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Helical phase of chiral nematic liquid crystals as the Bianchi VII0 group manifold
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We show that the optical structure of the helical phase of a chiral nematic is naturally associated with the
Bianchi VII0 group manifold, of which we give a full account. The Joets-Ribotta metric governing propagation
of the extraordinary rays is invariant under the simply transitive action of the universal cover Ẽ(2) of the three-
dimensional Euclidean group of two dimensions. Thus extraordinary light rays are geodesics of a left-invariant
metric on this Bianchi type VII0 group. We are able to solve, by separation of variables, both the wave equation
and the Hamilton-Jacobi equation for this metric. The former reduces to Mathieu’s equation, and the latter to
the quadrantal pendulum equation. We discuss Maxwell’s equations for uniaxial optical materials where the
configuration is invariant under a group action and develop a formalism to take advantage of these symmetries.
The material is not assumed to be impedance matched, thus going beyond the usual scope of transformation
optics. We show that for a chiral nematic in its helical phase Maxwell’s equations reduce to a generalized Mathieu
equation. Our results may also be relevant to helical phases of some magnetic materials and to light propagation
in certain cosmological models.
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I. INTRODUCTION

Recent years have seen a growing interest in the application
of the geometrical ideas originally developed for studying
Einstein’s theory of general relativity to other areas of physics,
such as condensed matter physics. The motivation is both the
theoretical aim of developing the mathematical tools capable
of dealing with as wide a range of physical problems as
possible and the desire to construct laboratory analogues of
the exotic conditions which general relativity allows, but which
are likely ever to remain inaccessible to direct experimental
investigation. This in turn may provide a stimulus for further
laboratory investigations, possibly resulting in the discovery
of new physical effects.

In the present article we pursue this direction by demon-
strating how the mathematical formalism of Lie groups, which
is of widespread use in general relativity and high-energy
physics [1,2], can be harnessed to study the optical properties
of symmetrical phases of matter. We develop a formalism
allowing the symmetries of an electromagnetic medium to
be directly exploited in solving Maxwell’s equations. When
considering symmetries in classical mechanics, the discussion
is simplified by passing to the Lagrangian or Hamiltonian
picture. We present a formalism which similarly makes
symmetries manifest for Maxwell’s equations. In order to
motivate and illuminate the development of this formalism,
we consider the example of light propagation in chiral nematic
liquid crystals. We believe this to be the first application
of Lie-group techniques to such a problem. The tools we
develop, however, are more widely applicable to media with
a continuous symmetry group. They may also be considered
a generalization of “transformation optics,” extending those
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ideas to allow for the possibility that the dielectric tensor and
magnetic susceptibility differ.

We begin in Sec. II with a brief discussion of the helical
ground state for a chiral nematic liquid crystal. In Sec. III
we introduce the geometry of the optical metric of Joets and
Ribotta [3], describing the propagation of the extraordinary
ray in a uniaxial birefringent material. In particular, we study
this metric and its geodesics for the helical ground state
of a chiral nematic. The resulting metric is invariant under
the simply transitive action of a three-dimensional group of
isometries which is locally isometric to the Euclidean group
E(2) of the plane, which we discuss in detail in Sec. III A.
In fact the isometry is the universal cover Ẽ(2) and the Lie
algebra is of type VII0 in Bianchi’s classification. We extend
the discussion to VIIh in the Appendix. The identification
of the symmetry group for the chiral phase permits a fully
geometrical discussion of electromagnetic phenomena, an
approach we exploit. The high degree of symmetry allows
us to solve the Hamilton-Jacobi and wave equations up to one
quadrature in the former and up to solutions of Mathieu’s
equation in the latter case. This opens up the possibility
of a detailed analytic investigation of the type of caustics
and optical singularities which should be observable in such
systems [4–7]. We then go beyond the geometric optics
approximation to consider the full Maxwell equations in
Sec. IV. For a uniaxial material whose director field takes
on a helical configuration we show how the theory of Lie
groups leads to separation of variables for these equations.
The resulting equations take the form of a generalized Mathieu
equation. This result is similar to others in the literature [8,9],
but the derivation is fully motivated by the inherent symmetries
of the problem.

Throughout the paper, we make use of the machinery of
differential geometry, in particular, tangent vectors, differential
forms, and the Lie derivative. References [1] and [2] provide
readable accounts of these concepts.
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II. CHIRAL NEMATICS AND THEIR HELICAL
GROUND STATE

A nematic liquid crystal has an order parameter given by
a director or direction field specified by a unit vector n =
(n1,n2,n3), defined up to a sign n ∼ −n, with n · n = 1. A
chiral nematic has a built-in twist, specified by a parameter
q, which can be realized as a torsion, which alters the usual
derivative operator acting on a vector by

∇q

i nj = ∇inj + qεijknk. (1)

The Frank-Oseen free energy functional in the one-constant
approximation is equivalent, up to a boundary term, to

F [n] = 1

2

∫
(|∇qn|2 − λ(n · n − 1))d3x, (2)

where we have added a Lagrange multiplier field λ to enforce
the constraint that n · n = 1. The free energy would be
minimized if

∇q

i nj = 0. (3)

However, as can be seen by taking another ∇q derivative and
skew symmetrizing, this is not possible over an extended
region so the system is frustrated and must adopt some
compromise configuration [10–12].

