3

g where ρ is the site
density, varies around 1 for unentangled melts, and exceeds
2 for weakly entangled melts. A typical MS simulation takes
between 2 hours (N = 40) to 4 days (N = 200) on one CPU
workstation, while using the code that works in parallel, the
computational time is further reduced, 2 days for N = 1000
and 46 656 particles.
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A. Interparticle potential

The pair potential acting between two effective coarse-
grained units is formally derived from the colloidal representa-
tion of the liquid, specifically h(r), using an hypernetted-chain
(HNC) closure approximation to the OZ equation [56]. This
approximation is known to work well for liquids of particles
interacting through a soft potential [69]. The potential input
to the MS MD simulation, vcc(r), is derived from the total
correlation function for the soft-colloidal representation of the
liquid, hcc(r), defined in the limit of long chains, N → ∞,
as in Eq. (2). The potential is calculated using the HNC
approximation as

βvcc(r) = hcc(r) − ln[1 + hcc(r)] − ccc(r). (50)

Here the direct correlation function, ccc(r) is given in recipro-
cal space in terms of hcc(k) as

ccc(k) = hcc(k)

1 + ρchhcc(k)
. (51)

It is important to define the correct potential acting between
the coarse-grained units to achieve a realistic representation
of the large-scale properties of a system through MS MD.
Because coarse-grained potentials result from the mapping
of many-body interactions into pair interactions, through the
averaging over microscopic degrees of freedom, they are
parameter dependent. During the coarse-graining procedure,
the potential acting between microscopic units, which is given
by the Hamiltonian of the system, reduces to an effective
potential, which is a free energy in the reference system
of the microscopic coordinates. The coarse-grained potential
so obtained contains contributions of entropic origin due
to the microscopic, averaged-out degrees of freedom and is
therefore state dependent. This can be observed in the form
of the total correlation function between coarse-grained sites,
Eq. (2), from which the potential is derived. The correlation
function explicitly includes the structural and thermodynamic
parameters of the polymer, i.e., the radius-of-gyration, density
screening length, and number density. The temperature enters
directly through Eq. (50) and indirectly through the molecular
parameters, such as Rg . The radius of gyration is also density
dependent.

B. Results from mesoscale molecular dynamics simulations

Before entering the details of applying our rescaling ap-
proach we focus on the “raw” dynamics obtained directly from
the MS MD simulations. Figure 3 displays the mean-square
displacement for the MS MD simulation of a polyethylene
melt with N = 44. At short times the inertial term in
the Langevin equation is dominant as the particles undergo
ballistic dynamics, while in the long-time regime the system
crosses over to diffusive dynamics. The diffusion coefficient
is higher than the value measured in UA MD simulations, and
the transition from ballistic to diffusive regime happens after
about 5000 simulation steps (dot-dot vertical line on top panel
of Fig. 3), which corresponds to a distance of roughly 30Rg .
Such a large distance reflects the fact that in MS MD simulation
the point particles interact through a very soft potential and the
density is also very low. Because the particle has to “collide”
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FIG. 3. Top panel: Cm mean-square displacement (solid line)
from MS MD simulation in reduced units as a function of simulation
time steps for the PE44 melt sample. The slopes for the ballistic
and the diffusive regimes are shown as dashed and dot-dashed lines,
respectively. Bottom panel: Cm velocity time correlation function
showing when the inertial term becomes negligible. The asymptotic
value of 6 kBT /m is depicted as a dashed line.

many times to undergo the crossover to diffusive dynamics,
the latter takes place at a large length scale.

Moreover, the bottom panel in Fig. 3 displays the velocity
correlation function 〈(v(t) − v(0))2〉 and shows that, consistent
with the mean-square displacement, once more the inertial
term becomes negligible at the same crossover time that
the diffusive regime sets in. Since our MS MD simulation
are performed at equilibrium, the average kinetic energy per
particle 〈mv2(t)/2〉 = 3/2 kBT , and therefore

lim
t→∞〈[v(t) − v(0)]2〉 = lim

t→∞[2〈v2(t)〉 − 2〈v(t)v(0)〉]
= 6kBT /m. (52)

The dynamical transition is displayed as a dashed line
on the bottom panel of Fig. 3, taking into account that our
simulations are in reduced units and m = 1, kBT = 1. The
figure shows that the velocity autocorrelation function reaches
its asymptotic value at about the same time as the diffusive
regime sets in for the mean-square displacement.

