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Unified derivation of phase-field models for alloy solidification from a grand-potential functional
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Physique de la Matière Condensée, École Polytechnique, CNRS, F-91128 Palaiseau, France

(Received 9 May 2011; published 2 September 2011)

In the literature, two quite different phase-field formulations for the problem of alloy solidification can be
found. In the first, the material in the diffuse interfaces is assumed to be in an intermediate state between solid and
liquid, with a unique local composition. In the second, the interface is seen as a mixture of two phases that each
retain their macroscopic properties, and a separate concentration field for each phase is introduced. It is shown
here that both types of models can be obtained by the standard variational procedure if a grand-potential functional
is used as a starting point instead of a free energy functional. The dynamical variable is then the chemical potential
instead of the composition. In this framework, a complete analogy with phase-field models for the solidification
of a pure substance can be established. This analogy is then exploited to formulate quantitative phase-field models
for alloys with arbitrary phase diagrams. The precision of the method is illustrated by numerical simulations with
varying interface thickness.
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I. INTRODUCTION

The development of the phase-field method has led to
tremendous progress in the modeling of pattern formation
during solidification, due to its capability to simulate complex
time-dependent and three-dimensional morphologies with
relatively simple numerical codes [1–4]. The general principle
of this method is to describe a multiphase system by a
set of phase fields which take constant values in each of
the bulk phases and vary smoothly through interfaces of a
characteristic thickness W . The equations of motion for the
phase fields and their coupling to the local thermodynamic
state variables (temperature, density, composition, etc.) can be
obtained, following the basic principles of out-of-equilibrium
thermodynamics, by taking a variational derivative of a free
energy functional, which is generally of the Ginzburg-Landau
type. Mean-field approximations can be used to relate the
parameters that appear in this functional to microscopic
quantities, and the phase fields can often be interpreted as
order parameters.

Generally, the equations that result from the straightforward
application of these principles are not suitable for obtaining
quantitatively accurate simulation results on solidification
microstructures. The reason is that the characteristic natural
thickness of the diffuse solid-liquid interfaces is a few times the
interatomic distance, whereas solidification patterns typically
exhibit length scales ranging from 1 to 100 μm. Even with the
help of modern computers and multiscale algorithms, both of
these scales cannot be resolved at the same time. Therefore, in
order to simulate solidification microstructures, the thickness
of the diffuse interfaces in the phase-field model has to be
artificially enlarged, sometimes by two or three orders of
magnitude. Quantitative results can only be expected if both
the equilibrium and kinetic properties of the interfaces remain
unchanged under this procedure.

To achieve this goal, it is helpful to adopt a phe-
nomenological point of view: The phase field is seen as
a smoothed indicator function (as opposed to a physical
order parameter or density), and all equilibrium quantities
and transport coefficients are interpolated between the phases
with smooth functions of the phase fields that can be freely

chosen. This freedom can be exploited to construct phase-field
models with special properties. In particular, rescaling of the
interface thickness is greatly simplified in models where bulk
thermodynamics and interfacial properties can be controlled
separately.

The phase-field models for the solidification of a pure
substance published in the literature are all quite similar
[1,5–7], in the sense that they all use the same set of
fundamental fields (a phase field and the temperature field)
and that the structure of the equations is the same. One reason
for this universality is that a simple and intuitive formulation of
the model in terms of these fields yields indeed, as is detailed
below, a model in which the separation of bulk and interface
properties is achieved. Therefore, the development of the “thin
interface limit” [1,8], which has paved the way to quantitative
simulations of dendrites [1,9], did not require a change in the
model formulation.

The situation is more complicated for alloy phase-field
models. Two different approaches with quite distinct philoso-
phies have been pursued in parallel. The first, which will
be called the “coarse-graining” approach in the following,
generalizes the pure substance model by introducing a con-
centration field in addition to the temperature field and by
writing down a free energy functional that depends on the
phase field, the temperature, and the concentration [10–12].
The local values of these three fields are—in principle—the
coarse-grained counterparts of the microscopic structural order
parameter, temperature, and concentration fields, and the
interface is seen as a narrow region in space where all of
these quantities can exhibit rapid spatial variations. In contrast,
the second approach, called the “two-phase” approach in the
following, treats the interfaces as a mixture of two phases,
each of which retains its bulk properties even inside the
interface, and a separate concentration field is defined for
each phase. The model equations are then obtained following
the spirit of volume-averaging methods [13], with the phase
field representing the local volume fraction of one of the
phases [14–16]. The “physical” concentration field is obtained
by an average of the concentrations in each phase, which is
weighted by the value of the phase field. The introduction
of two separate concentration fields adds a supplementary

031601-11539-3755/2011/84(3)/031601(15) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.031601


MATHIS PLAPP PHYSICAL REVIEW E 84, 031601 (2011)

degree of freedom which has to be removed from the problem;
this is done either by a specific partition relation [14,15] or
by the condition of local equilibrium between the coexisting
phases [16].

In the models of the “coarse-graining” type, the model
structure generally leads to an intrinsic coupling between
bulk and interface properties, which makes simulation results
dependent on the chosen interface thickness. Only for the
case of dilute binary alloys, a specific interpolation of the
thermodynamic properties through the interface has been
developed [17,18] which overcomes this constraint and makes
quantitative simulations possible. In the two-phase approach,
which is more phenomonological from the outset, bulk and
interfacial properties are decoupled by construction. However,
the removal of the extra degree of freedom introduced by
the model formulation generally requires the solution of a
nonlinear equation in each point of the interface and thus adds
significant computational complexity.