One such configuration is the helical phase, for which

n = i cos(pz) + j sin(pz). (4)

For more details about the liquid crystals the reader may
consult [13]– [18]. For the helical phase,

∇ · n = 0, ∇ × n = −pn, ∇2n = −p2n. (5)

This configuration is a stationary point of the free energy,
satisfying the second-order Euler-Lagrange equation resulting
from extremizing F [n]:

−∇2n + 2q∇ × n = (λ − 2q2)n, (6)

provided we choose

λ = p2 − 2pq + 2q2. (7)

Among these solutions of the Euler-Lagrange equations, the
one minimizing the free energy density has p = q, λ = q2.
The only nonvanishing components of ∇q

i nj are

∇q

2 n3 = qn1, ∇q

1 n3 = −qn2. (8)

It follows that the helical ground state is not a solution of the
first-order frustrated “Bogomolnyi equation,”

∇q

i nj = 0. (9)

Another means of relieving the frustration is the “double twist”
structure, given in cylindrical polar coordinates (ρ,z,φ) by

n = ez cos qρ − eφ sin qρ. (10)

Along the z axis, this configuration has ∇q

i nj = 0, so inside
a sufficiently small cylinder, the free energy density is in fact
lower than that for the helical phase. A structure composed of
these tubes can fill space, but there will necessarily be defects
where the tubes meet [12]. Such a configuration gives the
so-called “blue phase.” Whether the blue or the helical phase

is thermodynamically preferred depends on the energetic cost
associated with accommodating the defects of the blue phase.

III. OPTICAL METRICS FOR NEMATICS

If n is the director, and t = dx
ds

, where ds2 = dx2 is the
unit tangent vector, then the inverse speed or slowness of an
extraordinary ray is given by [3]

n =
√

n2
o(t.n)2 + n2

e(t − n(n · t))2, (11)

where no is the refractive index of the ordinary ray and ne that
of the extraordinary ray. Fermat’s principle reads

δ

∫
nds = 0. (12)

Thus the rays are geodesics of the Joets-Ribotta metric,

ds2
o = n2

edx2 + (
n2

o − n2
e

)
(n.dx)2. (13)

Assuming that the refractive indices are constants, we can
write down the metric for the helical ground state given above:

ds2
o = (

n2
o cos2(pz) + n2

e sin2(pz)
)
dx2 + (

n2
o sin2(pz)

+ n2
e cos2(pz)

)
dy2 + (

n2
o − n2

e

)
sin(2pz)dxdy + n2

edz2.

(14)

As another example, consider a particular case where the
director field, n, is in a “hedgehog” configuration (cf. [19–21])
and where, in addition, the refractive indices no,ne vary with
position inside the ball r = |x| < 1 according to

n = x
r
, ne = 1√

1 − r2
, no = 1

1 − r2
. (15)

The resulting Joets-Ribotta metric is

ds2
o = dx2

1 − r2
+ (x.dx)2

(1 − r2)2
, (16)

which one recognizes as that of hyperbolic space H 3 in
Beltrami coordinates. Remarkably, because hyperbolic space
is projectively flat in these coordinates, the light rays are
straight lines in this case. One could consider the 3-sphere
S3, by changing the sign in front of r2. Then one has a
model related to Maxwell’s fish-eye lens by a coordinate
transformation, but whose rays are straight lines. Other
examples may be found in [19–21]. Optical properties such
as (15) may appear unnatural, but modern metamaterials are
increasingly able to mimic such refractive indices, at least
within a certain range of frequencies for the electromagnetic
field.

A. E(3) and left-invariant metrics

The aim of the present section is to obtain the isometry
group of the apparently quite complicated metric (14). An
enormous simplification results if we use the formalism of
metrics on Lie groups. We start with a brief discussion,
tailored to the Euclidean group E(2) of isometries of the plane,
consisting of translations and rotations in two dimensions.
Those familiar with the construction of left- and right-invariant
forms on Lie groups may wish to skip to the summary at the
end of this subsection.
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We can realize elements of E(2) as matrices as follows.
We first fix a number p. To any point (X,Y ) in the plane, we
associate the column vector

(X,Y ) ∼
⎛
⎝X

Y

1

⎞
⎠ . (17)

We first note that a general isometry of the plane can be
decomposed into a clockwise rotation of angle pz about the
origin, followed by a translation of (x,y). We can write down
a matrix M(x,y,z) depending on parameters (x,y,z) which
performs this operation as follows:⎛

⎜⎝
X′

Y ′

1

⎞
⎟⎠ =

⎛
⎜⎝

cos pz − sin pz x

sin pz cos pz y

0 0 1

⎞
⎟⎠

⎛
⎜⎝

X

Y

1

⎞
⎟⎠

= M(x,y,z)

⎛
⎜⎝

X

Y

1

⎞
⎟⎠ . (18)

Corresponding to any three numbers (x,y,z), we have a unique
isometry, and conversely each isometry corresponds to a
unique (x,y,z), provided that we regard z and z + 2π/p as
the same.1 We refer to (x,y,z) as coordinates on group E(2).