VI. APPLICATION OF THE RESCALING PROCEDURE

As stated above, the accelerated dynamics that is a
consequence of the coarse graining of the system can be
rescaled by taking into account the two main effects of the
procedure, namely, the change in the entropic contribution
to the free energy of the system due to the averaging of the
internal degrees of freedom and the change in the friction
coefficient due to the different shapes of the molecule in the
two different levels of coarse graining. The difference in shape
relates to the change in the molecular surface available to the
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surrounding molecules, and to the correlation of the random
forces generated by intermolecular collisions.

The first rescaling is given by the inclusion a posteriori
of the internal degrees of freedom, averaged out during the
coarse-graining procedure, as a correction term in the free
energy of the system, which accounts for the difference in
entropy. The energy correction affects the time of the measured
dynamics as the change from a bead-spring description to a
soft-colloid representation leads to the rescaling of the time
reported in Eq. (25), also taking into account the fact that
because the potential is expressed in normalized quantities,
the simulation runs using reduced units of energy, kBT = 1,

and the normalized length r/Rg .
The second rescaling of the dynamics is calculated starting

from the ratio between the friction coefficients in the two
coarse-grained representations, as described in Eq. (27).

A. Calculations of the monomer friction coefficient ζm

Because our formalism maps the Lennard-Jones liquid
described by the UA MD simulation into a liquid of polymers
interacting through a monomer hard-core repulsive potential, it
is necessary to define an effective hard-core diameter, d. This
is done by requiring the friction of the chain with N = 44
to follow the expected scaling behavior for the diffusion of
an unentangled polymer chain, D = kBT /(Nζm). Since all
except two of the atoms in our PE chains are CH2 monomers,
we assume that the potential is identical for all the units along
the homopolymer chain. Moreover we assume that the range of
the repulsive interaction d is independent of liquid density [70].

Among the different samples, we selected the chain with
N = 44 to optimize d, because this sample follows unentan-
gled dynamics while the polymer is long enough to obey the
Gaussian intramolecular distribution of monomer positions,
which justifies the analytical form of the intramolecular
structure factors used in our formalism. Figure 4 displays the
monomer friction coefficient, from Eq. (44), expressed as the
dimensionless quantity Dβζm, as a function of the hard sphere
diameter d, for polyethylene melts of three different degrees of
polymerization. The 1/N scaling is reported as a dot-dashed
line in the figure.
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FIG. 4. Plot of Dβζm as a function of hard core diameter d . From
left to right, the three panels show curves for polyethylene melt with
N = 30, N = 44, and N = 96.

TABLE II. Monomer friction coefficient contributions with hard
sphere potential for d = 2.1 Å.

System Dβζm(ωαα) Dβζm(ωαγ ) Dβζm(hαγ ) Dβζm NDβζm

PE 30 0.03378 0.08484 −0.04883 0.03601 1.0804
PE 44 0.02744 0.06244 −0.03991 0.02253 1
PE 48 0.03101 0.07984 −0.04904 0.03080 1.4782
PE 66 0.02539 0.05703 −0.03823 0.01880 1.2409
PE 78 0.02632 0.06287 −0.04179 0.02107 1.6439
PE 96 0.02239 0.04766 −0.03325 0.01441 1.3834
PE 122 0.02400 0.05533 −0.03831 0.01701 2.0757
PE 142 0.02245 0.04967 −0.03501 0.01466 2.0815
PE 174 0.02193 0.04827 −0.03438 0.01389 2.4170
PE 224 0.02133 0.04664 −0.03359 0.01304 2.9219
PE 270 0.02039 0.04344 −0.03164 0.01180 3.1849
PE 320 0.02184 0.04956 −0.03585 0.01371 4.3874

In these calculations, the numerical values of N , ρ, and
Rg were taken from the data of the UA MD simulation
against which the proposed approach is tested. The value
of the radial distribution function at the contact was set to
g(d) = 1/2, which is the conventional value assumed in the
PRISM thread theory for polyethylene chains. This value is
intermediate between zero and the first solvation shell value.
The optimized hard-core diameter for N = 44 is d = 2.1Å,
which is an intermediate value between the bond length,
l = 1.54 Å, and the Lennard-Jones σ parameter, σ = 3.95
Å, in the intermonomer potential of the UA MD. [46,47] The
unentangled scaling is fulfilled for PE30 at d = 2.07 Å and
for PE96 at d = 1.96 Å, which are close to the one for PE44.
Because the PE96 sample has a degree of polymerization that
is close to the entanglement value of Ne = 130, its dynamics
is likely to be in the crossover regime where the effect of
entanglements start to be felt, since the transition from the
unentangled to the entangled dynamics is very broad.