The purpose of the present paper is to show that the
coarse-graining approach can be easily extended to more
complex alloy systems if instead of a free energy functional
a grand-potential functional is used to generate the equations
of motion. Furthermore, an analysis of the resulting model
shows that it is, in fact, perfectly equivalent to the two-phase
model, which offers the possibility to reinterpret and simplify
the latter. The fundamentals underlying these findings can be
stated quite simply. The motion of interfaces is controlled by
the transport of a conserved extensive quantity: energy for
a pure substance and chemical species for isothermal alloy
solidification. In sharp-interface models, this fact is expressed
by two separate laws: a transport equation in the volume and
a conservation law of Stefan type at the moving boundary. In
contrast, the two-phase equilibrium at interfaces is controlled
by the intensive quantity that is conjugate to the conserved
one: temperature for pure substances and chemical potential
for alloys. It turns out that the pure substance model has
been formulated from the start in terms of a phase field and
the intensive variable (temperature), whereas alloy phase-field
models are traditionally formulated in terms of a phase field
and the composition, which is a density of the extensive
variable (number of solute atoms). To obtain a model for alloys
that has properties analogous to those of the pure substance
model, it is sufficient to choose a formulation in terms of
a phase field and the chemical potential and to switch to
the appropriate thermodynamic potential, which is the grand
potential. Of course, the fact that the quantity analogous to the
temperature is the chemical potential is well known [19] and
has been extensively used in sharp-interface models as well as
in a few specific phase-field models [20–22], but its general
consequences have so far not been fully appreciated in the
framework of phase-field models.

It should be mentioned that a second obstacle for obtaining
quantitative results on alloys is the strong contrast of the
solute diffusivities between solid and liquid, which generates
spurious solute trapping when the interface thickness is scaled
up. This problem was solved by the so-called antitrapping
current, which was introduced first in the coarse-graining
approach [17,23], but has also been incorporated in the
two-phase model [4,24]. Since the results of the present paper
do not introduce major changes on this point, the results of

Ref. [17] will be taken over without a detailed discussion.
After a change of variables, the model is almost identical
to the model of Ref. [17], such that the asymptotic analysis
developed for that model remains valid. This will be illustrated
by numerical simulations that explicitly test the independence
of simulation results of the interface thickness for the case of
a lens-shaped phase diagram.

The remainder of the paper is structured as follows. In
Sec. II, the standard phase-field model for the solidification
of pure substances is reviewed for reference. Next, the grand-
potential formulation is introduced and motivated in Sec. III
and illustrated by several examples in Sec. IV: a model with
two parabolic free energy functions, a dilute alloy, and an
alloy with a lens-shaped phase diagram. The relation of this
model to other phase-field models is clarified in Sec. V, and
an example for numerical simulations is presented in Sec. VI.
Finally, the implications of the present findings for the further
developments of alloy phase-field models are discussed in
Sec. VII.

II. SOLIDIFICATION OF A PURE SUBSTANCE

The minimal model of solidification is considered, which
implies some standard simplifications: The densities of the
solid and the liquid are taken to be equal, and heat transport
is assumed to take place by diffusion only. As a consequence,
no motion of matter needs to be considered, and the only
transported extensive quantity is heat.

Under these assumptions, the state of an inhomogeneous
two-phase system can be completely specified on a coarse-
grained (mesoscopic) scale by two fields: a phase field φ which
indicates the local state (liquid or solid) of matter and the
internal energy density e. The conservation law corresponding
to heat transport is the conservation of energy, which writes

∂te = −�∇ · �je. (1)

The heat current �je is given by Fourier’s law,

�je = −κ(φ,e) �∇T , (2)

where κ(φ) is the heat conductivity, which in general may
depend on both variables, and T is the local temperature.

If e is chosen as a dynamic variable, the corresponding
thermodynamic potential is the entropy. Consequently, the
system is naturally described by an entropy functional,

S[φ,e] =
∫

V

s(φ, �∇φ,e, �∇e), (3)

where the local entropy density s depends on the fields as well
as their gradients. Using the thermodynamic definition of the
temperature,

δS
δe

= 1

T
, (4)

the evolution equations for the fields e and φ can be written in
a variational form,

∂tφ = Mφ

δS
δφ

, (5)

∂te = �∇ · (κ(φ) �∇T ) = −�∇ ·
(

κ(φ)T 2 �∇ δS
δe

)
. (6)
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The first equation expresses the local maximization of the
entropy, which occurs at a rate given by the constant Mφ ; the
second is identical to the conservation law, Eq. (1).

While this is a perfectly viable starting point which has
been explored by several authors [25,26], this formulation
is rarely used in practice. Simulations are almost always
carried out with models formulated in the variables φ and
T that can be obtained from free energy functionals. Besides
historical reasons (the first phase-field models for solidification
were formulated in this language [5,27,28]), there are also
formal considerations which make this approach preferable.
The main reason to choose the intensive variable T instead of
the extensive variable e is that it directly controls the two-phase
equilibrium, which makes it easier and more intuitive to
identify the driving forces in the model.

