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Instabilities of soft elastic microtubes filled with viscous fluids: Pearls, wrinkles, and sausage strings
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A linear stability analysis is presented to study the self-organized instabilities of a highly compliant elastic
cylindrical shell filled with a viscous liquid and submerged in another viscous medium. The prototype closely
mimics many components of micro- or nanofluidic devices and biological processes such as the budding of a
string of pearls inside cells and sausage-string formation of blood vessels. The cylindrical shell is considered
to be a soft linear elastic solid with small storage modulus. When the destabilizing capillary force derived from
the cross-sectional curvature overcomes the stabilizing elastic and in-plane capillary forces, the microtube can
spontaneously self-organize into one of several possible configurations; namely, pearling, in which the viscous
fluid in the core of the elastic shell breaks up into droplets; sausage strings, in which the outer interface of the
mircrotube deforms more than the inner interface; and wrinkles, in which both interfaces of the thin-walled
mircrotube deform in phase with small amplitudes. This study identifies the conditions for the existence of
these modes and demonstrates that the ratios of the interfacial tensions at the interfaces, the viscosities, and the
thickness of the microtube play crucial roles in the mode selection and the relative amplitudes of deformations
at the two interfaces. The analysis also shows asymptotically that an elastic fiber submerged in a viscous liquid
is unstable for Y = γ /(GeR) > 6 and an elastic microchannel filled with a viscous liquid should rupture to form
spherical cavities (pearling) for Y > 2, where γ , Ge, and R are the surface tension, elastic shear modulus, and
radius, respectively, of the fiber or microchannel.
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I. INTRODUCTION

Recent advances in the miniaturization of the technological
devices have offered a renewed interest in studying the
self-organized deformations of compliant tubes, sheets, and
fibers of micro- or nanodimensions. Self-organizing flexible
tubular or sheet-like structures are very common in micro-
electromechanical systems (MEMS) [1,2], drug delivery mod-
ules [3–5], cell cytoskeletons [6], and sensor applications [7,8].
Deforming “soft” microfibers or microtubes also mimics some
biological phenomena; for example, budding of a string of
pearls during the cell locomotion and in Golgi bodies [9,10],
fusion and fission of cell membranes [11], instabilities in
the axons and dendrons [12–17], and sausage-string patterns
in blood vessels during high blood pressure [18], among
others. Interestingly, instabilities of fibrous structures such as
in electrospun micro- or nanofibers [19,20] and in the buckling
of large-aspect-ratio fibrillar adhesives on gecko feet [21–25]
also show Rayleigh instability characteristics. Thus, extensive
research has been directed to the self-organized instabilities
of microfibers and mircrotubes, especially when they are
composed of compliant smart materials such as soft polymers,
gels, and biological tissues.

Previous studies show that polymer gels can undergo phase
transitions and elastic instabilities in response to thermal
or solutal variations [10,11]. Matsuo and Tanaka showed
that the cylindrical gels can deform into bubbles and/or
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bamboo patterns on a shrinking gel when the outer shell
is denser [12,13]. These studies point to the fact that the
instabilities in soft microfibers and mircrotubes are similar to
the Rayleigh-Plateau instability [26,27] of a liquid discharging
from a faucet at low flow rates and breaking into droplets. In
such situations, the length scale of the instability is determined
from the competing stabilizing capillary forces because of the
curvature in the plane containing the axis of the cylinder and
the destabilizing capillary force, which is a function of the
local radius of the cylinder [26, 28]. The critical condition
for the onset of this instability is kR < 1, where k is the wave
number and R is the radius of the cylinder [26]. The wavelength
and growth rate of the dominant mode can be determined by
considering the rate-determining kinetic parameters such as
viscosity [27,29].

In contrast to liquid threads, which are unconditionally
unstable under the Raleigh-Plateau instability, the elastic
energy penalty against deformations tends to stabilize elastic
tubes and fibers. Thus, a soft compliant tube can become
unstable for a set of modes determined by the competition
between the stabilizing elastic and destabilizing capillary
forces when a critical magnitude of destabilization is present.
Capillary instabilities in thin solid films have been analyzed
by McCallum et al. [30] by including surface diffusion as the
mode of mass transfer in contrast to fluids where viscous flow
dominates. It was concluded that all the unstable perturbations
are of the varicose type. Following a similar approach, Yang
and Song analyzed the linear stability of elastic axisymmetrical
surface coatings [31].

In the present study, we analyze the elastic instabilities of
a linearly elastic tube filled with and surrounded by similar or
dissimilar viscous liquids, as schematically shown in Fig. 1.
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FIG. 1. (Color online) Schematic of axisymmetric and cross-
sectional view of a hollow cylinder filled and surrounded by viscous
liquids.