Table II displays the numerical values of the dimensionless
monomer friction coefficient Dβζm for polymeric liquids with
different degree of polymerization N across the untentengled-
to-entangled transition. For both unentangled and entangled
systems the hard sphere diameter has been fixed to the value
of the unentangled ones, d = 2.1 Å, so that the intermolecular
monomer potential is not changed as a function of N . While
for unentangled systems the monomer friction coefficient
was calculated from Eq. (44), for entangled chains we
adopted a perturbative approach to account for the effect of
entanglements. Let us denote

Dβζm = J (ρ,N,Rg,d), (53)

where for unentangled systems J (ρ,N,Rg,d) ≈ N−1. Fol-
lowing a one-loop perturbation, and including the definition
of the diffusion coefficient for a macromolecule comprising
N monomers with ζm the monomer friction coefficient D =
(βζmN )−1, the normalized and perturbed friction coefficient
becomes

Dβζ ′
m = NDβζmJ (ρ,N,Rg,d) = N (Dβζm)2. (54)

The one-loop perturbation is in the spirit of the reptation
model where both the chain reptating and the chains involved
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in the entanglements relax with the same diffusive mechanism:
Each brings a N−1 scaling contribution, which is the trademark
of polymer Brownian motion. Interestingly, in our model the
diffusion coefficient of entangled polymers under certain fixed
monomer density and temperature shows apparent scaling
exponents different from −2 (Fig. 6). The resulting scaling
exponents emerge cumulatively from output of mesoscale
simulations and both steps of rescaling.

Because Eq. (54) applies only when the systems are
entangled, to predict the diffusive behavior of new samples
it is necessary to estimate a priori the crossover degree of
polymerization Ne. Several methods have been presented in
the literature to estimate Ne from thermodynamic conditions
and molecular parameters [73]. Those methods provide similar
values of Ne. Moreover, the expressions for the unentangled
and entangled frictions, Eqs. (44) and (54), predict values
that differ only slightly in the crossover region. In this way,
selecting the unentangled expression to represent entangled
systems, or vice versa, in the crossover region would result in
small inconsistencies in the calculated diffusion coefficients.

Table II includes intra- [Dβζm(ωαγ )] and intermolec-
ular [Dβζm(hαγ )] contributions to the monomer friction
coefficient, as well as the self-intramolecular contribution
[Dβζm(ωαα)]. In general, the calculated total friction is com-
parable in magnitude to the self-intramolecular contribution
[Dβζm(ωαα)]. Moreover, the total intramolecular contribution
[Dβζm(ωα,γ )] is of the same order of magnitude of the in-
termolecular contribution [Dβζm(hα,γ )], but with the opposite
sign, which is reasonable as the liquid is almost incompress-
ible. This result shows that the conventional approximation
of replacing the structure factor, Sα,γ (k), by the single chain
analog, ωα,γ (k), can lead to errors in the evaluation of the
memory function for macromolecular liquids [74]. The table
also displays the value of the dimensionless friction coefficient
NDβζm, which for unentangled systems should be ≈1. As
expected, we see deviation from the unentangled behavior
in the very short chains and in the crossover to entangled
dynamics at N ≈ 100.

B. Calculation of the friction coefficient of
a soft colloid ζsoft

Starting from Eq. (49) we calculated the friction coefficient,
Dβζsoft, for polymer liquids represented as soft-colloidal
particles. Table III shows the dimensionless friction coefficient
for several systems. The molecular parameters, N and Rg , and
the thermodynamic conditions of density ρ and temperature
T , are taken from the UA MD simulations; see Table I.
The dimensionless friction coefficient for these systems
is Dβζsoft(1 + hcc) ≈ 0.002−0.01, while we would expect
Dβζsoft(1 + hcc) ≈ 1 for unentangled systems; see Table III.
These data show that the theoretically calculated friction
coefficient (without rescaling) for the soft-colloidal systems
greatly underestimate the friction coefficient, as also observed
in the MS MD simulations, and hence give rise to accelerated
dynamics as discussed previously. It also shows that intra-
and intermolecular contributions to the friction coefficient are
comparable in magnitude: Both of them need to be taken into
account when calculating dynamical properties of polymer
melts.

TABLE III. Soft-colloids friction coefficient contributions.