This point is illustrated by obtaining the equations of motion
from a free energy functional that is constructed using a purely
phenomenological point of view. It is shown below that the
standard phase-field model of solidification is easily obtained
as a special case. Let fs(T ) and fl(T ) be the free energy
densities of pure solid and liquid, respectively, and let the
corresponding equilibrium values of the phase field be φ =
±1. The free energy is given by

F[φ,T ] =
∫

V

f (φ, �∇φ,T ) =
∫

V

fint(φ, �∇φ)

+ gs(φ)fs(T ) + [1 − gs(φ)]fl(T ), (7)

where the weighting function gs(φ) is given by

gs(φ) = 1 + g(φ)

2
, (8)

with g(φ) a function that satisfies g(±1) = 1 and g′(±1) = 0;
hence, gs = 1 in the solid and gs = 0 in the liquid. The term
fint is given by

fint = 1
2σ ( �∇φ)2 + Hfdw(φ), (9)

where σ and H are constants of dimension energy per unit
length and energy per unit volume, respectively, and fdw(φ) is
a double-well function with minima at φ = ±1.

The motivations for this formulation are easily understood
and are common to many phase-field models. The term fint

creates domains where the phase field is close to its equilibrium
values φ = ±1 (the minima of the double-well function), sep-
arated by diffuse interfaces. Therefore, far from the interfaces,
the free energy density reduces to the one of the corresponding
bulk phase. The term fint contributes to the free energy only
inside the interfaces; this excess free energy represents the
surface tension. The function gs(φ) interpolates between the
two free energy densities through the diffuse interface.

A variation of the free energy functional with respect to the
two fields φ and T yields

δF =
∫

V

{
−σ �∇2φ + Hf ′

dw(φ)

+ g′(φ)

2
[fs(T ) − fl(T )]

}
δφ(�x)

+
{
gs(φ)

∂fs(T )

∂T
+ [1 − gs(φ)]

∂fl(T )

∂T

}
δT (�x), (10)

where the prime stands for derivation with respect to φ.

The variation of F with respect to φ is the driving
force for the phase transition. Two features are noteworthy:
(i) the requirement that g′(±1) = 0 ensures that the driving
force vanishes outside of the interfacial regions and (ii) since,
at the melting temperature T = Tm, fs(Tm) = fl(Tm), the
“thermodynamical” part of the driving force is identically zero,
independently of the value of φ. The latter property implies that
the equilibrium interface profile in φ can be calculated from the
term fint alone. This can be shown by seeking the equilibrium
solution for a planar interface along the x direction, which can
be obtained from the condition that the variation of F with
respect to φ must vanish. At T = Tm, this condition yields

−σ∂xxφ + Hf ′
dw(φ) = 0, (11)

which implies that the solution of this equation is independent
of the free energies fs(T ) and fl(T ). As a consequence, the
surface free energy γ (defined as the excess free energy due to
the presence of the interface) is also independent of the bulk
free energies and is given by

γ = I
√

σH = IHW, (12)

where I is a numerical constant that depends on the shape of
the double well function fdw, and the interface thickness W is
defined by

W =
√

σ

H
. (13)

Therefore, the surface tension γ and the interface thickness W

can be freely chosen by appropriately fixing the two constants
σ and H , independently of the bulk properties. As stated in
the Introduction, the interface properties can thus be controlled
independently of the bulk thermodynamics.

The equation of motion for the phase field is obtained
from the free energy functional by the standard variational
procedure,

∂tφ = −Mφ

δF
δφ

, (14)

which expresses the fact that the system seeks to minimize its
local free energy at a rate which is controlled by the constant
Mφ .

To obtain an evolution equation for the temperature field,
the starting point is the observation that, by definition, the
variation of F with respect to T is equal to the negative of the
local entropy density,

s(T ,φ) = −δF
δT

= −gs(φ)
∂fs(T )

∂T
− [1 − gs(φ)]

∂fl(T )

∂T
.

(15)

Since fint was chosen independent of temperature, s is a local
function of φ and T (no gradients are involved) and can be
simply seen as the interpolation of the bulk entropy densities,

s(φ,T ) = gs(φ)ss(T ) + [1 − gs(φ)]sl(T ). (16)

The use of the thermodynamic identity de = T ds (valid at
constant density) yields

∂te = T ∂t s = T

(
∂s(φ,T )

∂φ
∂tφ + ∂s(φ,T )

∂T
∂tT

)
. (17)
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Note that in writing the second equality, it is assumed that
there is no entropy production due to local dissipation, which
is equivalent to the hypothesis that the transformations are
reversible on the mesoscopic scale of a coarse-graining cell.
Furthermore, the definition of the specific heat per unit volume
is

Cp(φ,T ) = T
∂s(φ,T )

∂T
= −T gs(φ)

∂2fs(T )

∂T 2

− T [1 − gs(φ)]
∂2fl(T )

∂T 2
. (18)

Equations (17) and (18) can be combined with the energy
conservation law [Eq. (1)], where the heat conductivity κ now
depends on the variables φ and T , to yield

Cp(φ,T )∂tT = −T
∂s

∂φ
∂tφ + �∇[κ(φ,T ) �∇T ], (19)

which is the desired evolution equation for the temperature
field. This equation can be further simplified by writing the
heat conductivity as the product of the specific heat and
the thermal diffusion coefficient DT , and by using Eq. (16)
for the entropy density. The result is

∂tT = 1

Cp(φ,T )

{
�∇[Cp(φ,T )DT (φ,T ) �∇T ]

+ T [sl(T ) − ss(T )]
g′(φ)

2
∂tφ

}
. (20)

Note that all quantities that appear in this equation except
for the thermal diffusivity can be obtained from the bulk free
energy densities fs(T ) and fl(T ).