The theoretical framework employed here is similar to the
stability analysis of thin soft elastic solid films [32–58] that
are rendered unstable by an externally applied field, such as van
der Waals [32–36,40–43,48,52,57,58] and electrostatic forces
[49,53,57], and stabilized by the elastic strain energy and
the in-plane curvature. This theoretical approach has shown
agreement with experiments on thin soft cross-linked poly-
dimethylsiloxane (PDMS) films [32,59–64]. In contrast to the
previous thin film studies, destabilization is caused by the out-
of-plane curvature in the microtubes being considered here,
and the instability modes are also modified by the presence of
viscous fluids in the core and outer surroundings of the tube.
The linear stability analysis (LSA) of the governing equations
shows different types of self-organized interfacial patterns:
(i) pearling, in which the viscous fluid in the core breaks
up into structures resembling a string of pearls or peapods
[Fig. 2(a)]; (ii) sausage strings, in which the outer interface
of the mircrotube deforms more than the inner interface
[Fig. 2(b)]; and (iii) wrinkles, which consists of in-phase
small-amplitude deformations of the mircrotube [Fig. 2(c)].
The LSA for an elastic annulus surrounded by viscous fluids
also demonstrate the characteristics of a number of asymptotic
cases; namely, the flow of a thin liquid microcapillary thread

(a)

(b)

(c)

FIG. 2. (Color online) Schematic showing the possible modes of
deformations of the inner and outer surfaces: (a) pearling, (b) sausage
strings, and (c) wrinkling.

surrounded by an elastic medium and a thin elastic fiber
submerged in a viscous fluid. The salient features of the
instabilities of these asymptotic systems are also studied in
detail.

II. PROBLEM FORMULATION

The schematic of the viscous core, elastic annulus, and the
surrounding viscous medium under study is shown in Fig. 1.
The inner and outer radii of the elastic annulus are represented
by Ri and Ro, respectively. The broken lines depict possible
deformations of amplitude εi and εo at the inner and outer
surfaces, respectively. The viscosity of the liquid inside the
core is μc and that of the surrounding liquid is μs . The elastic
shear modulus of the homogeneous isotropic elastic annulus
is Ge. The liquids and the elastic material are assumed to be
incompressible. The inertial forces are neglected as the radius
of the elastic tube is small and the surrounding medium is in
a quiescent state. The following radial (r component) and the
axial (z component) equations of motion and the continuity
equations describe the motion of an axisymmetric elastic an-
nulus with a viscous core and a surrounding viscous medium.

A. Governing equations

The following equations describe the dynamics of the
viscous core and the viscous fluid surrounding the elastic
cylindrical shell:
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The equations of motion for the liquid are written in
terms of velocity {v(i)

r ,v(i)
z } and pressure Pi , where i in

the subscript or superscript is a placeholder for “c” and
“s” denoting the viscous core and the surrounding viscous
medium, respectively. Subscripts “r” and “z” denote the radial
and axial direction components, respectively.

The following equations of motion and the condition for
incompressibility describe the deformations in the elastic tube:
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In the absence of the body forces and inertia, the stress field
σ of an incompressible linear elastic material satisfies∇ · σ =
0 [yielding Eqs. (4) and (5)], where σ = −PeI + Ge(∇u(e) +
∇u(e)T ) and u = {u(e)

r ,u(e)
z } is the displacement field. Here, the

superscripts and subscripts “e” denote quantities for the elastic
medium. The momentum balance equations are supplemented
by an explicit incompressibility condition given by Eq. (6).
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Since the elastic deformations are instantaneous (or have a
fast time scale), the time scale of instability in this system is
governed by the viscous nature of the two fluids that surround
the tube wall.

B. Boundary conditions

We assume that the flow is axisymmetric and there is no
radial flow at r = 0:

v(c)
r = 0, (7)

∂v(c)
z

∂r
= 0. (8)

At r = Ri , continuity of velocity components, the normal
stress balance, shear stress balance, and the kinematic condi-
tion are given by
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, (9)
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Here, a|Ri implies any variable a evaluated at the inner
radius Ri of the elastic tube, κi is the curvature at the inner
surface, and γi is the surface tension coefficient at the inner
surface of the tube.

At the outer radius of the elastic tube, r = Ro, continuity
of the velocity components, the normal stress, the shear stress
balance, and the kinematic condition are given respectively by
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where γo is the surface tension coefficient at the outer surface
of the tube and κo is the curvature at the outer surface of
the elastic tube. Curvatures at the inner and outer radius in
the small-slope approximation are given by κi ≈ Ri,zz + 1/Ri

and κo ≈ Ro,zz + 1/Ro, respectively, where the subscript “zz”
represents the second derivative with respect to the axial
direction z.