Our aim is to construct a set of vector fields which are
invariant under an action of group E(2). We will consider
for the moment a matrix Lie group G, i.e., a group whose
elements are n × n matrices for some appropriate n where the
group action is by matrix multiplication.2 We note that any
element A of G gives rise to two natural transformations on
the group itself. Acting on M , a general element of G, they
give

�A(M) = AM, PA(M) = MA (19)

and are known, respectively, as left and right translation, or the
left and right action of A. We note that the left action and the
right action commute:

�A(PB(M)) = �A(MB) = AMB = (�A(M))B

= PB(�A(M)). (20)

Now suppose that A is infinitesimally close to the identity
matrix A = I + εδA for an infinitesimal parameter ε. We have

�A(M) = (I + εδA)M = M + εδ�M, (21)

where the infinitesimal generator δ�M = (δA)M can be
interpreted as a tangent vector to G at the point M , where
we think of G as a submanifold, i.e., a surface3 in the space of
all n × n matrices. This is a right-invariant vector field, since
δ�(PB(M)) = PB(δ�M) because of Eq. (20). Following a

1For most of the rest of the paper, we in fact work with the covering
group Ẽ(2) obtained by dropping the identification of the z coordinate.
This is a slightly technical point which we do not labor.

2There are some further assumptions on the smoothness of the
group, but we take these as given.

3We do not assume that a surface is necessarily two dimensional,
merely that it is of lower dimension than the space in which it lives.

similar procedure, we find that the vector fields δP M = M(δA)
are left-invariant.

In order to construct the left- and right-invariant vector
fields of E(2), we must first find all suitable δA such that
I + εδA is an element of E(2). We can do this by using the
coordinate representation M(x,y,z) above. Since M(0,0,0) =
I , we can find the most general δA by Taylor expanding
M(x,y,z) for small (x,y,z). We find that the general δA is
a linear combination of the matrices:

M1 =
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ , M2 =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ ,

(22)

M3 =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ .

We would like to express the vector fields in terms of the
(x,y,z) coordinates. To do this, we define a basis of vector
fields for E(2) as follows:

∂

∂x
= ∂M(x,y,z)

∂x
,

∂

∂y
= ∂M(x,y,z)

∂y
,

∂

∂z
= ∂M(x,y,z)

∂z
.

(23)

We can think of ∂/∂x either as a concrete matrix tangent
to E(2) as a surface in the space of 3 × 3 matrices, or,
more abstractly, as the vector field which generates a shift
from (x,y,z) to (x + δx,y,z) in the coordinate space. This
notation captures the fact that under a change of variables for
the coordinate space, (x,y,z) → (x ′,y ′,z′), the vector fields
transform in the same way as differential operators following
the chain rule. We can readily calculate the left-invariant vector
field corresponding to M1:

L1 = MM1 =

⎛
⎜⎝

0 0 cos pz

0 0 sin pz

0 0 0

⎞
⎟⎠ = cos pz

∂

∂x
+ sin pz

∂

∂y
.

(24)

In a similar way, we can find the rest of the left- and right-
invariant vector fields, Li = MMi,Ri = MiM:

L1 = cos pz
∂

∂x
+ sin pz

∂

∂y
, R1 = ∂

∂x
,

L2 = cos pz
∂

∂y
− sin pz

∂

∂x
, R2 = ∂

∂y
, (25)

L3 = 1

p

∂

∂z
, R3 = 1

p

∂

∂z
+ x

∂

∂y
− y

∂

∂x
.

Now that we have the left- and right-invariant vector fields,
we can construct the left- and right-invariant 1-forms which
are dual to them. Taking dx,dy,dz to be the 1-forms dual
to ∂/∂x,∂/∂y,∂/∂z, the left-invariant forms λi and right-
invariant forms ρi are

λ1 = cos(pz)dx + sin(pz)dy, ρ1 = dx + pydz,

λ2 = cos(pz)dy − sin(pz)dx, ρ2 = dy − pxdz (26)

λ3 = pdz, ρ3 = pdz.
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The matrices Mi have a natural commutator algebra, the Lie
algebra e(2). This determines in a natural way the Lie algebra
of the vector fields Li and Ri ,

[L1,L2] = 0, [R1,R2] = 0,

[L3,L1] = +L2, [R3,R1] = −R2, (27)

[L3,L2] = −L1, [R3,R2] = +R1,

and the Maurer-Cartan algebra of the 1-forms,

dλ1 = +λ3 ∧ λ2, dρ1 = −ρ3 ∧ ρ2,

dλ2 = −λ3 ∧ λ1, dρ2 = +ρ3 ∧ ρ1, (28)

dλ3 = 0, dρ3 = 0.

The fact that left and right actions commute (20) is reflected
in the fact that [Li,Rj ] = 0.

