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Chiral dipole induced by azimuthal anchoring on the surface of a planar elastic quadrupole
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A spherical colloid with the tangential surface nematic director, aligned along the surface meridians, is known
as a planar elastic quadrupole. The azimuthal anchoring, however, can induce a deviation of the planar director
from the meridional lines. We show that a helical component of the planar surface director at the spherical
surface of a planar quadrupole removes all the reflection symmetry planes and gives rise to a chiral elastic dipolar
component. Using an ansatz approach, we consider the interplay between the quadrupole and anchoring-induced
chiral dipole components. The chirality is enhanced by the bend-twist anisotropy. The interaction of the chiral
components changes the attraction directions of two such colloids. In particular, a point appears at which the
quadrupolar repulsion is balanced by the dipolar attraction.
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I. INTRODUCTION

Interaction of foreign particles mediated by the nematic
director is long range and has a similarity to the electrostatic
multipole interaction, which is the origin of the so-called
electrostatic analogy [1–12] . The area of nematic colloids
has been greatly guided by this analogy. A powerful method
of laser tweezers has been developed to manipulate colloids
and study their interaction effects in a nematic liquid crystal
(NLC) [13–19]. Particular colloids whose director-mediated
interaction as a function of their separation R scales as R−3

were called elastic dipoles, and other colloids whose interac-
tion potential scales as R−5 were called elastic quadrupoles.

Actually, however, the elastic multipoles have an extra
tensorial index compared to their electrostatic counterparts
[7,8,10,20,21], and many of them have no electrostatic analogs
[22]. The colloid shape, which along with the surface anchor-
ing determines the colloid-induced director perturbations, is
a major colloid parameter [22]. The simplest spherical shape
gives rise to the best-known colloids, the so-called topological
dipole, Saturn ring quadrupole, and planar quadrupole (PQ)
[7]. In spite of their nontrivial topological structure, these
spherical colloids are simple to fabricate, which has given
them a great experimental advantage, and highly symmetric
(uniaxial), which made them attractive for theorists. How-
ever, an expected strong shape dependence prompts one to
experiment with colloids of a more and more complex shape
[18]. The colloid shape is a major factor in the mobility in
a field-induced motion of colloids [23,24] and motility of
self-propelled particles (e.g., bacteria [25]).

So far, a colloid type has been associated with its form
and polar surface anchoring, which is determined by its easy
directions with respect to the surface normals. For instance,
for the strong polar anchoring with normal-to-surface easy
axes, a spherical particle can be either a topological dipole
or a Saturn ring quadrupole (in confined geometries), while
for tangential easy axes along the sphere’s meridians passing
through the poles it becomes a PQ [26–29]. Recently, however,
we demonstrated the unique role an azimuthal anchoring
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can play in the colloidal nematostatics [22]. The type of a
particle’s elastic multipole is determined by the symmetry of
the director distortions induced by this particle in its close
vicinity. It is well known that vector fields with a finite
vorticity cannot be described by a system of surfaces with
the scalar potential assigned to them. In our recent paper [22],
we showed that for the same reason, the full symmetry of
the director distortions and hence the multipole type cannot be
uniquely determined by the colloid shape and polar anchoring.
In particular, an azimuthal anchoring can convert a PQ into a
chiral dipole (CD) by adding a helicoidal tangential director
component on a colloid surface while the shape and polar
anchoring remain the same. According to the classification
of elastic dipoles presented in Ref. [22], such a dipole is
a uniaxial helicoid of a pure chiral type, which is fully
characterized by its chiral strength C. In this paper we consider
the effect of the azimuthal-anchoring-induced chiral dipole
component in a PQ colloid quantitatively and show that it
might result in well-observable effects. Namely, in a NLC with
the usual elastic anisotropy, the balance of the dipole-dipole
and quadrupole-quadrupole interactions can manifest itself in
attraction directions along and across the director in which
two PQs repel one another. The distance of the balance in this
directions is calculated. The anchoring-induced CD is larger
for a larger elastic bend/twist ratio; hence its effect is expected
to strengthen at a NLC-smectic A transition.