III. LINEAR STABILTY ANALYSIS

The dimensional form of Eqs. (1)–(16) can be nondimen-
sionalized as follows: The radial r and axial z coordinates and
displacements in the elastic annulus are nondimensionalized
by the inner radius of the elastic annulus, Ri . The velocity
field and the pressure and stress are nondimensionalized by
γi/(μcRi) and γi/Ri , respectively, and time is nondimension-
alized by the parameter γi/(μcR

2
i ). In what follows, all quan-

tities (time, velocities, displacements, and pressure) are in the
nondimensional form, including the coordinates r and z. In or-
der to perform LSA, the nondimensionalized form of the gov-
erning equations [Eqs. (1)−(6)] are linearized using the follow-
ing nondimensional axisymmetric normal linear modes:v(c)

z =
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P̃j e
�t+iKz, where � and K are the nondimensional linear

growth rate and wave number, respectively, subscript j stands
for “c,” “e,” and “s” representing the parameters in the core,
soft elastic solid, and the surrounding medium, respectively,
and P̄j is the base state pressure. The base state pressure
is the capillary pressure in the undeformed cylinder due to
the radius of the cylinder. The nondimensional linear growth
rate (�) and the wave number (K) of the instability can be
written in terms of the dimensional growth rate ω and wave
number k as � = ωγi/(μcR

2
i ) and K = kRi , respectively.

Perturbed radii R̃j = R̄j + εj e
�t+iKz + O(ε2

j ) where j = i and
o represents the value of the local nondimensional radius at the
inner (R̄i = 1) and the outer surface (R̄o = 1/β), respectively,
of the elastic annulus. Here, R̃j is the nondimensionalized
perturbed radius and R̄j is the base state nondimensionalized
radius. The parameter β = Ri/Ro is the ratio of the inner and
outer radii of the elastic annulus. A nondimensional parameter
giving a measure of the stabilizing elastic forces in comparison
to the destabilizing capillary pressure can be written as Y =
γi/(GeRi). The sinuous perturbations on an axisymmetric fiber
correspond to a second-order change in the base state radius
[O(ε2

j )] for volume conservation, which we neglect in our first-
order analysis. Using the above defined nondimensionalized
linearized parameters the governing equations [Eqs. (1)–(6)]
can be written as
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rũ(e)

r

)
∂r

, (22)

−iKP̃s + 1 − M

M

[
1

r

∂

∂r

(
r
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rṽ(s)

r

)
∂r

. (25)

where the variables ṽ(c)
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z , ũ(e)
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z , ṽ(s)

r ,P̃j , and εj

(subscript j = i and o represents inner and outer surfaces of
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the elastic annulus, respectively) are functions of the radial
coordinate r only. The parameter M is a function of the ratio of
the viscosities of the core and surrounding fluids and is given
by M = μc/(μc + μs). EliminatingP̃c, P̃e, and P̃s forms the
linearized governing equations [Eqs. (17)–(25)] and we obtain
the following biharmonic equations in ṽ(c)
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The general solutions of Eqs. (26)−(28) are the following:

ṽ(c)
r (r) = A1rK0(Kr) +A2K1(Kr) +A3rI0(Kr) +A4I1(Kr),
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Here, the coefficientsAi , Bi , and Ci (i = 1 to 4) are
constants. Functions Iα and Kα are the modified Bessel
functions of first and second kind, respectively, where the
subscript α denotes the order of the Bessel functions. The
boundary conditions [Eqs. (7)–(16)] are linearized as follows:
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At the outer interface of the annulus [r = Ro/Ri = 1/β;
Eqs. (13)–(16)],
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Here, γr = γi/γo is the ratio of the surface tension coeffi-
cient at the inner and outer interface of the elastic annulus.

In this study, we consider the viscous fluid surrounding the
tube to be unbounded in the r direction. Therefore, the con-
stants C3 and C4 can be assumed to be zero because the func-
tions I0(Kr) and I1(Kr) go to infinity as r → ∞. The
boundary conditions in Eq. (32) imply that A2 is zero for
the velocity ṽ(c)

r which, at r = 0, is finite and zero. Also, A1 is
zero since the flow is assumed to be axisymmetric. Therefore,
the general solutions for ṽ(c)

r , ũ(e)
r , and ṽ(s)

r [Eqs. (29)–(31)]
reduce to the following:

ṽ(c)
r (r) = A3rI0(Kr) + A4I1(Kr), (41)

ũ(e)
r (r) = B1rK0(Kr) +B2K1(Kr) +B3rI0(Kr) +B4I1(Kr),

(42)

ṽ(s)
r (r) = C1rK0(Kr) + C2K1(Kr). (43)

The linearized parameters ṽ(c)
z , ũ(e)

z , ṽ(s)
z , P̃c, P̃e, and P̃s can

be obtained from the above general solutions [Eqs. (41)–(43)].
Substituting these variables (ṽ(c)

z , ũ(e)
z , ṽ(s)

z , ṽ(c)
r , ũ(e)

r , ṽ(s)
r , P̃c,

P̃e, and P̃s) in the boundary conditions [Eqs. (33)–(35) and
(37)–(39)] yields a set of eight homogeneous linear algebraic
equations involving eight unknown constants Ai and Ci (i = 1
to 2) and Bi (i = 1 to 4). Equating the determinant of the
coefficient matrix of these linear equations to zero, we obtain
the general dispersion relation for the annular cylinder.