The free energy functional used in the standard formulation
of the phase-field model can be obtained from Eq. (7) by
linearizing the free energy density f (φ, �∇φ,T ) around the
melting temperature Tm,

f (φ, �∇φ,T ) = f (φ, �∇φ,Tm) + ∂f

∂T

∣∣∣∣
Tm

(T − Tm). (21)

Using the definition of the latent heat per unit volume,
L = Tm[sl(Tm) − ss(Tm)], as well as the fact that the free
energies of solid and liquid are equal at Tm, fs(Tm) = fl(Tm),
this expansion yields

F =
∫

V

1

2
σ ( �∇φ)2 + Hfdw(φ) + L

2Tm

g(φ)(T − Tm), (22)

where the constant [ss(Tm) + sl(Tm)]/2 has been disregarded
for simplicity.

The equation of motion for the phase field is then obtained
from this linearized functional by a variational derivative.
To obtain an equation of motion for the temperature, it is
usually assumed that the specific heat is independent of both
temperature and the phase field, Cp(φ,T ) ≡ Cp. Then, it is
easy to “guess” the correct equation by realizing that the latent
heat released or consumed during the phase transformation
appears as a source term in the diffusion equation for the
temperature,

∂tT = �∇(DT (φ,T ) �∇T ) + L

Cp

g′(φ)

2
∂tφ. (23)

This equation is indeed obtained from Eq. (20) when a constant
specific heat is inserted and the approximation T = Tm is
made in the second term on the right-hand side. Note that,
in contrast, the correct general form could not have been
easily guessed from Eq. (23). The underlying reason is
that the linearized free energy functional formally yields a
specific heat which is zero since all second derivatives with
respect to the temperature vanish; therefore, thermodynamic
consistency between the linearized functional [Eqs. (22)] and
the evolution equation for the temperature [Eq. (23)] has been
lost. The equations are nevertheless correct, since for the
case of constant specific heat and constant latent heat, that
is T [sl(T ) − ss(T )] = Tm[sl(Tm) − ss(Tm)] = L, the internal
energy density and the temperature are linearly related,

e(φ,T ) = el(Tm) + es(Tm)

2
+ Cp(T − Tm) − g(φ)

2
L. (24)

Then, Eq. (23) can be directly obtained by combining the
time derivative of Eq. (24) with the energy conservation law
[Eq. (1)].

III. ISOTHERMAL ALLOY SOLIDIFICATION

A binary alloy is a mixture of two pure substances A and B.
For simplicity, it is assumed here that the atomic volume Va of
both pure substances and of the mixture are all the same, and
that hence the total number density of the alloy is a constant
and equal in solid and liquid. Then, the only new field needed
is the local composition (atomic fraction) c of “solute” (B)
atoms. Furthermore, for constant atomic volume the chemical
potentials of A and B atoms are not independent since removal
of an A atom implies the addition of a B atom. This means that
the only new intensive variable that needs to be considered is
the difference of the chemical potentials of A and B atoms,
which is called μ in the following.

The starting point of the coarse-graining approach, as
pioneered in Refs. [10–12], is a free energy functional that
depends on the variables φ, T , and c. The chemical potential
is then defined as the functional derivative of the free energy
functional with respect to c. Since c is dimensionless, the
chemical potential obtained by this procedure has the dimen-
sions of energy per unit volume. This convention obscures
the thermodynamic roles of the two variables: The relevant
extensive variable from which a density should be defined is the
number of B atoms. Therefore, the variable that is analogous
to the internal energy density in the pure substance model is
the number density of B atoms,

ρ = c

Va

, (25)

where Va is the atomic volume (the constant volume occupied
by one A or B atom). Then, the chemical potential defined by

μ = δF
δρ

= Va

δF
δc

(26)

has the dimension of an energy, as is standard in basic
thermodynamics. Since the nature of the variables is important
for establishing the analogy between pure substance and alloy
models, this convention for the chemical potential is adopted
for the remainder of the paper. However, since it is customary
to express free energy densities in terms of the composition
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rather than the number density, both ρ and c will be used in
the following for ease of presentation, keeping in mind that
the two variables are simply related by Eq. (25).

