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Glassy dynamics in the isotropic phase of a smectogenic liquid crystalline compound
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The temperature evolution of the primary relaxation time in the isotropic phase of 4-cyano-4′-tetradecylbiphenyl
(14CB) above the isotropic-smectic A (I-SmA) transition is discussed. Based on the enthalpy space and distortion-
sensitive analysis, the prevalence of the mode coupling theory (MCT) “critical” and “glassy” dynamics is shown.
The obtained singular dependence is related to the MCT critical temperature located approximately 48 K below
the clearing (I-SmA) temperature. However, a weak but detectable distortion in the immediate vicinity of the
transition occurs. It is also shown that the value of the fragile strength coefficient DT is characteristic of a very
fragile glassy liquid whereas the steepness index m is typical of a strong one. Both magnitudes anomalously
change on approaching the I-SmA phase transition. The static permittivity shows the pretransitional effect linked
to the temperature of the hypothetical continuous phase transition located approximately 10.2 K below the I-SmA
transition.
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I. INTRODUCTION

In the past decade, significant research has been devoted to
isotropic-mesophase transitions in rodlike thermotropic liquid
crystalline (LC) materials [1–23] and references therein]. This
can be associated with the fact that the dynamics of the
isotropic phase of LC compounds may constitute a significant
reference for the whole category of soft matter–complex liquid
systems [24,25]. It is also worth recalling that four decades ago
the Cotton-Mouton effect (CME) [26], Kerr effect (KE) [27],
and light scattering (IL) [28] studies in the isotropic phase of
nematic liquid crystals established a base for the Landau–de
Gennes (LdG) model [29], one of the most important and
successful theoretical ideas of the physics of liquid crystals
[30–34]. Recently, the ability of the modified, extended LdG
approach to describe phase transitions from the isotropic to
smectic mesophases was also shown [35–37]. One of key
findings of the LdG model is the link of the strong increase of
the mentioned properties to the appearance of orientationally
ordered premesomorphic fluctuations, which correlate length
(ξ ) and time (τξ ) and are given by [29–34]

ξ = ξ0(T − T ∗)−1/2 and τξ = τ
ξ

0 (T − T ∗)−1, (1)

where T > TC = T ∗ + �T , TC is the melting (“clearing”)
temperature of the weakly discontinuous isotropic-nematic I-N
phase transition, and �T is the measure of the discontinuity of
the transition: In the case of the I-N transition, it is equal to 1–
2 K. The temperature T ∗ denotes the extrapolated temperature
of a hypothetical continuous phase transition.

It is noteworthy that theoretical models explaining the
relatively small value of �T for the I-N transition appeared
only recently [2]. The physical properties mentioned above are
directly coupled to prenematic multimolecular fluctuations.
The simple Arrhenius behavior was most often indicated for
describing the temperature evolution of the single-molecule
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primary relaxation time (τα), viscosity (η), diffusion coeffi-
cient (D), and electric conductivity (σ ) [1,30,34]. Notwith-
standing, a limited reference indicated a clearly non-Arrhenius
evolution also existed. The latter results agreed with a growing
evidence suggesting the similarity of dynamics in the isotropic
phase of nematic liquid crystals and the complex dynamics in
supercooled liquids approaching the glass transition. This issue
is the key conclusion of the mode-coupling theory analysis
in Refs. [3] and [6] and the Gay-Berne fluid modeling in
Refs. [11], [15], and [16]. One can argue that if the “glass
analogy” is applicable then the data should depend on the
sample cooling rate, but such dependence takes place for
the value of the glass temperature (Tg) and does not for
the dynamics above Tg , in the supercooled liquid state. The
isotropic phase is located not only well above Tg (τa = 100 s)
but also above the dynamic crossover temperature [T > TB (τa

= 10−7±1 s)]. It is also noteworthy that the isotropic phase
cannot be supercooled below the extrapolated temperature
T ∗, located very close to the isotropic-mesophase “melting”
temperature, and then the real glass temperature (Tg) for the
isotropic liquid phase cannot be reached [19].

As the key hallmark of the glassy dynamics, the parameter-
ization of the non-Arrhenius behavior via the Vogel-Fulcher-
Tammann (VFT) dependence is most often considered, namely
[25], [38]:

τ
α

= τ0 exp
DT T0

T − T0
, (2)

where DT is the fragility strength coefficient and T0 denotes
the VFT estimation of the ideal glass temperature. The VFT
dependence is also expected to portray the evolution of η(T ),
D(T ), or σ (T ).