We can check the claimed invariance explicitly. First, we
note the matrix identity,

M(x,y,z)M(ν,η,ζ ) = M(x + ν cos pz − η sin pz,y

+ η cos pz + ν sin pz,z + ζ ), (29)

from which we deduce that the element M(ν,η,ζ ) acting by
right translation takes (x,y,z) to (x ′,y ′,z′), where

x ′ = x + ν cos pz − η sin pz, (30)

y ′ = y + η cos pz + ν sin pz, (31)

z′ = z + ζ. (32)

Making these substitutions into ρi , treating ν, η, ζ as constants,
we find

dx + pydz = dx ′ + py ′dz′, (33)

dy − pxdz = dy ′ − px ′dz′, (34)

pdz = pdz′, (35)

so that the ρi are indeed invariant under right translations.
Interchanging the roles of x,y,z and ν,η,ζ in (29), we deduce
that the element M(ν,η,ζ ) acting by left translation takes
(x,y,z) to (x ′,y ′,z′), where

x ′ = x cos pζ − y sin pζ + ν, (36)

y ′ = y cos pζ + x sin pζ + η, (37)

z′ = z + ζ. (38)

Substituting into λi , again treating ν,η,ζ as constants, we can
check that

cos(pz)dx + sin(pz)dy = cos(pz′)dx ′ + sin(pz′)dy ′, (39)

cos(pz)dy − sin(pz)dx = cos(pz′)dy ′ − sin(pz′)dx ′, (40)

pdz = pdz′, (41)

so the λi are invariant under left translations.
Armed with these invariant 1-forms, we are now in a

position to construct metrics which are invariant under an
action of E(2). For example, the flat metric can be written
in terms of the left-invariant 1-forms as

ds2 = p−2(λ3)2 + (λ1)2 + (λ2)2 (42)

and is hence manifestly left-invariant. Now for the helical
ground state of the nematic liquid crystal,

n · dx = λ1; (43)

thus the Joets-Ribotta metric of the helical phase may be
written as

ds2
o = n2

e(p−2(λ3)2 + (λ1)2 + (λ2)2) + (
n2

o − n2
e

)
(λ1)2

= n2
o(λ1)2 + n2

e(λ2)2 + n2
e

p2
(λ3)2, (44)

which is a left-invariant metric on Ẽ(2). In fact, any left-
invariant metric may be brought into this form by a global
right action of E(2). Cartan’s formula for a p-form reads

LX ω = iXdω + d(iXω), (45)

and so the nonvanishing Lie derivatives are

LL3 λ1 = −λ2, (46)

LL3 λ2 = λ1, (47)

LL1 λ2 = −λ3, (48)

LL2 λ1 = λ3. (49)

Thus while L3 is an additional symmetry of the flat met-
ric, none of the Li are symmetries of the Joets-Ribotta
metric.

To summarize, then, (x,y,z) ∈ R3 may be considered as co-
ordinates on Ẽ(2), the universal cover of the two-dimensional
Euclidean group E(2) with λi left-invariant 1-forms and Li

left-invariant vector fields. If we were to identify the coordinate
modulo 2πn

p
, n = 1,2, . . ., the group would be the n-fold cover

of the Euclidean group E(2), which corresponds to n = 1.
With this identification, the Joets-Ribotta metric of the helical
phase is a left-invariant metric. Its symmetry algebra, the Lie
algebra e(2), is of Bianchi type VII0. As an aside, this may be
obtained from the rotation-group algebra so(3) by means of a
Wigner-Inönü contraction. If M̃i are the generators of so(3),
one sets M̃1 = 1

ε
M1, M̃2 = 1

ε
M2, M̃3 = M3 and takes the limit

ε → 0. Under this contraction, the direction field n · dx = L1

arises as the image of the Hopf fibration generated by the right
action of L̃1 and the Joets-Ribotta metric as the image of the
Berger-Sphere. For the relevance of the Hopf fibration to chiral
nematics, see [10–12,16], and [22–25].

B. The ray approximation

In the ray approximation we are looking at geodesics with
respect to a left-invariant metric on the universal cover of
the Euclidean group Ẽ(2). Now the Euclidean group E(2) is
the configuration space for a rigid body in two-dimensional
Euclidean space E2. The motion of a rigid body moving in a
homogeneous, incompressible, inviscid fluid [26] is known to
correspond to geodesic motion with respect to a left-invariant
metric on the Euclidean group [27,28]. The present situation
corresponds to a cylinder with its axis in a plane [26,29] which
may be reduced to the quadrantal pendulum.

To see this in detail note that the Eikonal equation is

p2

n2
e

(L3W )2 + 1

n2
e

(L2W )2 + 1

n2
o

(L1)2 = ω2, (50)
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and it separates. If W = kxx + kyy + G(z), then

1

n2
e

(
dG

dz

)2

+ 1

n2
o

(kx cos(pz) + ky sin(pz))2

+ 1

n2
e

(kx sin(pz) − ky cos(pz))2 = ω2. (51)

The Killing vectors Ri give rise to three constants of the motion
of the form

pi = gμν

dxμ

dt
R

μ

i , (52)

of which two, p1 and p2, mutually commute.
We may immediately find the equations for rays in a first-

order form by making use of the relation

dxμ

dt
= gμν ∂W

∂xμ
. (53)

We find

n2
e ẋ = kx

2

(
1 + n2

e

n2
o

)
− k

2

(
1 − n2

e

n2
o

)
cos(2pz − ψ), (54)

n2
e ẏ = ky

2

(
1 + n2

e

n2
o

)
− k

2

(
1 − n2

e

n2
o

)
sin(2pz − ψ), (55)

n4
e ż

2 = ω2n2
e − k2

2

(
1 + n2

e

n2
o

)
+ k2

2

(
1 − n2

e

n2
o

)
cos(2pz − θ ).