The number density is a conserved quantity, which implies

∂tρ = −�∇ · �jρ, (27)

where jρ is the mass current. For isothermal solidification,
where the only thermodynamic driving force for mass diffusion
is the gradient of the chemical potential, the mass current is
given by

�jρ = −M(φ,T ,c) �∇μ, (28)

where M(φ,T ,c) is the atomic mobility. Combining these
equations and the definition of μ yields the equation of motion
for ρ,

∂tρ = �∇ ·
(

M(φ,T ,c) �∇ δF
δρ

)
. (29)

It is now shown that this approach generally leads to a
model in which bulk and interface properties do not decouple.
To this end, it is useful to start again from the variation
of the free energy functional, now in the variables φ and
ρ. Since isothermal solidification is considered, there is no
variation with respect to temperature. In order to simplify the
notations, the variable T (which becomes a simple parameter
for isothermal solidification) will be dropped from the free
energy densities and the mobility from now on. The variation
of F is

δF =
∫

V

{
−σ �∇2φ + Hf ′

dw(φ)

+ g′(φ)

2
[fs(c) − fl(c)]

}
δφ(�x)

+ Va

{
gs(φ)

∂fs(c)

∂c
+ [1 − gs(φ)]

∂fl(c)

∂c

}
δρ(�x). (30)

A crucial difference with the pure substance case is obvious:
there is no simple argument which ensures that the “ther-
modynamic driving force” term proportional to fs(c) − fl(c)
vanishes. Indeed, for two-phase equilibrium in an alloy, both
the free energy density and the concentration vary across the
interface. The values of all these quantities in the bulk phases
at two-phase coexistence are obtained from two conditions: (i)
The chemical potential must be the same in both phases, and
(ii) the grand-potential density ω = f − μρ must also be the
same. Given the curves of free energy versus composition,
the graphical interpretation of these two conditions is the
well-known common tangent construction.

Let us examine the consequence of these conditions for the
phase-field model outlined above. Since the two variables—
phase field and concentration—vary through the interface, the
equilibrium interface profile is given by two coupled nonlinear
differential equations. One is obtained from the condition of
constant chemical potential, which remains valid in the diffuse
interface picture, and reads

δF
δρ

= Vags(φ)
∂fs(c)

∂c
+ Va[1 − gs(φ)]

∂fl(c)

∂c
= μeq(T ),

(31)

where μeq(T ) is the equilibrium value obtained from the com-
mon tangent construction. This equation defines an implicit
relation between the composition c and the phase field φ.

The equation for the phase field, obtained as before from
the condition that the variation of F vanishes, is

−σ∂xxφ + Hf ′
dw(φ) + δfth

δφ
= 0, (32)

where fth(φ,c) = gs(φ)fs(c) + [1 − gs(φ)]fl(c) denotes the
“thermodynamic part” of the free energy density. Obviously,
this equation becomes identical to Eq. (11) only if the
third term is identically zero. The physical meaning of this
condition can be made transparent by remarking that, since the
concentration and the phase field are not independent variables
any more under the constraint of Eq. (31), the variation of
fth with respect to φ, taking into account the constraint of
Eq. (31), is

δfth

δφ
= ∂fth

∂φ
+ ∂fth

∂c

dc

dφ
= ∂fth

∂φ
+ μeq

Va

dc

dφ
. (33)

Therefore, if

δfth

δφ
= d

dφ
(fth − μeqρ) ≡ 0, (34)

the equation for the equilibrium phase-field profile reduces
to Eq. (11); in other words, the quantity fth − μeqρ must
be constant through the interface. Far from the interfaces,
where fint does not contribute, this quantity is equal to
the grand-potential density. Note that the common tangent
construction implies that the two bulk values of the grand
potential must be equal. However, for a general choice of
free energy functions, there is no reason for this condition to
be valid throughout the whole interface. As a consequence,
the interface equation and all quantities that are obtained
from its solution (surface tension, kinetic coefficients etc.)
depend on the bulk free energy densities. For realistic
values of the interface thickness, this dependence is small,
but when the interface thickness is upscaled, large errors
can occur.

This fact has been recognized by several authors, and so
far two different strategies have been followed to cure this
problem. The first is to develop specifically designed free
energy functionals that satisfy the condition of Eq. (34), but
are valid only for certain choices of bulk free energies (see
below). The second strategy is the one of the two-phase
model [14–16], in which two separate concentration fields,
one for each phase, are used; the supplementary degree of
freedom is then eliminated in such a way that Eq. (34) is
satisfied.

The new idea put forward here is that a general solution to
this problem can also be obtained in the coarse-graining spirit
(using a single concentration field) when the model is derived
from a grand-potential functional instead of a free energy
functional. Indeed, the model formulated in the variables φ

and ρ is equivalent to the pure substance model formulated
in terms of φ and e: It has the same variational structure
[compare Eqs. (6) and (29)], and both ρ and e are densities
of extensive variables. To obtain the equivalent of the more
successful pure substance models formulated in the variables
φ and T , alloy models should be formulated in the variables φ
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and μ; the corresponding thermodynamic potential is the grand
potential.

Grand-potential functionals have been used extensively in
classical density functional theory (see [29] for a review). In
the context of phase-field models, a grand-potential functional
has been introduced to study solidification with density change
[30,31]. However, in all the cited works, the density is retained
as the fundamental field that is used to evaluate the functional.
In contrast, the grand potential in its role as a thermodynamic
potential depends on the chemical potential. If the goal is
to have a complete formulation of the problem in terms of
the dynamical variable μ, the grand-potential functional 


should be a functional of the field μ. In thermodynamic
equilibrium, this field is just a constant which is equal to
the thermodynamic equilibrium chemical potential, but out
of equilibrium μ can depend on space and time. Therefore,
the field ρ that appears in the free energy density needs to
be eliminated in favor of μ. This is simple if the values of
ρ and μ are related by a local and invertible function. A free
energy functional of the form of Eq. (7), taken with free energy
densities that depend on T and c, is a good starting point since
it contains no nonlocal terms in ρ such as ( �∇ρ)2. Moreover,
for functions fs(c) and fl(c) that are convex in c, the relation
between μ and c is monotonous and hence invertible. Thus, it
is possible to switch from c to μ as the dynamic field. After this
operation, the number density is not a fundamental free field
any more, but is obtained as a local functional derivative of the
grand-potential functional with respect to the local chemical
potential,

ρ = −δ
[φ,μ]

δμ
. (35)

Note that the above requirements (no square gradient terms in
c and convex free energy functions) imply that the present
method cannot be applied to systems that exhibit phase
separation.