System Dβζ self
soft Dβζsoft(hcc) Dβζsoft(1 + hcc)

PE 30 0.044273 −0.029932 0.014341
PE 44 0.020769 −0.012441 0.008328
PE 48 0.024639 −0.015289 0.009349
PE 66 0.012619 −0.006659 0.005960
PE 78 0.012019 −0.006254 0.005765
PE 96 0.008055 −0.003712 0.004344
PE 122 0.007423 −0.003334 0.004089
PE 142 0.006159 −0.002612 0.003546
PE 174 0.005218 −0.002108 0.003109
PE 224 0.004298 −0.001648 0.002650
PE 270 0.003660 −0.001351 0.002310
PE 320 0.003521 −0.001288 0.002233

C. Results from the rescaling procedure: Comparison with
simulation and experimental data

Some of the results reported in this section were already
briefly presented in our short paper [31]. Our discussion
here makes use of some of those data as a starting point to
illustrate with an example the details of the proposed rescaling
procedure and highlight its strengths and weaknesses.

In order to rescale the unrealistic fast dynamics of MS
MD simulations we applied our rescaling procedure and
compare the predicted dynamics with data from UA MD
simulations and experiments. We use as input parameters
the thermodynamic conditions and molecular parameters of
each sample under study. The rescaling procedure is given
by Eq. (27), where DMS is the diffusion coefficient from
the MS-MD simulation, the soft-colloid friction coefficient is
calculated using Eq. (49), and the monomer friction coefficient
is given by Eq. (44) for unentangled chains and Eq. (54)with
Eq. (44) for entangled ones. Equation (27) depends on the
temperature and density of the system investigated and on its
molecular radius-of-gyration.

Indirectly those parameter enter our procedure through
the diffusion coefficient from mesoscale simulations DMS.
Specifically temperature enters through the rescaling of the
time, as the time step in the mesoscale simulation is adi-
mensional and becomes dimensional once it is rescaled by
the energy, following a well-established procedure. Moreover,
thermodynamic and molecular parameters enter indirectly
through the soft potential, Eq. (50), which is parametric and
includes density, temperature, and the molecular radius-of-
gyration.

Finally, thermodynamic parameters enter directly through
the definitions of the friction coefficients in the monomer
and soft-sphere descriptions, Eqs. (44) and (49), respectively.
Specifically, the monomer friction coefficient is a function of
ρ, N , Rg , plus a hard sphere diameter d, which is used to map
the Lennard-Jones potential of the united atom simulation onto
a repulsive hard-core potential with an effective bead diameter.
The hard sphere diameter d is assumed to be independent of
the thermodynamic conditions, for the range of temperature
and density simulated here, and constant for all the monomers
in the homopolymer chain. The criteria of choosing numerical
value for d have been already explained and discussed.
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TABLE IV. Diffusion coefficients in Å2/ns from MS MD com-
pared with UA MD simulation.

System T [K] DMS Dcm DUA

PE 30 400 4.44×103 58.9 82.9
PE 44 400 5.29×103 44.5 46.0
PE 48 450 5.80×103 36.7 50.8
PE 66 448 6.04×103 29.0 31.8
PE 78 450 6.73×103 23.6 26.0
PE 96 448 6.98×103 21.9 23.3
PE 142 450 8.45×103 6.92 7.93
PE 174 450 8.51×103 4.53 5.70
PE 224 450 8.80×103 2.73 3.28
PE 270 450 9.39×103 2.14 2.06
PE 320 450 8.73×103 1.03 1.30

In an analogous way, the soft-sphere friction coefficient
depends on the chain number density, which relates to the
monomer number density through N as ρch = ρ/N , and Rg is
the radius of gyration of the polymer chain. It also depends on
the density fluctuation length scale ξρ , which is expressed
as a function of Rg and ρch as ξρ = Rg/(

√
2 + 2πρchR

3
g),

and on the parameter h0 = h(k = 0) = −(1 − 2ξ 2
ρ /R2

g)/ρch.
In fact, the dimensionless combination Dβζsoft is determined
by only three parameters: ρ, N, and Rg . In conclusion, once
thermodynamic parameters, Rg and d are defined, there are no
adjustable parameters in our method.