(56)

Here tan ψ = ky/kx , k =
√

k2
x + k2

y and tan θ = 2kxky/(k2
x −

k2
y). Let us first consider (56). Introducing new constants α,β

and defining ζ = pz − θ/2, we find

ζ̇ 2 − p2

n4
e

(α + β cos(2ζ )) = 0, (57)

which is the so-called quadrantal pendulum equation [29].
The pendulum has two different types of behavior, depending
on the constants α and β. If α > |β|, then |ζ | and hence |z|
will increase without bound. This corresponds to a pendulum
swinging through complete revolutions. If α < |β|, then ζ will
oscillate about 2nπ for some integer n. This corresponds to
the standard libratory motion of a pendulum. Thus we find
two behaviors for the rays. Either the rays can penetrate in the
z direction or they are trapped to move between two planes
perpendicular to the z axis. Finally, we can consider the other
equations of motion, (54) and (55). We can interpret these
as saying that the tangent vector of the ray oscillates around
an average direction. For rays which are not bounded in z, the
result is a “corkscrew” curve, similar to a helix. The “tightness”
of the spiral is determined by how close n2

e/n2
o is to 1. Figure 1

shows some examples.

C. The wave equation

For an approximate description of light propagation beyond
the ray approximation, one may use the scalar wave equation.
The scalar wave equation captures some of the wave aspects of
light, while ignoring the complications relating to polarization
which arise in the full Maxwell equations. We may expect
the wave equation on the Joets-Ribotta metric to share some

FIG. 1. Two geodesics of the Joets-Ribotta metric (14). Curves
are shown projected into the x-z plane. One is unbounded in z,
whereas the other is bounded. Not shown is the motion in the y

direction which gives both these curves a corkscrew motion.

features with one of the two polarizations of the full Maxwell
equations. It takes the form

0 = −∂2�

∂t2
+ p2

n2
e

L3L3� + 1

n2
e

L2L2� + 1

n2
o

L1L1�. (58)

It separates. That is, if � = ei(+kxx+kyy−ωt)F (z), then

1

n2
e

d2F

dz2
+

(
ω2 − 1

n2
o

(kx cos(pz) + ky sin(pz))2

− 1

n2
e

(kx sin(pz) − ky cos(pz))2
)
F = 0. (59)

Recalling α,β,ζ from the previous section, this is of the form

d2F

dζ 2
+ (α + β cos(2ζ ))F = 0, (60)

which is Mathieu’s equation.
By the Floquet-Bloch theorem, the general solution of (60)

is of the form

F = c1e
iμζ f (ζ ) + c2e

−iμζ f (−ζ ), (61)

where f (ζ ) = f (ζ + 2π ) and μ depends on α and β. Ex-
panding f (ζ ) as a Fourier series, we deduce the Laue-Bragg
conditions that an incoming wave with wave vector kin incident
on some region where propagation is described by (58) is
reflected/diffracted with wave vector kout, where

p(kout − kin)z = m ∈ Z. (62)

We may think of μ = μ(kx,ky,ω) as defining a dispersion
relation, averaged over the period in the vertical direction.
When μ is real we expect propagating waves, whereas when
μ has an imaginary component the solutions either decay or
grow exponentially in ζ . It can be shown that the marginal
cases between propagation and damping occur when μ = 0,π

(note that μ is only defined up to multiples of 2π ). This defines
a set of surfaces in the (kx,ky,ω) space which separate out the
regions where the wave propagates and where it is damped.
To determine these surfaces, we can (for μ = 0, the other case
follows similarly) expand F in a Fourier series,

F =
∞∑

−∞
cne

inζ , (63)
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and obtain a three-term recurrence relation,

−n2cn + αcn + 2β(cn−2 + cn+2) = 0. (64)

The condition that this relation admits a nontrivial solution
may be related to the vanishing of an infinite determinant, a
procedure known as Hill’s method (see, e.g., [30]).

IV. MAXWELL’S EQUATIONS

Before we discuss Maxwell’s equations for the helical
phase of a nematic liquid crystal, we first formulate Maxwell’s
equations for a general medium in the language of differential
forms. This is the most convenient language in which to
discuss how to apply the machinery of Lie groups to the
problem in hand. We work directly with the fields rather
than introducing potentials, as this avoids tackling the issue
of gauge invariance. We work on a four-dimensional manifold
M , but this restriction is not necessary. We begin by noting
that we can define two 2-forms:

F = 1
2Fμνdxμ ∧ dxν = Eidxi ∧ dt + 1

2εijkB
idxj ∧ dxk,

G = 1
2Gμνdxμ ∧ dxν = Hidxi ∧ dt − 1

2εijkD
idxj ∧ dxk.