II. QUADRUPOLAR SYMMETRY BREAKING BY A
HELICAL DIRECTOR COMPONENT AND CHIRAL

ELASTIC DIPOLE

In terms of the spherical coordinates, the director on the
surface of a PQ has only the polar component nθ and, very
close to the poles, also the radial component nr , while the
azimuthal component nφ = 0 [Fig. 1(a)]. The point symmetry
group of this field is D∞h, which comprises any rotations about
the undistorted director, the mirror reflection in any vertical
plane passing through the vertical axis along the undistorted
director n∞, the mirror reflection in the horizontal equatorial
plane, and the rotations by an angle π about any horizontal
axis. A uniaxial helicoid [Fig. 1(b)] has a nonzero azimuthal
component nφ and is also azimuthally symmetric, but has
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FIG. 1. (a) If the director lines on the spherical colloid surface
lie in the vertical meridional planes passing through the poles, then
this is a bipolar planar quadrupole. (b) If the surface director makes
a nonzero angle α with the vertical meridional planes, the helical
component, proportional to sin α, in addition gives rise to a chiral
dipole component.

a lower symmetry group D∞ with the same rotations but
without any reflection plane. This symmetry D∞ is chiral [22].
From the physical point of view, the mirror reflection planes
can be eliminated, and, at the same time, chirality can be
induced by an azimuthal anchoring with the helical alignment
of its easy axes [Fig. 1(b)]. The lowest-order elastic multipole
moment of such a colloid is no longer a quadrupole: The
symmetry-breaking azimuthal component nφ gives rise to
a dipolar moment. It is worth stressing that, in contrast to
an electrostatic dipole, a chiral elastic dipole does not have
any mirror reflection plane. This property stems from the
difference between the vector nature of the nematostatics
and scalar nature of the electrostatics and demonstrates that
elastic multipoles might have no electrostatic analogs. Chiral
elastic deformation sources were first identified with elastic
dipoles by de Gennes, who considered the cholesteric spiral
as a superposition of the dipolar director distortions induced
by chiral molecules in a NLC [30]. Thus, a finite helical
component nφ makes a CD of the otherwise quadrupolar
colloid. Before considering this effect quantitatively, it is
necessary to make the following general statement concerning
the actual status of the theory in the area of nematic colloids.

The isotropic approximation, K11 = K22 = K33 = K , usu-
ally called a one-constant approximation, plays the key role
in the very idea of elastic multipoles: In this approximation,
the linearized Euler-Lagrange equations of the nematostatics
reduce to Laplace’s equation, whose asymptotic solutions can
be associated with the elastic multipoles by analogy to the
electrostatics. However, NLC is a highly anisotropic medium,
and its elastic free energy depends on five different elastic
constants: K11, K22, K33, K24, and K13. The first three are
the coefficients of the elastic splay, twist, and bend terms, and
the last two are the coefficient of the two divergence terms.
The fundamental problem of the theory of nematic colloids
lies in solving the bulk Euler-Lagrange equations. The two
divergence terms do not contribute to these equations, and
their role can be considered in each configuration individually.
However, even far from colloids where the deformations are
weak, the linearized Euler-Lagrange equations with different