In analogy with Eq. (7), the grand-potential functional is


[φ,μ] =
∫

V

ω(φ, �∇φ,μ)

=
∫

V

ωint(φ, �∇φ) + gs(φ)ωs(μ) + [1 − gs(φ)]ωl(μ),

(36)

where ωint is identical to fint, and the grand-potential densities
of the bulk phases are obtained by a Legendre transform of the
free energies,

ων(μ) = fν(c) − μρ, (ν = s,l). (37)

This procedure can be easily performed for any convex free
energy function, either analytically or numerically. Note that
this transformation implicitly uses the equivalence between
statistical ensembles (canonical and grand canonical) on
the mesoscopic scale. This is consistent with the general
philosophy of the coarse-graining approach, which assumes
that thermodynamic quantities can be defined on the scale of
a coarse-graining cell.

The variation of the grand-potential functional (at constant
temperature) is

δ
 =
∫

V

{
−σ �∇2φ + Hf ′

dw(φ)

+ g′(φ)

2
[ωs(μ) − ωl(μ)]

}
δφ(�x)

+
{
gs(φ)

∂ωs(μ)

∂μ
+ [1 − gs(φ)]

∂ωl(μ)

∂μ

}
δμ(�x).

(38)

Since, at solid-liquid coexistence, ωs = ωl , the equilibrium
interface equation obtained from the condition of vanishing
variation with respect to φ is identical to Eq. (11), as desired.

Furthermore, using Eq. (35), the variation of 
 with respect
to μ yields

ρ(φ,μ) = −δ


δμ
= −gs(φ)

∂ωs(μ)

∂μ
− [1 − gs(φ)]

∂ωl(μ)

∂μ
,

(39)

which is the equivalent of Eq. (15) for the entropy density.
Note that this can also be rewritten as

ρ(φ,T ,μ) = gs(φ)ρs(T ,μ) + [1 − gs(φ)]ρl(T ,μ), (40)

with ρν = ∂ων/∂μ (ν = s,l). It is useful to restate this
equation in terms of c for future use,

c(φ,μ) = Vaρ(φ,μ) = gs(φ)cs(μ) + [1 − gs(φ)]cl(μ),

(41)

where obviously cν(μ) = Va∂ων/∂μ. Two-phase coexistence
is characterized by a constant chemical potential, μ = μeq(T );
the corresponding composition profile through a solid-liquid
interface is

ceq(φ) = c[φ,μeq(T )] = gs(φ)ceq
s (T ) + [1 − gs(φ)]ceq

l (T ).

(42)

The equations of motion for φ and μ are now formulated
following the same steps as for the pure substance model. The
phase field evolves toward a minimum of the grand potential,

∂tφ = −Mφ

δ


δφ
= Mφ

[
σ �∇2φ − Hf ′

dw − g′(φ)

2
(ωs − ωl)

]
;

(43)

this equation shows that the thermodynamic driving force
for the phase transition is the difference in grand-potential
densities. The evolution equation for the chemical potential
is obtained by taking the time derivative of Eq. (40), which
yields

∂tρ =
(

∂ρ(φ,μ)

∂φ
∂tφ + ∂ρ(φ,μ)

∂μ
∂tμ

)
. (44)

It is useful to define the quantity

χ (φ,μ) = ∂ρ(φ,μ)

∂μ
= gs(φ)

∂ρs(μ)

∂μ
+ [1 − gs(φ)]

ρl(μ)

∂μ
,

(45)

which will play a role similar to the specific heat in the
pure substance model. The symbol χ is chosen here because
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this quantity can be seen as a generalized susceptibility [32].
Furthermore, the mobility can be written as the product of
χ (φ,μ) and a solute diffusion coefficient D(φ,μ). Indeed,
in the bulk phases, for monotonous (and hence invertible)
functions ρs,l(μ),

χν(μ) = ∂ρν(μ)

∂μ
= 1

∂μν(ρ)/∂ρ
= 1

Va
2∂2fν(c)/∂c2

, (46)

which is the well-known thermodynamic factor (Darken factor
[33]). The combination of these definitions and Eq. (44) with
the mass conservation law, Eq. (27), yields

∂tμ = 1

χ (φ,μ)

{
�∇ · [D(φ,μ)χ (φ,μ) �∇μ]

− g′(φ)

2
[ρs(μ) − ρl(μ)] ∂tφ

}
, (47)

an equation completely equivalent to Eq. (20) for the temper-
ature in the pure substance model.

IV. EXAMPLES

The model is completely specified for any set of free
energy functions for solid and liquid by the definitions of
the grand-potential functional [Eqs. (36) and (37)] and the
evolution equations (43) and (47). In order to illustrate some of
its properties, it is useful to work out several explicit examples.
First, it is shown that the equivalent of the linearized pure
substance model is obtained from parabolic free energies.
Next, it is shown that the dilute alloy model of Ref. [17] can
be recovered using this formalism. Finally, the more general
case of an ideal solution model is treated.