These forms encode the fields contained in the antisymmetric
4-tensors with components

Fi0 = Ei, Fij = εijkB
k,

(65)
Gi0 = Hi, Gij = −εijkD

k,

where Ei and Bi are the electric field and magnetic dis-
placement, Di is the electric displacement field, and Hi is
the magnetic field. The advantage of packaging the fields as
2-forms is that Maxwell’s equations become the simple pair
of relations

dF = 0, dG = J,, (66)

with J the current 3-form. Of course, to close this system
of equations for a prescribed J , we must specify a relation
between F and G, the constitutive relation. This is nothing
more than the usual relations one requires relating (E,B) and
(D,H). In the language of forms, we require a map from the
space of sections of �2(M) to itself.4 In many materials, the
constitutive relation is local and linear so may be represented
by a section of the bundle End(�2(M), i.e., a possibly space-
dependent linear map C such that

G = CF, i.e., Gμν = Cμν
κτFκτ , (67)

where C acts pointwise. This tensor C, together with the
differentiable structure of the manifold, is the minimal datum
required to define Maxwell’s equations—it has not thus far
been necessary to introduce a metric or other structure to M .
In index notation the Maxwell equations take the form

∂[μFνσ ] = 0, ∂[μ
(
Cνσ ]

κτFκτ

) = 0. (68)

We note that defining C as an endomorphism, i.e., with two
indices up and two down, ensures that it is not necessary to
define a connection in order to take derivatives covariantly.

4In higher dimensions, G will be an n − 2 form, but similar
considerations apply.

In order for (66) to define a suitable hyperbolic system of
partial differential equations, restrictions are required on C. We
assume that C satisfies some such suitable conditions, without
specifying what those might be. As a simple example, we may
take C to be the Hodge map induced by a Lorentzian metric
g, i.e., we take C = �g . If g is the flat metric, this gives the
classical Maxwell equations in the vacuum. If g is not flat, we
may interpret the field as an electromagnetic field propagating
in a gravitational background. In the case that g is static, we can
alternatively interpret the field as propagating through some
material with a position-dependent dielectric tensor εij and
magnetic susceptibility μij . This is the basis of transformation
optics [31–33]. For a material in which Maxwell’s equations
have a gravitational interpretation it must be the case that εij =
μij in suitable units, i.e., the material is impedance matched
[33]. This need not be the case for a general material. We take
C to have the following form:

C(dxi ∧ dt) = − 1
2εij εjkldxk ∧ dxl,

(69)
C(dxi ∧ dxj ) = εijk(μ−1)kldxl ∧ dt.

Note that if C = �g for some Lorentzian metric, we have
C2 = −1, so that εij (μ−1)jk = δjk , justifying our assertion
that materials with a gravitational analog are impedance
matched.

The liquid crystals in which we are interested are uniaxial,
so that at each point, we can assume that the quadrics defined
by ε and μ are spheroidal (i.e., ellipsoids with an axis of
symmetry) with a common axis. In other words, there is locally
a basis in which the tensors have the form

ε =
⎛
⎝ε|| 0 0

0 ε⊥ 0
0 0 ε⊥

⎞
⎠ , μ =

⎛
⎝μ|| 0 0

0 μ⊥ 0
0 0 μ⊥

⎞
⎠ . (70)

If we assume that the axis of the material lies along n, this can
be written in a more covariant form as

εij = ε⊥δij + (ε|| − ε⊥)ninj , μij = μ⊥δij + (μ|| − μ⊥)ninj .

(71)

Before we discuss the consequences of such a constitutive
relation in the case of a nematic liquid crystal in the helical
ground state, let us first consider for a moment the geometric
optics approximation.

A. Geometric optics

Let us consider the Maxwell equations described above in
a geometric optics limit. We consider a field which takes the
form

F = e
iS
α (F0 + αF1 + · · ·), (72)

where, by assumption, Fi are O(1) as α → 0. We assume that
there are no currents or charges, so that Maxwell’s equations
become dF = dG = 0. We also assume that C varies slowly
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by comparison to the wavelength of the field. Inserting our
ansatz and collecting terms in α, we find

0 = i

α
dS ∧ F0 +

∞∑
k=1

(dFk−1 + idS ∧ Fk)αk−1,

(73)

0 = i

α
dS ∧ CF0 +

∞∑
k=1

(dCFk−1 + idS ∧ CFk)αk−1.

Let us first consider the O(α−1) terms. This is a system which
asserts that F0 is in the kernel of a linear operator which maps
from one six-dimensional space to another six-dimensional
space. The condition that a nontrivial F0 exists gives a
differential condition on S involving C which we interpret
as the eikonal equation. Associated with a solution of the
eikonal equation is a 2-form F0 which gives the polarization
of the wave. In general, there will be only one polarization
associated with each solution of the eikonal equation. Once
we have solved for S and F0, we can inductively construct Fk

by solving the equations

0 = dFk−1 + idS ∧ Fk,
(74)

0 = dCFk−1 + idS ∧ CFk.

Presumably, the well posedness of this system is a necessary
condition that C be an acceptable constitutive map.

In the case where C = �g , the eikonal equation can be
shown to reduce to

dS ∧ �gdS = 0, (75)

which is the Hamilton-Jacobi equation for geodesics of the
metric. In this case, there is a two-dimensional space of
possible polarization tensors. They take the form

F0 = dS ∧ f0, g(dS,f0) = 0. (76)

The Hamilton-Jacobi equation requires that dS be null.
Suppose, for example, that at a point, dS is parallel to dt − dx,
then the space of polarizations at that point is spanned by
dS ∧ dy and dS ∧ dz.

In the case where C has the uniaxial form introduced above,
the eikonal equation reduces to the form(

−μ⊥S2
t + 1

ε||
∇S2 +

(
1

ε⊥
− 1

ε||

)
(n · ∇S)2

)

×
(

− ε⊥S2
t + 1

μ||
∇S2 +

(
1

μ⊥
− 1

μ||

)
(n · ∇S)2

)
= 0.