K11, K22, and K33 do not reduce to Laplace’s equation; their
Green functions, exact solutions, and, in particular, asymptotic
far distance solutions have not been obtained. Thus, on the
one hand, strictly speaking, so far there has been no consistent
theoretical justification of the existence, functional form, and
widely used interaction potentials of what we call elastic
multipoles. On the other hand, the numerous comprehensive
and versatile experimental data accumulated over the last
two decades in the area of nematic colloids have shown
that the prediction of the theory, based on the one-constant
approximation, does successfully describe the colloidal inter-
action in real anisotropic NLCs. At present, theorists working
in this area have to admit that it is this experimental fact
that makes their approximate theories of “isotropic” NLC
meaningful and viable. Under these circumstances, the known
expressions for the elastic multipoles, obtained in the one-
constant approximation, have to be viewed as ansatzes whose
form is expectedly close to the exact asymptotic solutions
of the anisotropic Euler-Lagrange equations in the sense that
the predicted director-mediated interaction is well justified
experimentally. As in many cases the elastic anisotropy plays
a crucial role, it is in order to emphasize here the following
well-known general relation between the ansatz-based and
exact formulas. An ansatz is a function with certain numbers
of free parameters that is used as an approximate minimizer
of a given functional. Whatever the origin of the ansatz is, its
parameters must be found from the exact functional. In our
case this implies that the elastic multipoles, which satisfy the
Laplace’s equation derived from the one-constant free energy,
in the exact theory have the status of ansatz fields, and their
coefficients must be found from the exact free energy with
different elastic constants. Our consideration below, which
goes in terms of the elastic multipoles, is to be understood
in this context: We use the expressions for the chiral dipole
and planar multipole (i.e., the minimizers of the isotropic free
energy) and find their magnitudes from the exact anisotropic
free energy. As for the divergence terms, their free-energy
contribution is shown to be quadratic in the polar anchoring
extrapolation length, which makes them practically negligible
even if the polar anchoring is finite (Appendix B).

Let the uniform unperturbed director at infinity be parallel
to the z axis, n∞ = (0,0,1). Assume that at each point of the
spherical colloid surface with the radius r0 = 1, the tangential
director makes an angle α with the vertical meridional plane
passing through this point (Fig. 1): The director lines on the
surface are thus loxodromes (lines that intersect the meridians
at a constant angle). Clearly, α = 0 and α > 0 correspond,
respectively, to a pure PQ and modified PQ with a constant
azimuthal surface director component. The colloid-induced
perturbation n⊥ sufficiently far is weak and transverse to
n∞, n⊥ = (nx,ny,0). In the one-constant approximation and
in the axisymmetric case we deal with, the exact form of
the transverse director perturbation, induced by a colloid
with the considered surface director field, at a large distance r

from the center is the sum of the form

n⊥ = 3C sin θ

r2
(− sin φ, cos φ,0)+ 5Q sin 2θ

r3
(cos φ, sin φ,0),

(1)
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where r , θ , and φ are spherical coordinates of a spatial point r.
The first term is identified as the field of a CD of the uniaxial
helicoid type with the chiral strength C [22] (the φ dependence
is peculiar for just this dipole; other dipolar types have different
φ dependence); the second term is the field of a PQ with the
quadrupole moment Q [12]. Let R be the separation vector of
particles 1 and 2, and � be the angle made by R and the z axis.
The interaction potential of two hybrid PQ and CD colloids
is the sum U = UCC + UQQ + UC1Q2 + UC2Q1 of the dipole-
dipole interaction of the two CD components, quadrupole-
quadrupole interaction of the two PQ components, and dipole-
quadrupole interaction of the CD and PQ components. The
dipole-quadrupole interaction between a pure CD dipole and
any uniaxial quadrupole identically vanishes, UCQ = UQC =
0 (Appendix A). The other two potentials have, respectively,
the form

UCC = 12πKC1C2

R3
(1 − 3 cos2 �), (2)

UQQ = 80πK

9R5
Q1Q2(9 − 90 cos2 � + 105 cos4 �). (3)

We choose the following parametrization of the director’s
components in the spherical coordinates:

(nr,nθ ,nφ) = [cos(� − θ ) cos �, sin(� − θ ) cos �, sin �],

(4)

where the angles � and � depend only on r and θ . The
Cartesian components of the same director are

(nx,ny,nz)

= (sin � cos � cos φ − sin � sin φ, sin � cos � sin φ

+ sin � cos φ, cos � cos �). (5)

If � = 0, this goes over into the familiar expression
(nx,ny,nz) = (sin � cos φ, sin � sin φ, cos �). Now the con-
ditions, which must be imposed on the director field at the
three smooth boundaries shown by dashed lines in Fig. 1(a),
can be formulated as follows. The boundary condition on the
sphere surface, r = 1 [boundary 1 in Fig. 1(a)], reads nr = 0,
nθ = − cos α, nφ = sin α, which implies � = θ − π/2 and
� = α. At the vertical line passing through the poles, but off
the surface [boundary 2 in Fig. 1(a)], where θ → 0 and r > 1,
n must be along the z axis; hence � → 0 and � → 0. Far
from the colloid [boundary 3 in Fig. 1(a)], for r � 1, n must
be a superposition (1) of the quadrupole and dipole terms. The
director field with these conditions can be obtained precisely
only by purely numerical methods. In the absence of such
results, we are left to resort to the ansatz approach in the spirit
of Ref. [7]. The following ansatz satisfies the above conditions:

� = arctan(tan �̃),

�̃= 2θ − arctan

(
r3/2 sin θ

r3/2 cos θ − 1

)
− arctan

(
r3/2 sin θ

r3/2 cos θ + 1

)
,

(6)

� =
[

r

α
+ (r − 1)2

3c sin θ

]−1

. (7)

The auxiliary variable �̃ is discontinuous and can take values
larger than π , whereas the angle � is continuous and takes

values in the segment [−π/2,π/2]. For r = 1 and θ > 0, one
has exactly � → θ − π/2 and � → α (boundary 1); when
θ → 0, but r3/2 cos θ > 1, � → 0 and � → 3c sin θ/(r −
1)2 → 0 as required (boundary 2); finally, when r � 1,
� → − sin 2θ/r3 and � → 3c sin θ/r2 (boundary 3). Thus,
the large r asymptotics of the ansatz director is of the form (1)
with Q = −0.2 and C = c (in the standard units, Q = −0.2r0

3

and C = cr0
2).

We see that a colloid described by the ansatz (�,�) has the
fixed quadrupole component and CD component determined
by the variational parameter c. There are four reasons to
justify this approach. First, we failed to invent a robust ansatz
parametrization of the quadrupole component, which would
result in a lower quadrupole energy than that of the ansatz field
(6); second, the values of |Q| for PQ that can be extracted from
the experimental data of Refs. [27] and [28] are, respectively,
0.17 and 0.2, in good agreement with the above value 0.2 (note,
however, that the data of Refs. [26,29] suggest a notably larger
|Q| ∼ 0.66 and 0.4, respectively); third, the effect consists
in an emergence of a dipole component whose contribution
to the energy is considerably larger than the expectedly fixed
quadrupole contribution, and hence it is the dipole energy that
should be optimized as a function of the angle α; fourth, the
ansatz approach can give only a qualitative result of the correct
order of magnitude [22], and it is reasonable to keep it as simple
as possible.

III. RESULTS AND DISCUSSION

The parameter c was found by numerical minimization
of the elastic free energy for the field (�,�). This ansatz
was substituted in the standard Frank free energy with the
fixed elastic constants K11, K22, and K33 and then minimized
for a given α. The minimizer c(α) is found to strongly
depend on the bend/twist anisotropy b = K33/K22, while its
dependence on the splay/twist anisotropy s = K11/K22 is
relatively weak (Fig. 2). The maximum value of the curve
c(α) strongly depends on b: For b = 2 − 3, cmax is ∼0.2; for
b = 5, cmax ∼ 0.5; for b = 7, cmax is already ∼1, while for
K33/K22 = 10, cmax jumps to the value ∼4. The reason is that
the anchoring-imposed azimuthal component at the surface
relaxes through all the three deformation modes, not only
through the twist. Close to the colloid these deformations cost
high energy, the bend deformation contributing the most as, in
particular, K33 is the largest elastic constant. Hence saving the
bend energy is possible if the imposed director components
vary faster at large distances and as slow as possible at small
distances. Then the deformational coat of the ϕ component
expands, its effective radius increases, and thus the dipole
strength becomes higher. In other words, the bend energy is
saved at the expense of a larger twist and hence a stronger CD
component. Clearly, this effect is stronger for larger K33/K22.
The dependence cmax(b) can be approximated by the function
cmax ≈ 0.1 exp(b/2.7).