The solution of the dispersion relation yields the growth
coefficient of the instability as a function of the wave number,
� = f (K,β,Y,M,γr ). The expression for the general disper-
sion relation can be written in the form of a determinant of a
matrix and is shown in the appendix. The necessary condition
for the instability is � > 0 for real positive values of K.
The dominant growth coefficient (�m) and the corresponding
wavelength (
m = 2π/Km) of instability are obtained by
finding the global maxima of � and the corresponding
wavelength (
 = 2π/K), respectively, from the dispersion
relation.

The modes (squeezing or bending) and the subsequent
relative interfacial deformations can also be predicted from
the LSA. Prescribing an arbitrary infinitesimal deformation
ũr |Ro = εo at the upper elastic-air interface in the r direction,
the ratio of the deformations at the inner and outer interfaces of
the elastic annulus (εr = εi/εo) can be obtained as a function
of g (M , β, γr , Y , Km, �m). The sign and the magnitude
of εr yield information about the deformation mode and the
resulting relative amplitudes at the interfaces, respectively. The
mode of deformation is bending if εr > 0 and squeezing ensues

031603-4



INSTABILITIES OF SOFT ELASTIC MICROTUBES . . . PHYSICAL REVIEW E 84, 031603 (2011)

if εr < 0. Furthermore, the upper interface deforms more when
|εr | < 1 and the lower interface deforms more when |εr | > 1.

IV. RESULTS AND DISCUSSION

Soft linear elastic cylindrical shells submerged in viscous
liquids is a simple biomimetic prototype for the study of
the deformations of blood vessels, neurons, and intracellular
structures [12,13]. In such systems, the elastic forces and
the component of curvature in the axial plane act as stabi-
lizing forces, whereas the radial component of the curvature
promotes instability. When the surface tensions at the inner
and outer radii of the annulus are the same, the destabilizing
capillary pressure at the inner interface is always higher than
that at the outer interface of the cylinder and, therefore, the
more unstable inner interface would lead to the “pearling”
instability of the liquid confined inside the cylinder, as shown
in Fig. 2(a). However, when the surface tensions at the inner
and outer radii are different, the ratio of the interfacial tensions
and the ratio of the inner to outer radii of the cylinder determine
the dominant destabilizing force. A more unstable outer
interface would lead to the breaking of the elastic cylinder into
several toroidal structures or the formation of “sausage-string”
[Fig. 2(b)] patterns [18]. Purely kinetic parameters such as the
ratio of viscosity of the liquids inside and outside the shell also
play a crucial role in the force distribution. A highly viscous
fluid associated to one interface always retards its deformation
and thus reduces the instability growth rate. Therefore, the
radial curvatures of the cylinder at the inner and outer interface
can promote instability with different characteristic length
scales at the interfaces. For example, a highly viscous fluid at
the core can have a stabilizing influence at the inner interface
and, thus, the dominant mode can grow by deforming the outer
interface more. For such a case, even though the destabilizing
force at the inner interface is more, the smaller growth rate
at the inner interface makes the upper interface more unstable
owing to kinetic reasons.

In what follows, we discuss the results obtained from the
linear stability analysis. In particular, we show the effect of the
ratios of the inner to outer radius of the elastic cylinder (β),
the interfacial tensions at the interfaces, and viscosities of the
two fluids on the length and time scales of the instability. We
also calculate the relative amplitude and signs of deformations
at the two interfaces and predict the dominant mode (bending
or squeezing) of instability. In addition, we discuss two
asymptotically interesting systems; namely, an elastic fiber
submerged in a liquid and a liquid-filled microchannel in an
elastic bulk medium. Various asymptotes can be obtained
by choosing limiting values of the parameters M and β.
The parameter M = μc/(μc + μs) → 0 can be obtained by
substituting either μc → 0 or μs → ∞. In the former case, the
fluid in the core of the elastic annulus is inviscid. In the latter
case, the viscosity of the surrounding fluid tends to infinity and
its flow ceases. Another limit of M = μc/(μc + μs) → 1 can
be obtained by setting either μc → ∞ or μs → 0. The first
case corresponds to a nonflowing rigid core of the elastic tube
and the second case denotes an inviscid surrounding fluid.
Similarly, β = Ri/R0 → 0, can be obtained by setting the
inner radius to zero, which corresponds to an elastic fiber
of radius R0. The parameter β → 0 can also be obtained