The predicted diffusion coefficients from our rescaled MS
MD simulations are in good agreement with the data for
all the test systems. As an example, Table IV displays the
diffusion coefficients obtained directly from the MS MD,
DMS, once they are rescaled to include the internal degrees
of freedom, and after the second rescaling of the friction Dcm

as well as the values of the diffusion coefficient from the
UA MD simulations DUA, against which we compare our
predicted diffusion. The table shows that while the initial
values of the diffusion are orders of magnitude larger than
the data from UA MDs, the rescaled coefficients are very
close to the real values. For the entangled systems we adopt
the perturbative approach described in Sec. VI A obtaining
predicted values that are in quantitative agreement with the UA
MD simulations. Entangled samples are from Refs. [14,15]
and are mostly in the weakly entangled regime. For these
samples the UA MD simulations include a small number of
chains: n = 40 for N = 78, n = 22 for N = 142, n = 32
for N = 174, N = 224, N = 270, and N = 320, with n

the number of chains in the simulation and N the degree
of polymerization. These numbers show one advantage of
adopting a coarse-grained description as typically our samples
include thousands of chains. Simulating a large ensemble
of molecules is necessary, for example, when the goal is to
investigate large-scale fluctuations or the relative relevance of
intra- versus intermolecular contributions to the dynamics.

Figure 5 illustrates how our approach can be used to
calculate dynamics also in the short-time regime. The figure
shows the mean-square displacement of the cm from UA MD
in comparison with the one calculated from the diffusion
coefficient rescaled from the MS MD. The agreement is
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FIG. 5. Plot of mean-square displacement as a function of time
for unentangled PE melts. The rescaled MS MD simulation (line)
is compared with UA MD simulation (symbols) for N = 44, 66, 96.
Also shown is the outcome of the theory for cooperative dynamics
(dashed lines).

quantitative in the long-time regime. In the short-time regime,
the UA MD simulation data exhibit a subdiffusive behavior,
even if polymers are unentangled. In a series of papers we have
shown that the subdiffusive regime is a consequence of the
presence of cooperative dynamics involving several polymer
chains moving in a correlated way inside the dynamically
heterogeneous liquid of macromolecules [59,62]. A detailed
discussion of this phenomenon, which is of intermolecular
origin, has been provided before and will not be repeated here.
Our theory, the Cooperative Dynamics Generalized Langevin
Equation (CD-GLE), needs as an input the diffusion coefficient
and predicts the subdiffusive behavior for times shorter than
the longest correlation time as a function of the number,
n′ ∝ √

N , of macromolecular chains moving in a cooperative
way. Figure 5 shows the results from our CD-GLE calculations
as dashed lines. Here the input monomer friction coefficient
is calculated from MS MD using the rescaling procedure. The
number of chains undergoing cooperative dynamics is n′ = 30
for N = 96, n′ = 25 for N = 66, and n′ = 14 for N = 44.

The subdiffusive behavior shown in UA-MD data is not
visible in the rescaled MS MD data as the dynamics are
accelerated. The effective temperature experienced by the
polymer is much higher than the temperature in UA MD
simulations as the energy is not dissipated in the internal
degrees of freedom.

Finally we discuss the calculations of the monomer
and soft-colloid friction coefficients for a set of polyethy-
lene chains investigated experimentally [39,48–51]. The
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TABLE V. Theoretically calculated dimensionless friction co-
efficient for monomer (d = 2.1 Å) and soft colloid with RFRC

g for
experimental samples.

System (RFRC
g )2 [Å2] Dβζsoft NDβζm

PE 36 101.4350 0.007846 0.5153
PE 72 219.5710 0.004927 0.8946
PE 106 331.1465 0.004543 1.8407
PE 130 409.9056 0.003497 1.5354
PE 143 452.5669 0.003318 1.6822
PE 192 613.3669 0.002828 2.2412
PE 242 777.4485 0.002500 2.8186

aT = 509K, ρ = 0.0315302 [sites/Å3].

experimental data do not report the values of Rg at the
desired thermodynamic conditions, T = 509 K and density
ρ = 0.0315302 sites/Å3, while it is known that the chain
conformation, and Rg , are temperature dependent. To calculate
the input parameters for our MS MD simulations we adopt
a freely rotating chain model, for which the mean-square
end-to-end polymer distance is given by [67]

〈
R2

ete

〉 = Nl2

[
1 + g

1 − g
− 2g

N

1 − gN

(1 − g)2

]
(55)

and R2
g ≈ 〈R2

ete〉/6 for a chain with Gaussian statistics. For
polyethylene melts at this temperature and density the stiffness
parameter is g = 0.785 [39].