(77)

The medium is thus birefringent. We see straight away that
the condition on S factors into two separate Hamilton-Jacobi
equations associated with the two metrics

gB = −dt2

μ⊥
+ ε||dx2 + (ε⊥ − ε||)(n · dx)2, (78)

gE = −dt2

ε⊥
+ μ||dx2 + (μ⊥ − μ||)(n · dx)2. (79)

These are both of the Joets-Ribotta form we have previously
considered. It can be checked that the polarization tensor
associated with a solution of the Hamilton-Jacobi equation
of gB has εijkFijnk = Bn = 0, whereas for a solution of the

Hamilton-Jacobi equation of gE , the polarization tensor has
niFit = En = 0. Note that we do not require that n remains
constant for this derivation, provided that it varies slowly
compared to the wavelength of the light. In the case that n
varies from point to point, the polarization will also change,
so that to leading order in α, either the magnetic or the electric
field parallel to the director will vanish, depending on which
type of ray we consider. Often, one takes μ⊥ = μ||, in which
case, gE is simply the Minkowski metric and its geodesics
are the ordinary rays. The rays of the metric gB are the
extraordinary rays and gB is the Joets-Ribotta metric, where
we identify ε⊥μ⊥ = n2

o and ε||μ⊥ = n2
e .

If C is of the form (69), but with no uniaxial assumption,
then the rays will typically be geodesics of a Finsler geometry.

B. Symmetries

So far, we have recast familiar results into the notation
of differential forms. While this is a satisfying exercise, it is
not clear that it introduces any benefits beyond putting the
equations in a manifestly coordinate invariant form. For our
purposes, the great advantage is that this form of the equations
permits a concise discussion of the symmetries of the system
and allows the machinery Lie groups to be brought to bear.
We start by defining a Killing vector K to be a vector which
satisfies

LKC = 0. (80)

Recall that C is simply a tensor, so the Lie derivative is defined
as a consequence of the differentiable structure of M . Making
use of this and Cartan’s relation, we deduce that if a 2-form F

obeys Maxwell’s equations,

dF = 0, d(CF ) = 0, (81)

then so will LKF , and in particular, the diffeomorphism
induced by K will map solutions of the equations into solutions
of the equations. An important example occurs when C = �g

and K is a Killing vector of g.
Suppose that we have a group which acts simply transitively

on M by left actions and which preserves the material
configuration, as is the case for the Ẽ(2) × Rt symmetry of
the helical ground state of the nematic liquid crystal. Then it
must be that C may be written in terms of the left-invariant
1-forms and their duals as

C = 1
4Cab

cd (λa ∧ λb) ⊗ (Lc ∧ Ld ), (82)

where Cab
cd are some constant coefficients. Here, indices run

over 0, . . . ,3. We can make use of this to write down Maxwell’s
equations for a nematic liquid crystal in its helical state. We
take

F = Eiλ
i ∧ dt + 1

2εijkBiλ
j ∧ λk. (83)

This choice of basis is very similar to the rotating basis
chosen by Peterson, who investigated the electromagnetic field
propagating through a nematic liquid crystal in its ground
state [8]. In our case, this choice of basis arises naturally
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from the group structure of underlying symmetries. We assume
further that

C(λi ∧ dt) = − 1
2εij εjklλ

k ∧ λl,
(84)

C(λi ∧ λj ) = εijk(μ−1)klλ
l ∧ dt,

where ε, μ have the uniaxial form we previously assumed,
(70). Maxwell’s equations for the electric and magnetic fields
take the form

Li(Bi) = 0, εijkLj (Ek) + ∂Bi

∂t
− PijEj = 0, εijLi(Ej ) = ρ,

(μ−1)klεijkLj (Bl) − εij

∂Ej

∂t
− Pij (μ−1)jkBk = Ji. (85)

The matrix Pij has nonzero components

P11 = P22 = 1. (86)

These equations can be separated with the ansatz

Ei = ei(kxx+kyy−ωt)fi(z), Bi = ei(kxx+kyy−ωt)gi(z). (87)

The components f3(z) and g3(z) are given by a linear com-
bination of other components, so that the Maxwell equations
reduce to a system of differential equations of the form

F ′(z) + (α + β1e
2ipz + β2e

−2ipz)F (z) = 0. (88)

Here F (z) = (f1(z),f2(z),g1(z),g2(z))t is a 4-vector and α,βi

are 4 × 4 matrices, given by

α =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 −i|κ|2
2ε⊥μ||ω

+ iω

−1 0 i|κ|2
2ε⊥μ⊥ω

− iω 0

0 i|κ|2
2ω

− iε||μ⊥ω 0 μ⊥
μ||

− iμ|||κ|2
2μ⊥ω

+ iε||μ||ω 0 − μ||
μ⊥

0

⎞
⎟⎟⎟⎟⎟⎠

(89)

and

β1 = −β2 = κ2

4ω

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1
ε⊥μ⊥

−i
ε⊥μ||

0 0 −i
ε⊥μ⊥

1
ε⊥μ||

1 i 0 0

i
μ||
μ⊥

− μ||
μ⊥

0 0

⎞
⎟⎟⎟⎟⎟⎠

, (90)

where we have introduced κ = kx + iky . We see that the
Euclidean symmetry of the original problem is still manifest
since a rotation in the x–y plane sends κ → eiθκ , which is
canceled by a suitable shift in the z coordinate. We may view
(88) as a generalized Mathieu equation. Mathieu’s equation
itself may be written in this form with 2 × 2 matrices. By
Floquet’s theorem, the general solution of (88) will take the
form