The dipole-dipole interaction of colloids with a finite α can
considerably alter the quadrupole-quadrupole interaction of
pure PQs. The fields of the force directions acting between
the two PQs and two hybrid colloids with the CD components
of the like and unlike handedness are shown in Fig. 3 [the
left screw corresponds to C > 0; the right screw corresponds
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FIG. 2. Numerical value of the dipole coefficient c vs α for
different elastic anisotropy s = K11/K22 and b = K33/K22. 1: s =
1,b = 2; 2: s = 2,b = 2; 3: s = 2,b = 2.6; 4: s = 1,b = 3; 5: s =
2,b = 3; 6: s = 1,b = 4; 7: s = 2,b = 4; 8: s = 0.5,b = 5; 9: s =
1,b = 5; 10: s = 3.33,b = 5; 11: s = 0.5,b = 7; 12: s = 0.5,b = 10.

to C < 0 [22]; for instance, the CD in Fig. 1(b) has C > 0].
The maximum attraction of PQs is along the line � � 49◦
[Fig. 3(a)], while the maximum repulsion is along, � = 0,
and across, � = 90◦, the unperturbed director [Eq. (3)]. At
the same time, the maximum attraction of two CDs is along
the director for C1C2 > 0 (both CDs have like handedness)
[Fig. 3(b)] and across the director otherwise [Fig. 3(c)]
[22]. In particular, the quadrupole repulsion can be balanced
by the dipole attraction along the director, for C1C2 > 0
[Fig. 3(b)], and across the director, for C1C2 < 0 [Fig. 3(c)].
The correspondent distances R‖ and R⊥ between two identical
colloids are

R‖/r0 = 20
√

3Q

9c(α)
, R⊥/r0 = 10Q

3c(α)
, (8)

where Q = −0.2 is the quadrupole moment of a pure PQ.
Both distances are inverse proportional to c(α): For small c

the balance is possible for very large distances, which means
that the dipole component is negligible. Even for a modest
b = 2.6 pertinent to the standard 5CB liquid crystal, these
distances can be small: For α � 0.7, R‖ � 3.8r0 (Fig. 4) and
R⊥ � 3.3r0; hence the effect is strong and observable. An
even stronger effect is expected close to a nematic-smectic A
transition temperature where b can be very large (see Ref. [31]
for the recent discussion of possible values of K33/K22 for
8CB liquid crystal at this transition).

Because of the high viscosity of a NLC, the force direction
coincides with the velocity direction of a colloid. Then Fig. 3
can also be used to find the trajectories of a hybrid PQ&CD
colloid in the field of another such colloid placed at the origin.
It is seen that the CD components make it possible an attractive
trajectory along the director, for C1C2 > 0, and across the
director, for C1C2 < 0. None of them is possible without a
CD component: Two pure PQs repel one another in both
directions. The existence of these two attractive trajectories
is the qualitative effect of the azimuthal-anchoring-induced
CD component, which should be observed without force
measurements.

For completeness, we studied a possibility that the az-
imuthal director component with nonzero α appears spon-
taneously provided the azimuthal anchoring is degenerate and
the director can rotate on the colloid surface without energy
loss. Such an instability is known to be possible inside a
spherical nematic droplet if

K33/K11 � 2.32(1 − K22/K11), (9)

i.e., when K33/K11 and K22/K11 are sufficiently small [32].
This condition is not exotic and can be fulfilled in the standard
8CB compound sufficiently far from the NLC-SmA transition
[33]. In our case, however, when the NLC is outside the sphere,
the instability turns out to be practically impossible. The onset
of nonzero α is determined by the condition that the lowest
order, the α2 term in the energy expansion, vanishes. Using the
ansatz (6, 7), expanding analytically the energy in the powers
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FIG. 3. Directions of the force a colloid at the center exerts on another similar colloid; the spatial scale (indicated by integers along and
across the director) is in units r0. (a) Both colloids are pure PQs, the attraction direction is at � � 49◦. (b) Two quadrupoles with PQ and CD
components of like handedness, C1C2 > 0, the attraction direction is at � = 0◦. (c) Two quadrupoles with PQ and CD components of opposite
handedness, C1C2 < 0, the attraction direction is at � = 90◦. The saddle balance point is shown by crossed arrows. The fields in panels b and
c correspond to curve 3 in Figs. 2 and 4: s = 2, b = 2.6. Because of very different scales, the force magnitude is not indicated.
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FIG. 4. Numerical values of the balance distance R|| (in units r0)
vs angle α. The curves with the same numbers in this figure and Fig. 2
correspond to the same anistropies s and b.