The VFT equation can be derived from several basic
theories for glass-forming liquids, such as Adam-Gibbs theory
[38,39] or Turnbull free volume model [38], [40]. The latter
is also the basis of Diogo-Martins (DM) dependence [41,42],
which is very successful in parameterization of η(T ) and D(T )
data within the physics of liquid crystals. However, it mimes
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the VFT equation and introduces adjustable parameters such
as T0 temperature [41] and a “glass temperature” [42]. In the
opinion of the authors, the DM concept can be also included in
the discussed glassylike analogy for dynamics of the isotropic
phase of liquid crystalline materials.

In recent years, a distortion-sensitive, derivative-based
analysis of experimental data describing dynamics in complex
liquid has been developed [23,43]. It made possible an ultimate
verification of the validity of dynamic equations for τα(T ) and
η(T ) evolution. This analysis, applied to the isotropic phase
of n-pentylcyanobihenyl (5CB, I-N transitions, �T ≈ 1.2 K),
showed the limited validity of the VFT parameterization [19].
The same type of treatment revealed the clear prevalence of
the MCT-type “critical” relation [19], known to be valid in
the high temperature domain of supercooled glass-forming
liquids, namely [38]

τ
α
(T ) = τ0(T − TX)−φ, (3)

where TX is the MCT critical temperature located approxi-
mately 30 K below the isotropic-nematic clearing temperature
and the exponent φ = 2/4. For supercooled liquids, TX is
linked to the ergodic-nonergodic crossover.

In classical supercooled liquids, this relation holds for T >

TX + 20 K [38].
The natural question at the present stage of research regards

the dynamics of the transition from the isotropic liquid to
more complex liquid crystalline mesophases. Results for the
isotropic–chiral nematic (N∗) transition [22,23] indicate no
significant differences in the behavior observed for the I-N
transition. For the isotropic-smectic transitions, the orienta-
tional ordering is supplemented by one-dimensional density
modulation [29–34]. However, despite strongly revived inter-
est in this transition, the existing experimental evidence is very
puzzling and limited. Temperature studies of KE, CME, and IL

gave the behavior poorly related to the LdG model [9,44–47].
A decade ago, a novel method called the low-frequency
nonlinear dielectric effect (LFNDE) was introduced [48–51].
In this technique, changes of the strong electric field induce
a shift of dielectric permittivity that is detected for frequency
at which the condition f −1 � τξ is fulfilled, where f is the rf
of the weak measuring field. It was shown that for I-N, I-N∗,
I-SmA, and I-SmE the same simple relation is valid, without
any distortion [48–51]:

εNDE = C

T − T ∗ (4)

where T > TC + �T , εNDE = (εE − ε)/E2 is the measure of
NDE, and εE and ε are dielectric permittivities in a weak and
strong electric field E.

Based on this method, it was proved experimentally that for
I-SmA and I-SmE transitions, the value of the discontinuity
is essentially larger than for the I-N transition [48–51]. The
obtained value of �T for smectogens range from 4 K to even
30 K. The value of discontinuity increases with the length of
smectogenic LC molecules [51].

Very recent theoretical advances, based on the energy
landscape analysis of a Gay-Berne model fluid, suggested
the complex glassy pattern described by the VFT equation
[11] for the primary relaxation time behavior τα(T ). In the
opposition to this result, experimental evidence of τα(T ) and

η(T ) shows only simple Arrhenius behavior for the isotropic
phase of smectogens [1,7,10,13]. However, in the opinion
of the authors, these results are too limited in precision and
temperature range for reliable conclusions.

This contribution presents the broadband dielectric spec-
troscopy (BDS) [38] studies of τα(T ) supported by distortion-
sensitive analysis based on enthalpy space [23,43]. The target
of the research was to establish clear experimental reference
for theoretical models related to the I-SmA transition.

II. EXPERIMENTAL

Studies were carried out in the isotropic phase of 14CB,
a particularly long and hardly tested member of the clas-
sical homologous series of rodlike liquid crystalline n-
alkylcyanobiphenyls (nCBs) [29–34]. The high purity sample
of 14CB was synthesized at the Technical Military University
(WAT) in Warsaw, Poland, and showed I-SmA transition at
TC = 336.4 K. The sample was degassed immediately prior to
measurements, which were carried out using a Novocontrol
BDS 80 spectrometer with temperature control unit. The
relaxation time was determined from the peak frequency of
loss curves via τα = 1/2πfpeak condition [38]. Analysis of
data employed ORIGIN 7.0 software, which shows significant
user-friendly advantages in fitting in comparison with its
successors. Preliminary dielectric studies indicated a clear
Arrhenius-type behavior of the relaxation time in the isotropic
phase of 14CB [7]. LFNDE studies in the isotropic phase
yielded �T = 10.2 K [50].