F (z) = eiμ1zh1(z) + eiμ2zh2(z) + eiμ3zh3(z) + eiμ4zh4(z),

(91)

where hi(z) = hi(z + π/p) are 4-vectors. Making use of
discrete symmetries of the equations, one may show that if μ

is a Floquet exponent, then so is −μ and μ, implying relations
among the μi . This equation may be studied using the infinite
determinant techniques of Hill, an approach similar to that
of [9] but that takes us beyond the scope of the current paper.
We hope to address this issue in future work. Since we have
retained the independence of the magnetic susceptibility and
the permittivity, this analysis applies equally well to magnetic
materials with helical phases [34].

V. CONCLUSION

We have shown that certain properties of the chiral
phase of a nematic liquid crystal are intimately tied to the
symmetries it possesses. We have shown that the Joets-
Ribotta metric, which describes the propagation of extraor-
dinary rays, is a left-invariant metric on Ẽ(2) and we
have shown how the underlying symmetry group can be
practically used to understand properties of waves in such a
medium.

We have separated the Hamilton-Jacobi equation and
the wave equation for this metric. The wave equation
can be reduced to Mathieu’s equation, and the Hamilton-
Jacobi equation to the quadrantal pendulum equation. We
have also seen how Maxwell’s equations for a gen-
eral uniaxial material whose director field lies in a
helical configuration can be reduced to coupled ordi-
nary differential equations generalizing Mathieu’s equa-
tion via a novel application of the theory of Lie groups.
This new formalism is applicable to the macroscopic
Maxwell equations whenever the medium has a contin-
uous symmetry group. The approach taken generalizes
transformation optics to permit non-impedance-matched
media.

As we have seen even in this simple example, the extraor-
dinary light rays propagating through a liquid crystal explore a
much richer geometry than the usual flat geometry of light rays
in the vacuum. This opens up the possibility of constructing
analogues for the propagation of light in a gravitational field.
In this case the light rays in the liquid crystal may be mapped
onto light rays propagating in a Bianchi VII0 cosmology [35]
whose spatial sections have a fixed geometry, but one may
imagine more ambitious possibilities.

031709-8



HELICAL PHASE OF CHIRAL NEMATIC LIQUID . . . PHYSICAL REVIEW E 84, 031709 (2011)

APPENDIX: GENERALIZATION TO BIANCHI TYPE VIIh

It is interesting to ask whether the setup above generalizes
to the Bianchi type VIIh group. For this section we set p = 1,
in order not to clutter up the formulas.

We now define left-invariant 1-forms and dual vector fields
by

λ3 = dz, L3 = ∂

∂z
, (A1)

λ1 = ehz(cos zdx + sin zdy),
(A2)

L1 = e−hz

(
cos z

∂

∂x
+ sin z

∂

∂y

)
,

λ2 = ehz(cos zdy − sin zdx),
(A3)

L2 = e−hz

(
cos z

∂

∂y
− sin z

)
∂

∂x
.

The right-invariant 1-forms and vectors fields are

ρ3 = dz, R3 = ∂

∂z
+ x

∂

∂y
− y

∂

∂x
− h

(
x

∂

∂y
+ y

∂

∂x

)
, (A4)

ρ1 = dx + (1 + h)ydz, R1 = ∂

∂x
, (A5)

ρ2 = dy − (1 − h)xdz, R2 = ∂

∂y
. (A6)

The metric5

n2
e

(
λ2

1 + λ2
2 + λ2

3

) = n2
e(dz2 + e2hz(dx2 + dy2)) (A7)

5In what follows ne and no will be taken to be constant, that is,
position independent.

is in fact that of hyperbolic three space. in the upper half space
or Poincaré patch space model. Setting

ehz = 1

Z
, x = X

h
, y = Y

h
(A8)

it becomes

n2
e

h2Z2
(dZ2 + dX2 + dY 2) , (A9)

and we see that optically we can think of a vertically stratified
isotropic medium with Cartesian coordinates (X,Y,Z) and
refractive index

ne

hZ
. (A10)

Rays are now circles orthogonal to the plane Z = 0.

The metric

ds2
o = n2

e

(
λ2

1 + λ2
2 + λ2

3

) + (
n2

o − n2
e

)
λ2

1 (A11)

may be thought of as describing a vertical stratified anisotropic
medium with extraordinary and ordinary refractive indices
varying with height Z in the same way, i.e., as

ne

hZ
and

no

hZ
, respectively. (A12)

Such a variation might be due to temperature variation within
the material, for example. As before, the wave equation
separates but F (z) now satisfies

d2F

dz2
+ 2h

dF

dz
+

(
ω2n2

e − e−2hz

2

(
1 + n2

e

n2
o

) (
k2
x + k2

y

)

+ e−2hz

2

(
k2
x + k2

y

) (
1 − n2

e

n2
o

)
cos(2z − θ )

)
F = 0 .

(A13)
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