The values of the monomer and soft-colloid friction
coefficients for the experimental samples, calculated from
Eqs. (44) and (49), respectively, are presented in Table V.
The table shows the large difference between the predicted
dimensionless friction coefficients, Dβζsoft and NDβζm, for
the same macromolecule coarse-grained at two different length
scales. From the values displayed in Table V we calculate the
rescaling factor for the friction coefficient measured in MS MD
simulations, following the procedure described in this paper.
Because the data have different thermodynamic parameters
of density and temperature, their scaling behavior cannot be
inferred from their plot, even if an apparent N−1 scaling is
followed by the unentangled samples and the typical reptation
N−2 scaling by the entangled ones.

D. Theoretical predictions of diffusion coefficients
for polyethylene samples

In this section we report theoretical predictions from
rescaled mesoscale simulations of the diffusion coefficients for
a series of PE samples for which data of chain dynamics, either
from simulations or from experiments, are not available in the
literature. The degree of polymerization of each sample is not
larger than the ones already investigated. However, because
there are no data to fit any parameter, these calculations
illustrate the predictive power of our method. Diffusion co-
efficients calculated by combining the mesoscale simulations
with the rescaling procedure presented in this manuscript, are
displayed in Fig. 6 as a function of the degree of polymerization
(downward triangles).

MS MD simulations are performed for N = 44, 60, 80, 100,
200, 300, 400, 500, and 1000, at constant monomer density
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FIG. 6. Plot of diffusion coefficients as a function of degree of
polymerization N . The rescaled results from MS MD simulations
at ρm = 0.0324 sites/Å3 and T = 400K (downward triangles) are
compared with simulations data for N = 44 (square). Also reported
are MS-MD data at ρm = 0.0315 sites/Å3 and T = 509K (upward
triangles), which match the experimental data (circles) from Ref. [39].
The scaling exponents for unentangled, N−1 (dashed line), and
entangled dynamics, N−2.5 (dot-dashed line), are also displayed.

ρm = 0.0323951 [sites/Å3] and temperature T = 400 K. The
value of Rg at increasing N is calculated using a freely rotating
chain model with the stiffness parameter from the UA MD
data for PE44 (Table VI). The hard sphere diameter is fixed
to the value reported in the previous sections for PE, d = 2.1
Å, and the pair distribution function at contact is g(0) = 1/2
as described early in this paper. While the simulations of the
small samples can be performed on a single CPU machine, for
systems with a higher degree of polymerization is convenient
to adopt parallel computing. For those systems, simulations
were run using the LAMMPS code [75], with our potential as
an input, remotely on a 64 CPU machine available through the
TeraGrid [76]. The simulation for the PE1000 sample included
46,656 molecules and required about 2 days of computer time.
By comparison with our single CPU calculations, running the
simulation in parallel reduces the computer time by a factor of
102. The number of particles in the simulation is determined
by the length of the box size, which for the PE1000 sample is
equal to 22 Rg , i.e., larger than twice the range of the potential,
to eliminate molecular self-interaction through the periodic
boundary conditions.

While we assume that small changes of density and
temperature do not affect the hard-core diameter, d, even a
small difference in ρm can noticeably change the prefactor in

TABLE VI. Predicted diffusion coefficients in Å2/ns from MS
MD and experimental data from Refs. [39,48–51].

System PE36 PE72 PE106 PE130 PE143 PE192 PE242

Dcm 111 50 23 14 11 5.6 3.2
Dexp 120 41 14 12 8.6 6.5 4.5
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Eq. (27). The monomer friction coefficient is calculated using
Eq. (44) for unentangled systems and Eq. (54) for entangled
ones.

In conclusion, the data set just discussed (triangles down
in Fig. 6) is for samples at ρm = 0.0324 sites/Å3 and T =
400 K. Here the semiflexibility parameter and bond length
are calculated from the radius-of-gyration of the N = 44
sample measured in UA MD simulations. All the other data at
increasing N are predicted while keeping the semiflexibility
parameter and the bond length constant in the freely rotating-
chain expression, as discussed above.

Moreover, Fig. 6 displays data from a second set of MS
MD simulations (upward triangles) performed at ρm = 0.0315
sites/Å3 and T = 509 K and increasing N . This set of sim-
ulations, rescaled with our method, quantitatively reproduces
the experimental data (circles) reported in Ref. [39]. Note that
the value of D reported here for N = 106 is slightly different
than the one reported in our previous paper [31], which was
incorrectly calculated. All the other points are identical to the
ones reported previously [31]. The predicted values of the
diffusion coefficient appear to be consistent with the known
experimental behavior.