III. RESULTS AND DISCUSSION

The obtained evolution of dielectric relaxation times in
the isotropic phase of 14CB is presented in Fig. 1. The
most characteristic feature is the presence of two relaxation
processes. The low frequency one is associated with the
relaxation around the short axis of the rodlike molecules. This

FIG. 1. Temperature evolution of the primary relaxation time
(circles) and the tumbling mode relaxation (squares) in the Arrhenius
scale. The upper solid curve represents the MCT “critical-like”
equation [Eq. (3)] with parameters taken from the derivative-based
analysis. Results are given in Fig. 3.
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is the primary (τα) relaxation process. The high frequency
process can be linked to the tumbling mode around the
direction determined by the long axis of molecules.

In the isotropic phase of 5CB with the I-N transition, a
single relaxation process is sufficient to describe the relaxation
behavior, even in the immediate vicinity of the clearing
temperature [19].

For the precise analysis of the temperature form of the
evolution of the primary relaxation, the derivative, enthalpy
space–based analysis introduced in Ref. [43] was used, namely,[

d ln τα

d(1/T )

]
=

[
Ha (T )

R

]−1/ 2

= (H ′
a)−1/2

= [(DT To)−1/2] − [T0(DT T0)−1/2]

T

= A − B

T
, (5)

where Ha(T ) denotes the apparent activation enthalpy and
R is the gas constant. The linear regression analysis yields
T0 = B/A and DT = 1/AB.

The above analysis resembles the transformation proposed
by Hansen et al. [52] for supercooled glass-forming liquids,
although they did not introduced explicitly the activation
enthalpy and focused solely on detecting the so-called dy-
namical crossover temperature. Following Eq. (5), the domain
of validity of the VFT equation at the plot (H ′

a)−1/2 versus
1/T is visualized by a linear dependence for which the linear
regression yields optimal values of T0 and DT coefficients. A
similar reasoning can be used for the MCT critical-like Eq.
(3), namely [43],

T 2/H ′
a(T ) = TX/φ − φ−1T = A − BT . (6)

Experimental data presented in the plot T 2/H ′
a(T ) versus

T should exhibit linear behavior in the domain of validity
of the critical-like MCT-based Eq. (3). The subsequent linear
regression yields optimal values of parameters: TX = A/B and
φ = 1/B.

Results of the apparent enthalpy space analysis shown in
Fig. 2 reveals that in the isotropic phase of 14CB there is no
long-distance domains of the validity of the VFT description.
Characteristic is the unusually small value of the coefficient
DT , which indicates extreme fragility related to definitively
non-Arrhenius behavior [38,43]. Recalling the analogy with
supercooled liquids [11], one can define also the steepness
fragility index [15,16,38], which is the alternative measure of
fragility, namely,

m = d log10 τα(T )

d(T ∗/T )
. (7)

The inset in Fig. 2 shows that m(T ) exhibits an unusually
small, “strong glass former” type, value (m ≈ 5.4), remote
from TX, which increases up to approximately m = 16 at the
I-SmA transition. Generally values of m < 30 are considered
typical for dynamics which is almost Arrhenius type (strong
type). The fragile-type value of DT [38] and strong-type value
of m [8] occur in the isotropic phase of 14CB with the I-SmA
transition. This can explain why tests carried out in the limited
range of temperatures could be relatively well described by
the Arrhenius approximation, particularly if the immediate

FIG. 2. Results of the derivative-based analysis via Eq. (5)
focused on VFT [Eq. (2)]. Domains of the validity of the latter
are indicated by straight lines. The inset shows the evolution of
the steepness index defined by Eq. (7). The solid curve follows the
empirical relation m = 5.4 + 5.1 × 10−6(1 − T ∗/T )−4.

vicinity of the I-SmA transition was not focused enough. The
mentioned mismatching of fragility-related coefficients (m and
DT ) is hardly, if at all, observed for the complex dynamics of
classical supercooled glass-forming liquids [38].

Figure 3 shows that the MCT critical-type parameterization
[Eq. (3)] offers a much better description of experimental data
than the VFT equation, except in the immediate vicinity of
the I-SmA transition. The solid curve for the low frequency
primary process in Fig. 1 is based on coefficients obtained
using Fig. 3. The relatively strong distortion in Fig. 3 in
the immediate vicinity of the I-SmA transition is visibly
weakly manifesting in the direct plot of τα(T ) in Fig. 1.
This fact indicates that the direct fitting of τα(T ) or η(T )
data, without support of the derivative-based analysis, can
easily erroneously estimate the range of validity of the given
equation and give erroneous, “effective” values of parameters.
The discussed distortion is negligible for the I-N transition

FIG. 3. Results of the derivative-based analysis via Eq. (6)
focused on the validity of the MCT “critical-like” equation [Eq. (3)].
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FIG. 4. Temperature evolution of the static dielectric permittivity
in the isotropic phase of 14CB. The solid curve is related to
Eq. (8) with ε∗ = 7.411, T ∗ = 326.0 K, A = −0.0363 K−1, and B =
0.259 K1/2. The star indicates the locus of extrapolated hypothetical
continuous phase transition.

in 5CB [12,19]. This distortion cannot be clearly associated
with the proximity of the continuous phase transition, since in
14CB �T = 10.2 K, whereas �T = 1.2 K in 5CB [50].