by choosing R0 → ∞ which corresponds to a cylindrical
microchannel of radius Ri embedded in an elastic bulk. The
physical configurations denoted by these asymptotes should
be carefully interpreted from the nondimensional LSA results,
which depend on the length scale and time scale chosen for
the nondimensionalization. Thus, a proper renormalization
of the nondimensional variables becomes necessary for the
limiting cases. For example, when μc is chosen for the nondi-
mensionalization of the time scale, as done in the equations
above, the limiting case of M → 0 is to be interpreted to mean
that μc is finite but μs → ∞. Furthermore, for M → 1, the
nondimensional case corresponds to choosing μs → 0 rather
than the case of μc → ∞. Similarly, since we have chosen
the radius of the inner interface for nondimensionalizing the
length scale, the case β → 0 corresponds to R0 → ∞ (i.e., a
cylindrical channel containing a viscous fluid imbedded in a
bulk elastic solid). Thus when we analyze the case of an elastic
fiber (Ri → 0) dipped in a viscous fluid, we would renormalize
the length scale with the radius of the outer interface, R0, and
use μs in the nondimensionalization of the time scale.

Soft elastic tubes (Ge ∼ 100 kPa) become unstable when the
inner radius reduces to below a few micrometers. Figure 3(a)
shows the variation in the growth rate (�) with wave number
(K) for two different values of inner radius Ri = 100 nm
and Ri = 10 μm, respectively, with γi = 0.1 N/m, Ge = 100
kPa, β = 0.5, and M = 0.5. For Ri = 100 nm (Y = 10)
the dispersion curve shows positive growth rate implying
instability whereas for Ri = 10 μm (Y = 0.1) the elastic
shell is found to be completely stable. This figure confirms
that this type of instability occurs readily for the soft micro-
and nanochannels where the effects of the destabilizing radial
(cross-sectional) curvatures are stronger than the stabilizing
elastic and the in-plane curvatures. Figures 3(b) and 3(c) show
the LSA results obtained by varying β when other parameters
are held constant at M = 0.5, γr = 1, and Y = 1000. The
parameter M = 0.5 and γr = 1 indicate that the viscosity and
interfacial tensions at the inner and outer elastic interfaces
are equal. Figure 3(b) shows the variation of � with K for
different values of β. For β = 0.1, the dominant wave number
(Kmax) is ∼0.25 (λmax = 25.1Ri). Figure 3(b) clearly indicates
a nonmonotonic change in the dominant wavelength with β as
it shows an increase (decrease) in wave number (wavelength)
around β = 0.5. Figure 3(c) shows the variations of the
dominant wavelength (
m), dominant growth rate (�m), and
the magnitude and sign of the relative deformations at the two
interfaces (εr ) with change in β. For smaller values of β, the
elastic tube wall is thick and the destabilizing capillary force at
the inner interface is much stronger than at the outer interface.
Hence, the instability is governed by the inner interface with
the outer surface largely responding to the deformations of
the inner surface. Thus, a pearling instability is anticipated
under the conditions of a relatively larger deformation at the
inner interface [εr � 1 for low β in Fig. 3(c)]. The positive
values of εr indicate the bending mode where the interfacial
deformations of the two interfaces are in phase with each
other. The inset in Fig. 3(c) also shows that �m displays
a local minimum with β, after which the deformation of
the outer surface becomes more prominent, signaling that a
mode changeover from pearling to sausage string occurs. This
mode transition is accompanied by an abrupt shift from a
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FIG. 3. (a) Dispersion curves for two different values of internal radius of the elastic microtubule. The surface tension coefficient γi =
0.1 N/m and the elastic modulus of the microtubule is assumed to be 100 kPa and parameters β = 0.5, γr = 1, and M = 0.5. The inner radii
Ri = 0.1 μm and 10 μm correspond to Y = 10 and 0.1, respectively. (b) Dispersion curves for different values of β and Y = 1000, γr = 1,
and M = 0.5. (c) Variations in dominant growth rate �m, corresponding wavelength 
m, and relative deformation at the inner and the outer
interface εr .

shorter-wave mode (solid line for β = 0.3 in Fig. 4) to a
longer-wave mode (broken line at β = 0.35) as shown in
Fig. 4. Figure 3(c) confirms that the changeover of modes
takes place at βc ∼ 0.33 and the bimodal behavior of the � vs
K plots [Fig. 3(b)] confirms the coexistence of both pearling
and sausage-string modes in the transition region near βc. The
changeover of the dominant mode from the inner to outer
interface is reflected in the sharp change of εr from ∼5 to
∼0.86 in Fig. 3(c), which suggests that, for β < βc, the inner
interface deforms more, resulting in the pearling instability,
whereas, for β > βc, the outer interface deforms more, leading
to the sausage-string instability. Figure 3(c) also shows that
the instability now grows by adopting an in-phase “bending”
mode (εr > 0) with larger deformation at the outer interface
(εr < 1).