A. Parabolic free energies

The simplest phenomenological approximation for free
energy functions for fixed equilibrium compositions c

eq
s and

c
eq
l at some temperature T are two parabolas,

fν(c) = 1
2εν

(
c − c

eq
ν

)2
, (ν = s,l), (48)

where εs and εl are constants with dimension energy per unit
volume. The chemical potential in each phase is

μ = ∂fν

∂ρ
= Vaεν(c − cν), (49)

which can, of course, be inverted to yield c as a function of μ

in each phase,

c = μ

Vaεν

+ ceq
ν . (50)

The grand-potential densities are then obtained from the
Legendre transform, ων = fν − μρ, where Eq. (50) is used
to switch variables from c to μ,

ων(μ) = −1

2

μ2

Va
2εν

− μ

Va

ceq
ν . (51)

Of course, the use of the definition ρ = −∂ω/∂μ together
with c = Vaρ yields again Eq. (50). The equilibrium chemical
potential for two-phase coexistence is obtained by the con-
dition ωs(μeq) = ωl(μeq). The solution μeq = 0 corresponds
to the common tangent between the bottoms of the parabolic

wells, and the equilibrium compositions are equal to c
eq
s and

c
eq
l . For εs �= εl , a second solution exists which corresponds to

a common tangent that is tilted and yields different values for
the equilibrium compositions; this solution is not of interest
here. Since μeq = 0, we have μ = μ − μeq; that is, in this
model μ is directly the deviation from the equilibrium value
of the chemical potential.

Inserting these grand-potential densities in Eqs. (41)
and (45) yields the expressions for c and χ as a function
of φ and μ,

c(φ,μ) =
{

1

Vaεs

gs(φ) + 1

Vaεl

[1 − gs(φ)]

}
μ

+ ceq
s gs(φ) + c

eq
l [1 − gs(φ)], (52)

χ (φ,μ) = 1

Va
2εs

gs(φ) + 1

Va
2εl

[1 − gs(φ)]. (53)

It is easy to see that when εs = εl ≡ ε, the resulting model is
equivalent to the standard pure substance model. Indeed, in
this case the difference between the compositions in the two
phases is independent of μ and identical to �c = c

eq
l − c

eq
s ,

and the susceptibility is just a constant, χ = 1/(Va
2ε). This

corresponds to the approximations of constant latent heat and
constant specific heat, respectively. It is easily verified that
Eq. (52) becomes identical to Eq. (24), with �c and χ replacing
L and Cp, respectively. This analogy has been used in several
phase-field models [20–22]. The present formalism makes it
possible to generalize this model and to use εs �= εl , that is,
parabolas with different curvatures.

B. Dilute alloy

The phase-field model for a dilute alloy of Ref. [17] starts
from the free energy densities

fν(T ,c) = f A
ν (T ) + ενc + kBT

Va

(c ln c − c) , (ν = s,l),

(54)

where f A
s (T ) and f A

l (T ) are the free energy densities of pure
A, εs and εl are again constants with dimension energy per
unit volume, kB is Boltzmann’s constant, and the last term in
Eq. (54) is the dilute limit of the entropy of mixing.

The calculation of the grand-potential densities is straight-
forward and yields

ων = f A
ν − kBT

Va

exp

(
μ − Vaεν

kBT

)
. (55)

The compositions as a function of the chemical potential are
given by

cν = exp

(
μ − Vaεν

kBT

)
. (56)

It is obvious that these compositions satisfy, for any value of
the chemical potential, the partition relation

cs = kcl, (57)

with the partition coefficient k given by

k = exp

(
Va(εl − εs)

kBT

)
. (58)
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The equilibrium chemical potential for a given temperature
is again obtained from the condition ωs(T ,μeq) = ωl(T ,μeq),
which yields

f A
s (T ) − f A

l (T ) = kBT

Va

[
exp

(
μeq − Vaεs

kBT

)

− exp

(
μeq − Vaεl

kBT

)]
. (59)

The left-hand side can be expanded for temperatures close
to the melting temperature Tm; the right-hand side can be
rewritten in terms of c

eq
l = cl(μeq) and the partition coefficient.

The result is
L

Tm

(T − Tm) = kBT

Va

c
eq
l (k − 1). (60)

If, on the right-hand side of this equation, T is approximated
by Tm, which is justified in the limit c � 1, the standard dilute
alloy phase diagram is obtained,

c
eq
l = Tm − T

m
, (61)

where m = kBT 2
m(1 − k)/(VaL) is the liquidus slope.