Finally, if we assume that the change in diffusion coefficient
from one set, with ρm = 0.0324 sites/Å3 and T = 400 K,
to the other, with ρm = 0.0315 sites/Å3 and T = 509 K,
is mostly due to the difference in temperature, the behavior
illustrated in Fig. 6 is consistent in the entangled regime with
the analysis performed in Ref. [77]. The diffusion coefficients
of unentangled chains follow the scaling behavior of the
Rouse approach, while the entangled chains show a scaling
with degree of polymerization of −2.5. Although the latter
scaling exponent disagrees with the “reptation model,” it is
known that experimental samples of weakly entangled chains
also show a scaling exponent of −2.5. For those polymer
chains, which are just across the transition from unentangled to
entangled dynamics, constraint release and “tube” fluctuations
are relevant. The observed scaling behavior is also consistent
with the scaling of the viscosity observed experimentally
[78]. The advantage of our method with respect to UA-MD
simulations is that even in the case of long entangled chains it
is possible to include a large number of molecules, improving
the statistics of calculated correlation functions. Overall this
plot shows that it is possible to provide reasonable predictions
of large-scale dynamical properties by properly rescaling
mesoscale simulations.

VII. DISCUSSION AND CONCLUSIONS

The need for developing a fundamental approach to rescale
dynamical data obtained from MS simulations of coarse-
grained systems has been a long-standing problem from the
time that coarse-graining approaches started being developed.
Because MS simulations are less computational demanding
than atomistic simulations, it is possible to investigate larger
systems for longer times than in all-atom simulations, allowing
one to extend the maximum time and length scales accessible
through simulations and to improve the statistics of measured
averaged quantities. Considering that the number of particles
in a simulation should be large enough to ensure proximity to
the thermodynamic limit, MS simulations of coarse-grained

systems could become an indispensable tool to investigate the
structure and dynamics of macromolecular liquids.

One advantage of a MS simulation of a coarse-grained
system is that the simulation speeds up because of the
averaging of the internal degrees of freedom, leading to a
softer potential and allowing the study of longer time scales
than in a fully atomistic simulation. This implies, however,
that the dynamical properties resulting from the MS MD are
faster than their real counterpart, for example, the ones from
UA MD, and need to be rescaled.

It is the common procedure to rescale the measured
dynamics numerically by bringing a time correlation function
to agree with the one measured in atomic-level simulations;
however, we adopt a different strategy. We have proposed a
first principle approach to derive an analytical form of the
rescaling procedure to be applied to the dynamics measured
directly from MS MD of a coarse-grained polymer liquid. Our
approach allows for the reliable prediction of the long-time
diffusion of a polymer melt as it would be measured in an
atomistic or UA-MD simulation. The rescaling procedure
has been tested so far against simulations and experiments
of polyethylene liquids both unentangled and entangled.
Calculated diffusion coefficients for samples for which we do
not have data either experimental or simulated show consistent
behavior.

We start by running MS MD simulations of coarse-grained
polyethylene melts where each polymer is represented as a
point particle. The analytical intermolecular potential, input
to the MS MD, is derived from the OZ equation with the
hypernetted closure approximation. The correction term to the
measured dynamics of the MS MD simulations, is calculated
from the solution of the GLEs written for the coarse-grained
and for the monomer-level representations of the macromolec-
ular liquid. Those equations are formally derived from the
Liouville equation by assuming two different length scales
characterizing the relevant slow dynamics, i.e., monomer and
cm, onto which the Liouville equation is projected.

While the Mori-Zwanzig projection operator technique
suggests a reliable criteria to select the proper length scale
of coarse-graining for dynamical properties, the GLEs thus
generated allow one to derive analytical forms of the rescaling
contributions associated with the coarse-grained dynamical
equations. The rescaling procedure includes two contributions,
given by the changes in entropy and in the friction coefficient
during coarse graining. The entropic contribution emerges
from the averaging of the internal degrees of freedom, while the
friction is due to the change in shape, and as a consequence the
change of the molecular surface exposed to the surrounding
molecules. Both corrections depend on the thermodynamic
conditions of the system simulated, and on the molecular
structure through the radius-of-gyration of the macromolecule.
Thermodynamic and molecular quantities enter both directly
through the rescaling equations and indirectly through the
effective potential in the mesoscale simulations. In this way
the dynamics predicted from the rescaling of each mesoscale
simulation is specific of the system under study.