The transition from pearling to sausage-string instabilities
can be envisaged in the following manner: (a) The pearling
instability with a shorter wavelength is observed for the
destabilizing force because the inner radial curvature is
dominant at low β. (b) Upon increasing β, as the thickness
of the elastic tube reduces, a transition zone appears where
the inner wall deforms more to promote a pearling but the
outer wall deform enough to cause a sausage-string instability

to the elastic tube. In this situation, although the outer wall
deforms less under a weaker destabilizing radial curvature
force corresponding to the outer interface, it still deforms
enough to cause the sausage-string instability to the thinner
elastic tube near β ∼ βc. (c) For thinner elastic shells (β > βc),
the sausage-string instability dominates over the pearling insta-
bility mode. Since the sausage-string instability is governed by
the weaker destabilizing radial curvature force, corresponding
to the outer interface, it grows with a larger wavelength as
compared with the pearling instability. Figure 3(c) shows that,
near the transition zone and after the upward jump in 
m, it
again continues to decrease because, with increasing β, the
strength of the destabilizing radial curvature corresponding to
the outer interface increases. Interestingly, when β is further
increased, the inner-surface amplitude increases more than the
outer one, which shows saturation. At a high value of β ∼ 0.95,
both amplitudes grow to a similar magnitude of εr ≈ 1.0,
which corresponds to a pure bending mode without a change
in the tube thickness. This is referred to as the “wrinkling”
instability of the elastic tube. The wrinkling instabilities occur
when the elastic shell is very thin and noncompliant [47]. The
compliance of the shell can nominally be defined as the ratio
of the thickness of the shell to the shear modulus of the tube.
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FIG. 4. Dispersion curves for β = 0.3 and 0.35 showing jump in
the most dominant wavelength.

The reduction in �m and 
m at high values of β (>0.9) can
also be attributed to the lesser compliance for thinner shells.
Figures 3 and 4 clearly show that, with the variation in β, three
distinct domains (i.e., pearling, sausage-string, and wrinkling
instabilities) can be obtained for an elastic shell surrounded by
viscous liquids.

Figure 5 demonstrates that the kinetic parameters such as
viscosity can strongly influence the onset of the instability and
transition to different modes. Fig. 5(a) shows variations in �m,

m, and εr with M for β = 0.5, γr = 1, and Y = 1000. For
lower values of M, when the liquid in the core is less viscous,
the most dominant wavelength is shorter and a pearling mode
is observed at the inner interface. With an increase in M, a jump
is observed in 
m to a higher value at Mc = 0.28. The εr plot
in this figure confirms that, for M < Mc, a pearling instability
mode (εr > 1) persists whereas the sausage-string mode (εr

< 1) appears for M > Mc. Figure 5(b) shows the bimodal
behavior of the � vs K plots near Mc, which clearly shows
the jump in the dominant mode from the shorter wavelengths
for low values of M [solid line for M = 0.25 in Fig 5(b)] to

longer wavelengths for M > Mc (broken line for M = 0.30). A
comparison between Figs. 3(c) and 5(a) reveals that that, when
the viscosities of the liquid in the core and surrounding are
same (M = 0.5), the transition from pearling to sausage-string
mode occurs at a lower β = 0.33 [Fig. 3(c)]. When the inner
core has lower viscosity [M = 0.28; Fig. 5(a)], the changeover
of modes takes place at a higher β = 0.5. A lowering of the
inner viscosity allows the inner interface to be more unstable,
so that the transition to sausage strings can occur only when
the destabilization engendered by the outer cross-sectional
curvature is made stronger by a further decrease in the outer
radius. Thus, the kinetic parameters such as the ratio of the
viscosity of the fluids in the core and the surrounding medium
can substantially influence the condition for transition from
pearling and sausage-string instabilities or vice versa. Beyond
M > Mc, a progressive reduction of 
m is observed whereas,
in the absence of any viscous resistance in the surrounding
medium, �m sharply increases as M → 1. Interestingly, the
plot of εr in Fig. 5(a) indicates that, for M → 0, when the
viscous resistance at the outer elastic wall is much higher
compared to the inner wall, the instability is dominated by the
deformation of the inner interface (εr � 1). However, when
M → 1 (μs → 0) the lower viscous resistance felt at the outer
surface allows it to govern the amplitude (εr � 1) and the
length scale of the instability. These asymptotes provide us
with two different systems, of which the former corresponds
to an elastic shell with a viscous core and surrounded by a
highly viscous nonflowing liquid (like a rigid hollow cylinder)
and the latter corresponds to an elastic shell with a highly
viscous nonflowing liquid (a rigid fiber) in the core. The
dominant mode of instability in the former has a wavelength
∼15Ri whereas the latter shows patterns with wavelength
∼21Ri .

The other parameters that can significantly influence the
transition of the instability modes are the ratio of the interfacial
tensions at the interfaces (γr ) and the ratio of the surface
tension to the elastic force (Y). Figure 6(a) shows the variations
in
m, �m, and εrwith γr for β = 0.5, M = 0.5, and Y = 1000.
For γr < 2, the value of εr < 1 suggests that the outer interface
deforms more than the inner surface of the elastic annulus.