of α and numerically calculating the coefficient of α2, we
found this condition in the form

K11 = 2.3K33 + 19.6K22. (10)

This requires that K11 � K22,K33. We do not know NLCs with
such anisotropy. In this regard we note that a spontaneous twist
is possible outside a spherical colloid with a strong normal
surface anchoring, which induces a hyperbolic point defect
(hedgehog) in its proximity and gives rise to the so-called
topological dipole. For a sufficiently small K22/K11, the strong
splay and bend deformations around the hyperbolic hedgehog
can be reduced at the expense of spontaneous twist mode with
an azimuthal director component [9,34]. This twist, however,
adds a small CD component to the large nonchiral uniaxial
dipole, and the effect of CD itself cannot be sharp.

Thus, the considered effect can be induced only by an
azimuthal anchoring. An important question is what the
appropriate colloid size and azimuthal anchoring strength have
to be for the effect to be realistic. Reportedly, spherical bids
of a 3–4 μm diameter with a strong tangential polar anchoring
resulting in bipolar PQs are readily accessible experimentally
[26–29] (the polar anchoring reported in Ref. [26] is less than
10−4J/m2). The problem is that the azimuthal anchoring Waz

can be considered strong and the azimuthal angle α fixed if
the colloid radius r0 is considerably larger than the anchoring
extrapolation length Laz, which, in the case of interest, is
related to the twist elastic constant, i.e., Laz = K22/Waz. A
weak azimuthal anchoring is in the range 10−6–10−5J/m2, the
standard value of the twist elastic constant K22 ≈ 5 × 10−12N,
which gives Laz = 0.5–5μm. Thus, the colloid radius should
be a few micrometers, for Waz = 10−5J/m2, and about or more
than 10μm, for Waz = 10−6J/m2. Close to a NLC-smectic A
transition K22 increases, Laz is expected to be larger; hence
the colloid has to be larger, too.

We would like to conclude the paper by suggesting possible
ways of making colloids with a helical surface anisotropy

(although the subject is admittedly beyond our competence as
theorists). A polymer NLCs considered in Ref. [35] has an
extremely low ratio K22/K11 ∼ 6 × 10−2 and K33/K11 ≈ 2.
Imagine that an interface between this polymer NLC and some
isotropic liquid imposes a degenerate tangential boundary
conditions on the surface director. Then droplets of the polymer
NLC suspended in this isotropic liquid will certainly be twisted
as the criterion of the spontaneous twist transition (9) is readily
satisfied. As predicted in Ref. [32], the lines of the surface
director in such droplets will be very close to loxodroms. On
polymerizing, the droplets will become solid bids of a spherical
form with helical surface patterns. Thus, one can expect that
such bids immersed in a NLC can have a helical component in
their azimuthal surface anchoring. Another possibility is that a
bunch of long fibers are stretched and then twisted. The surface
pattern in the resulting string will have a helical structure. Then
the string’s temperature is raised very close to the melting point
so that the material of the string partially liquidizes and starts
to form droplet-like bulges. As the bulges have developed
sufficiently, the material is cooled and then cut into individual
bulges. If the helical pattern will at least partially sustain the
liquidizing, then the bulges can serve as colloids with the
helical surface patterns [36]. It is important that a spherical
shape was chosen in this paper just as an example, and actually
an elongated nonspherical colloid with a helical component of
the azimuthal anchoring would be even more effective as far
as the CD component is concerned: Clearly, a larger lateral
surface does not increase the quadrupole moment but does
increase a CD component. In any case one should not forget
that even molecular chiral dipoles give rise to the macroscopic
cholesteric spiral. Why would not one try to experiment with
manmade micrometer-size chiral dipoles?