A feature of the coarse-graining models we study is the
mapping of the polymeric liquid onto simple representations,
which are isotropic. At the molecular level the polymer is
described as a soft isotropic sphere. At the monomer level,
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the bead-and spring description affords equivalent beads in
the chain, which is a reliable approximation due to the high
number of statistically equivalent structural configuration of
the molecule. Chain end effects enter in the model through
the finite size of the polymer in the matrix representation
of the equations. Moreover, because the monomers in a
homopolymer are structurally identical, with the exception of
the two end monomers, the intermolecular monomer-monomer
hard-core interaction potential is assumed to be identical for
any pair of monomers, and each monomer is supposed to have
identical friction coefficient.

Although the theoretical picture is straightforward, our
approach has the advantage of being described in closed-
form expressions, even if approximated, which allows for an
analytical solution of the rescaling formalism. This has the
potential of being useful in improving our understanding of
the nature of coarse-graining procedures.
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APPENDIX A: INTERNAL ENERGY CALCULATION FOR
A FREELY ROTATING CHAIN MODEL

The effective mean-force potential for one homopolymer
composed of N monomers can be expressed through the
structural matrix A as

U = 3kBT

2l2

∑
i,j

Ai,j ri · rj = 3kBT

2l2

∑
x,y,z

∑
i,j

xiAi,j xj

= 3kBT

2 l2
rT Ar, (A1)

with the matrix A being real and symmetric, and diagonalized
by the orthonormal matrix of the eigenvectors Q−1 = QT , so
that

rT Ar = ξT Q−1AQξ = ξT �ξ, (A2)

where � is the matrix of the eigenvalues, and ξ is the matrix
of the normal modes defined by r = Qξ .

In this model, the equilibrium distribution function is

�eq(r) = Nxe
− 3

2l2
xT AxNye

− 3
2l2

yT AyNze
− 3

2l2
zT Az

= Ne
− 3

2 l2
rT A r = Ne− 1

2 rT A′ r, (A3)

where for convenience of notation we introduced the matrix
A′ = 3A/l2. Here Nx is the normalization factor, defined by
enforcing

∫
dx�x = 1, as

Nx =
(

3

2πl2

)N/2

[det(A)]1/2, (A4)

with Nx = Ny = Nz = N1/3. The statistically averaged in-
ternal energy for one molecule consisting of N monomers

simplifies to〈
E

kBT

〉
= N

∫
Ue− 1

2 rT A′rd r = N

∫
1

2
rT A′re− 1

2 rT A′r.

(A5)

In one dimension,〈
E

kBT

〉
x

= 3Nx

2l2

∫
dx xT Ax e

− 3
2l2

xT Ax

= Nx

3

2l2

(
Nxl

2

3

Nx∏
i=1

√
2πl2

3λi

)
= N

2
, (A6)

which gives, as the final result for the internal energy of one
molecule consisting of N monomers,〈

E

kBT

〉
= 3N

2
. (A7)

APPENDIX B: THE DYNAMIC MEMORY FUNCTION

We briefly report here the derivation of Eq. (29) starting
from Eq. (13). The product of the direct and projected forces
is expressed as a function of the density field variables as

〈F(0) · FQ̂(t)〉 ∼= F(r) · F(r′)〈ρα(r; 0)ργ (r; t)〉. (B1)

Because the fluid is uniform and isotropic, the density fields
can be replaced by their fluctuation variables, �ρα(r,t) =
ρα(r,t) − 〈ρα(r)〉, where the ensemble-averaged density field
is approximated by 〈ρα(r)〉 ≈ ρg(r). The correlation of the
random forces is then expressed as

〈F(0) · FQ̂(t)〉 ∼= r̂ · r̂ ′ρ2g(r)g(r ′)F (r)F (r ′)

× 〈�ρα(r)�ργ (r′,t)〉
〈ρα(r)〉〈ργ (r ′)〉 , (B2)

where we adopt a kind of “dynamical”/Kirkwood superposi-
tion approximation in a weighted average form

〈�ρα(r)�ργ (r′,t)〉
≈ ρ

∫
dR g(r)g(r ′)S(R,t)S(|r − r′ + R|t). (B3)

Equation (B3) describes the multipoint correlation between
the density fluctuations at a distance r from segment α at time
zero, and the density fluctuations a distance r′ from segment γ

at time t . Because α and γ can be on the same or on different
polymer chains, no assumptions are made a priori about the
relative importance of intra- and intermolecular correlations.
In this way the chain connectivity does not play a dominant role
in our description from the very beginning. We then calculate
both intra- and intermolecular contributions and show that both
need to be included in the calculation of the memory function
as intramolecular contributions are comparable in size to the
intermolecular ones. Substitution of Eq. (B3) into Eq. (B2)
leads to Eq .(29).
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