FIG. 5. (a)Variation in most dominant wavelength 
m, corresponding growth rate �m, and relative deformation at the inner and the outer
interface εr with M and Y = 1000, γr = 1, and β = 0.5. (b) Dispersion curves for M = 0.25 and 0.3 showing jump in the most dominant
wavelength. The critical β for M = 0.33 is 0.5.
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FIG. 6. Variation in most dominant wavelength 
m, corresponding growth rate �m, and relative deformation at the inner and the outer
interface εr (a) with γr and Y = 1000, M = 0.5, and β = 0.5 and (b) with Y and γr = 1, M = 0.5, and β = 0.5.

For very small values of γr , the capillary force at the outer
interface is much stronger than the one at the inner interface
and therefore the sausage-string mode dominates. The figure
also shows that �m and 
m monotonically decrease with an
increase in γr and become nearly constant beyond γr > 2,
where a pearling instability is expected because εr > 1.
For higher values ofγr , the wavelength corresponds to the
destabilizing capillary force at the inner interface. Figure 6(b)
shows variations in
m, �m, and εrwith Y. Other parameters
are held constant at the following values: γr = 1, M = 0.5,
and β = 0.5. The value of 
m first decreases and then
monotonically increases with an increase in Y. The elastic
annulus is stable below a critical value of Yc ∼ 1. With
an increase in Y beyond Yc, εrdecreases and goes below 1,
suggesting that, for higher values of Y (i.e., for softer annuli),
the outer interface deforms more. Figure 7 shows variation in
the critical value of Yc with β. For β → 0, Yc asymptotically
tends to 2. The case β → 0 represents the asymptote of a
microchannel in a bulk elastic medium. With an increase in
β, Yc decreases and tends to zero for β → 1. The asymptote
β → 1 represents the case where there is no elastic medium

FIG. 7. Variation in Yc with β. Other parameters are held constant
at γr = 1 and M = 0.5.

between the two fluids (core and surrounding) and therefore
no resistance to instability at the fluid-fluid interface.

The general analysis presented here can also be asymp-
totically reduced to analyze a micro- or nanochannel in a
semi-infinite elastic solid. For such a case, the deformation
field in the elastic medium is bounded at r → ∞ and therefore
the coefficients B3 and B4 are identically zero in the analysis
described in Sec. II. Thus, a reduced dispersion relation for the
spontaneous deformation of a microchannel in an elastic bulk
is obtained. Figure 8 shows the dominant wave number and
the corresponding growth coefficient for different values of Y.
Figure 8 clearly shows that the critical value beyond which
the instability occurs is Yc = 2, which was also obtained as an
asymptotic case from the analysis of an elastic tube (β → 0
in Fig. 7). For larger values of Y, elastic forces are weaker,
which leads to longer wavelengths as the shorter wavelengths
are stabilized by the in-plane capillary force. As expected, the
growth coefficient increases with an increase in Y because the
destabilizing capillary force is enhanced.

FIG. 8. Variation in Km and �m with Y for a cylindrical
microchannel cut into an elastic medium. The dashed line marks
the critical Y below which the microchannel would be stable to the
Rayleigh instability.
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FIG. 9. Variation in Km and �m with Y for a soft elastic fiber. The
dashed line shows the critical Y below which the microfiber is stable
to the Rayleigh instability.

Another asymptotic system that can easily be analyzed from
the general formulation shown in Sec. II is the deformation
of an elastic fiber submerged in a bulk viscous fluid. The
renormalized dispersion relation is now obtained by setting the
coefficients B1 and B2 to zero because the terms multiplying
these diverge as r → 0. The scaling parameters used here to
study this case of a solid fiber are K = kRo, � = ωμsRo/γo

and Y = γo/(GeRo). Note that the radius and surface tension
of the outer surface of the annular cylinder, Ro, and the
viscosity of the surrounding medium has been used for
nondimensionalization. Figure 9 shows the dominant wave
number and the corresponding growth rate as a function of
Y. Interestingly, the trend is similar to that discussed earlier
for a micro- or nanochannel. However, the critical value of Y
below which the fiber is stable is 6 as compared to 2 for a
microchannel in an elastic medium. The critical value of Y is
higher for an elastic fiber because it is less compliant compared
to the elastic bulk containing the microchannel. Interestingly,
the critical value of Yc = 6 for the onset of instability in
elastic fibers (Yc = 2 for a microchannel) is independent of
the surrounding (core) viscous fluid. Figure 9 also shows that
the critical wave number for an elastic fiber increases with an
increase in Y and asymptotically attains a value which can be
predicted purely based on the minimization of the free energy,
neglecting the elastic energy penalty (kcRo = 1). This is not
surprising because, in the limit of zero shear modulus, the
elastic fibers would behave like an inviscid fluid and deform
without any resistance. This also validates our linear stability
analysis results.