Figure 4 shows the temperature evolution of the static
dielectric permittivity (f = 10 kHz) in the isotropic phase
of 14CB. It can be well portrayed by equation resembling one
used for the homogeneous phase of critical mixtures of limited
vicinity, namely [53,54],

ε′(T ) = ε∗ + A(T − T ∗) + B(T − T ∗)1/2, T > TC, (8)

where ε∗ and T ∗ are coordinates of the extrapolated continuous
phase transition.

The validity of the same equation was shown earlier for the
isotropic phase of 5CB with the I-N transition in [54].

Following Mistura [55], one can link the above de-
pendence to the critical behavior of the specific heat
dε/dT ∝ cP ∝ (T − T ∗)−α , where α = 1/2 is the specific
heat critical exponent within the mean field approximation. On
the other hand, from the molecular point of view, the bending
of ε′(T ) upon approaching the isotropic-mesophase transition
may be associated with the decrease of the static dielectric
permittivity due to the cancellation of ordered permanent
dipole moments in an antiparallel way within pretransitional
fluctuations.

This is possible due to the following facts: (i) The
permanent dipole for nCB molecules is parallel to the long

axis of the molecule, (ii) the equivalence
→
n and − →

n for
director vectors is a key feature of nematic ordering, and (iii)
in presmectic fluctuations elements of the limited translational
arrangement exist in addition to the “nematic” orientational
ordering [34].

In 5CB this leads to the decrease of the Kirkwood factor
down to approximately 1/2 at the I-N transition [56,57]. The
clear relationship of the appearance of ε′(T ) anomaly with the
angle between the long axis of the molecule and the permanent
dipole moment is worth noting. In the isotropic phase, the

LC compound consisting of molecules with permanent dipole
moment perpendicular to the long axis of the molecule ε′(T )
follows a linear dependence; that is, there is no pretransitional
anomaly [58–60]. However, also for LC compounds with the
transverse loci of the dipole moment, the evolution of τα(T ) is
non-Arrhenius [60], similar to the one discussed in this paper.
All these suggest that the relationship between the appearance
of ε′(T ) anomaly and the non-Arrhenius evolution of τα(T ) is
doubtful. The key artifact may be the domination of properties
in the isotropic phase by premesomorphic fluctuations.

For the high frequency tumbling relaxation mode, the
Arrhenius approximation delivers a reasonable description
(Fig. 1). This can be associated with the limited range of
temperatures and the experimental error.

In conclusion, the isotropic phase of the tested smectogenic
liquid crystal exhibits both a critical behavior associated
with the extrapolated phase transition at T ∗ = TC − 10.2 K
and the MCT critical characteristic for glass-forming liquid
behavior for dynamics, linked to the extrapolated singularity
at TX = TC − 48 K. Both features are hidden in the same
BDS spectrum. It is noteworthy that the ultimate theory for
the isotropic phase and isotropic-mesophase transitions is still
lacking. Such a theory should describe experimental artifacts
related both for pretransitional (precritical) anomalies and the
complex dynamics.

Regarding dynamics, the same vales of DT and m were ob-
tained for 5CB (�T ≈ 1.2 K, I-N transition) and 14CB (�T ≈
10.2 K, I-SmA transition) near the isotropic-mesophase transi-
tion. For the discussed glassy-type description of the complex
dynamics in the isotropic phase of 14 CB, worth recalling
is the analysis of the distribution of relaxation times related
to the high frequency wing of the dielectric loss curve. It
shows a behavior analogous to the universal pattern found by
Dyre et al. [61,62] on approaching the real glass transition
in supercooled glass-forming liquids. A similar coincidence
was found earlier for surrounding the I-SmE transition in
n-isothiocyanatobiphenyl (nBT) [63].

The obtained behaviors of static and dynamic dielectric
properties in 5CB (I-N case) and 14CB (I-SmA case) are very
similar, although for the latter a notable distortion from the
critical-like dependence in the immediate vicinity of the I-SmA
transition takes place. This occurs despite the large value of
the discontinuity �T in 14CB; then it cannot be associated
with the proximity of the continuous phase transition at T ∗.
The question arises if the glassy dynamics in the isotropic
phase of the LC compound can be used as the argument for the
heterogeneity and hidden phase transition–related hypothesis
of a classical supercooled liquid, which does not exhibit any
mesomorphic behavior, as suggested in Ref. [11]. Equally
probable seems to be that the isotropic phase shows simply a
complex dynamics reference for soft matter systems. We stress
also the significance of the result obtained for the physics of
liquid crystals.
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