APPENDIX A: UNCOUPLING OF THE CD
AND PQ COMPONENTS

Assume that index t takes values x and y, indexes α, β, γ

take values x, y, z, and there is a summation over the repeating
indexes. Then the dipole-quadrupole interaction potential can
be written as the following sum of the two scalars:

UdQ = 16πK

R5

[
5Q

(2)
t,αβd

(1)
t,γ uαuβuγ − 2Q

(2)
t,αβd

(1)
t,αuβ

]
,

where Qt,αβ and dt,α are the elastic quadrupole and dipole
dyads [12,20,21], and uα is the unit vector in the sepa-
ration direction, u = R/R. In the case of a PQ and CD,
the nonzero components of the dyads are Qx,xz = Qx,zx =
Qy,yz =Qy,zy = Q [12] and dx,y = −dy,x = C [22]. Substi-
tuting these components in the above UdQ gives zero: The CD
and PQ components do not interact.

APPENDIX B: THE FREE-ENERGY CONTRIBUTION
OF THE DIVERGENCE TERMS IS NEGLIGIBLE

The free energy of the divergence K24 and K13 terms can
be converted to the surface integrals of the form∫

dS(−K24f24 + K13f13), (B1)
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where

f24 = ν[n(∇n) − (n∇)n], f13 = (νn)(∇n), (B2)

and ν is the unit outer surface normal. To consider an arbitrary
curved surface of an NLC it is convenient to introduce the
following curvilinear orthogonal coordinate system (x1,x2,x3)
with metric tensor gij : The boundary S coincides with the
coordinate surface x3 = const, x1 and x2 are the orthogonal
coordinates on S, and the outer normal to S is directed along
the coordinate line x3, i.e., ν = (0,0,1); the differential of the
surface area is dS = √

g11g22dx1dx2. Then the integrand in
Eq. (B1) can be rewritten in the following form [37]:

−K24f24 + K13f13 = f|| + f⊥, (B3)

where

f|| = −K24J + K13 − K24√
g

[
n2

3∂3
√

g11g22

+ n3∂1

(
n1

√
g

g11

)
+ n3∂2

(
n2

√
g

g22

)]
, (B4)

f⊥ = K13
n3∂3n3√

g33
. (B5)

Here g = g11g22g33, ∂i = ∂/∂xi , and J is given by the formula

√
gJ = n2

1
√

g22∂3
√

g11 + n2
2
√

g11∂3
√

g22

− (n2
√

g11∂2 + n1
√

g22∂1)(
√

g33n3). (B6)

If S is a sphere, the above coordinate system is a spherical
one where (x1,x2,x3) = (θ,φ,r) and (n1,n2,n3) = (nθ ,nφ,nr );
the order of the coordinates is obtained from its standard form
(r,θ,φ) by the clockwise permutation to fulfill the requirement
that the coordinate line x3 = r is normal to S. Then S

is given by r = r0, and the metric tensor components are
g11 = gθθ = r2, g22 = gφφ = r2 sin2 θ , g33 = grr = 1,

√
g =√

g11g22 = r2 sin θ . Making use of these expressions in the
formulas (B4)–(B6), one obtains∫

dSf|| = 2πr0

∫ π

0
dθ sin θ

[ − K24
(√

1 − n2
r − nθ∂θnr

)
+ (K13 − K24)

(
2n2

r + nrnθ cos θ + nr∂θnθ

) ]
,∫

dSf⊥ = K13πr2
0

∫ π

0
dθ sin θ∂rn

2
r , (B7)

where the calculations are performed at r = r0. The geometry
considered implies that the functions nθ , nr, and sin θ are
symmetric with respect to the plane θ = π/2, whereas ∂θnr ,
∂θnθ , and cos θ are antisymmetric. We see that by virtue of
this symmetry, the nonvanishing director-dependent terms in
the above surface integrals are of the order n2

r . These terms
are negligible. Indeed, if the polar anchoring is infinite, then
nr �= 0 only in the small vicinity of the poles where sin θ  1;
if the polar anchoring is finite, but its extrapolation length Lpol

is small compared to the colloid size r0 (the assumption which
makes the study meaningful), then the additional contribution
of the divergence terms is negligible since outside the polar
caps n2

r ∼ (Lpol/r0)2.
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