V. CONCLUSIONS

We performed a linear stability analysis (LSA) on an
initially quiescent system to show that, below a critical shear
modulus [Y = γi/(GeRi) > 1 for γr = 1, M = 0.5, and
β = 0.5], an elastic annulus is unstable and may show one
of the following modes of instability: (i) a pearling instability
where the inner interface deforms more that the outer interface,
(ii) sausage strings with the formation of beads when the outer

interface deforms more and may even lead to the breakup of
the annulus into rings, and (iii) wrinkling when the wall of
the annulus is thin and both inner and outer interfaces deform
equally (see Fig. 2). Instability is the result of a competition
between the elastic penalty due to deformation in the tube and
the destabilizing radial curvature at the inner and the outer
interfaces. Both the inner interface of the annulus and the
outer interface have different characteristic lengths, and kinetic
effects choose the dominant mode.

Based on the results from linear stability analysis, we show
that a thicker elastic tube would show breakup of the inner
fluid cylinder into a string of pearls or a peapod, whereas an
extremely thinner elastic tube shows bending modes (wrin-
kling) with shorter wavelengths. In the intermediate regime
one would observe the formation of sausage strings with the
outer surface deforming more than the inner interface. Such
instabilities have been observed in the breakup of polymer
nanotubes into capsules and in blood vesicles, which show the
formation of sausage strings [18].

We also show that a thin microchannel in an elastic bulk
can be stable and rupture into thin spherical cavities if the
parameter Y is greater than 2. A thin soft elastic fiber would
break up into droplets like a liquid jet if the parameter Y is
greater than 6. With the advent of nanomanufacturing and
the miniaturization of existing systems to enhance efficiency
and reduce power consumption, the present study provides
guidelines for designing stable microfibers, microtubes, and
microvessels.
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APPENDIX

The dispersion relation can be written in the determinant
form: ∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a17 a18

a21 a28

...
. . .

...

a71 a78

a81 a82 . . . a87 a88

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The nonzero components of the matrix are given in terms
of the modified Bessel functions of the first and second kind:

a13 = [�K0(K/β)]/β, a14 = �K1(K/β),

a15 = [�I0(K/β)]/β, a16 = �I1(K/β),

a17 = −[K0(K/β)]/β, a18 = −K1(K/β),

a21 = −I0(K), a22 = −I1(K), a23 = �K0(K),

a24 = �K1(K), a25 = �I0(K), a26 = �I1(K),
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a33 = �[2βK0(K/β) − KK1(K/β)]

β2
,

a34 = −K�K0(K/β)

β
, a35 = �[2βI0(K/β) + KI1(K/β)]

β2
,

a36 = K�I0(K/β)

β
, a37 = −2βI0(K/β) + KI1(K/β)

β2
,

a38 = KK0(K/β)

β
,

a41 = −2I0(K) − KI1(K), a42 = −KI0(K),

a43 = �[2K0(K) − KK1(K)],

a44 = −K�K0(K), a45 = �[2I0(K) + KI1(K)],

a46 = K�I0(K),

a53 = 2K[KK0(K/β) − βK1(K/β)]

Yβ
,

a54 = 2K2K1(K/β)

Y
, a55 = 2K[KI0(K/β) + βI1(K/β)]

Yβ
,

a56 = 2K2I1(K/β)

Y
,

a57 = 2K(M − 1)[KK0(K/β) − βK1(K/β)]

Mβ
,

a58 = 2K2(M − 1)K1(K/β)

M
,

a61 = −2K[KI0(K) + I1(K)], a62 = −2K2I1(K),

a63 = 2K[KK0(K) − K1(K)]

Y
,

a64 = 2K2K1(K)

Y
, a65 = 2K[KI0(K) + I1(K)]

Y
,

a66 = 2K2I1(K)

Y
,

a73 = 2KK1(K/β)

Yβ
, a74 = 2[KK0(K/β) + βK1(K/β)]

Y
, a75 = −2KI1(K/β)

Yβ
,

a76 = 2[−KI0(K/β) + βI1(K/β)]

Y
, a77 = M(β2 − K2)K0(K/β) + 2K(M − 1)γr�K1(K/β)

Mβγr�
,

a78 = 2K(M − 1)γr�K0(0,K/β) + [−K2M + β(Mβ − 2γr� + 2Mγr�)]K1(1,K/β)

Mγr�
,

a81 = − (K2 − 1)I0(K) + 2K�I1(K)

�
, a82 = −2K�I0(K) + (1 − K2 + 2�)I1(K)

�
, a83 = −2KK1(K)

Y
,

a84 = −2[KK0(K) + K1(K)]

Y
, a85 = 2KI1(K)

Y
, a86 = 2[KI0(K) − I1(K)]

Y
.
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