When these expressions are now used in the complete
grand-potential functional, the composition as a function of
φ and μ becomes

c(φ,μ) = gs(φ) exp

(
μ − Vaεs

kBT

)

+ [1 − gs(φ)] exp

(
μ − Vaεl

kBT

)
. (62)

A specific feature of the dilute alloy model is that this
expression can be factorized into two functions that depend
only on φ and μ, respectively. Moreover, the latter can again
be rewritten in terms of the liquid composition, which yields

c(φ,μ) = cl(μ) [1 − (1 − k)gs(φ)] . (63)

As a result, the expression for the susceptibility is also quite
simple and reads

χ (φ,μ) = 1

VakBT
exp

(
μ − Vaεl

kBT

)
[1 − (1 − k)gs(φ)]

= c(φ,μ)

VakBT
. (64)

Inserting these expressions in Eqs. (43) and (47) leads to model
equations identical to those of Ref. [17]. The difference of the
grand-potential densities is

ωs(μ) − ωl(μ) = f A
s (T ) − f A

l (T ) − kBT

Va

[
exp

(
μ− Vaεs

kBT

)

− exp

(
μ − Vaεl

kBT

)]
. (65)

The free energy difference can be expressed in terms of the
equilibrium chemical potential using Eq. (59), and after some
algebra one obtains

ωs(μ) − ωl(μ) = kBT

Va

c
eq
l (1 − k)

[
exp

(
μ − μeq

kBT

)
− 1

]
.

(66)

As in Ref. [17], two dimensionless variables are now intro-
duced. The first,

u = μ − μeq

kBT
, (67)

is the dimensionless deviation of the chemical potential from
its equilibrium value. This variable can also be expressed in
terms of the composition and the equilibrium composition at
two-phase coexistence using the definition of Eq. (42) as

u = ln
c(φ,μ)

ceq(φ)
. (68)

The second dimensionless variable,

U = eu − 1

1 − k
, (69)

is a dimensionless supersaturation. This can be seen by
inserting the identity eu = c(φ,μ)/ceq(φ) obtained from the
preceding equation, which yields

U = c(φ,μ) − ceq(φ)

(1 − k)ceq(φ)
. (70)

When the driving force (the grand-potential difference) is
expressed in either of these variables, the same evolution
equation for the phase field as in Ref. [17] is obtained.

Matters are slightly more complicated for the second
evolution equation. Reference [17] uses an evolution equation
for the composition (or, equivalently, for the dimensionless
supersaturation U ) rather than for the chemical potential. For
the dilute alloy model, such an equation can be obtained
starting from the general evolution equation of the chemical
potential [Eq. (47)] or (more simply) from the original
formulation of the mass conservation law [Eq. (27)]. For this
purpose, the chemical potential has to be eliminated in favor
of c or U . This is possible because Eqs. (67) and (69) can be
inverted and combined with Eq. (63) to yield

μ = μeq + kBT ln
c

c
eq
l [1 − (1 − k)gs(φ)]

(71)

and

c = c
eq
l [1 − (1 − k)gs(φ)] [1 + (1 − k)U ] . (72)

A straightforward calculation then yields the variational form
(without the antitrapping current) of the evolution equation
for the composition of Ref. [17]. These steps will be discussed
in more detail later on; here, it is important to stress that the
possibility to switch from an evolution equation for μ to one
for c by an exact transformation is specific to the dilute alloy
model: This procedure only works because the function c(φ,μ)
is easily inverted, which is not the case in more general models,
as seen below.

C. Ideal solution model

In an ideal solution model, the free energy is a weighted
average of the pure substance free energies of A and B plus an
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entropy of mixing term,

fν(T ,c) = (1 − c)f A
ν (T ) + cf B

ν (T )

+ kBT

Va

[c ln c + (1 − c) ln(1 − c)]. (73)

Contact with the notations of the previous examples can be
made by setting εν = f B

ν − f A
ν ; the free energy becomes

fν(T ,c) = f A
ν (T ) + cεν(T )

+ kBT

Va

[c ln c + (1 − c) ln(1 − c)]. (74)

The chemical potential is

μ = ∂fν

∂ρ
= Vaεν + kBT ln

c

1 − c
. (75)

This can be inverted to yield the concentration in each phase
as a function of μ,

cν(μ) =
exp

(
μ−Vaεν

kBT

)

1 + exp
(

μ−Vaεν

kBT

) . (76)

The grand-potential densities are

ωs,l = f A
ν + kBT

Va

ln(1 − c)

= f A
ν − kBT

Va

ln

[
1 + exp

(
μ − Vaεν

kBT

)]
. (77)

As before, these expressions can now be used to define the
interpolated composition and the susceptibility,

c(φ,μ) =
exp

(
μ−Vaεs

kBT

)

1 + exp
(

μ−Vaεs

kBT

)gs(φ)

+
exp

(
μ−Vaεl

kBT

)

1 + exp
(

μ−Vaεl

kBT

) [1 − gs(φ)], (78)

χ (φ,μ)

= cs(μ)[1 − cs(μ)]gs(φ) + cl(μ)[1 − cl(μ)][1 − gs(φ)]

VakBT
,

(79)

where the latter has been expressed in terms of the functions
cs,l(μ) because this leads to a simpler expression.

The equations of motion for the ideal solution model are
obtained by inserting these expressions in the general evolution
equations [Eqs. (43) and (47)]. The equilibrium chemical
potential and the phase diagram can be calculated analytically,
but the resulting expressions are quite complicated and not of
interest here. The important point here is that for this model it
is not possible to transform the evolution equation for μ into
one for the composition c: Whereas the functions cν(μ) for
the composition in each phase as a function of μ can be easily
inverted, the same is not true for the interpolated composition
given by Eq. (78). As a consequence, it is easy to obtain c from
μ for given φ and T , but hard to obtain μ from c.

V. RELATIONS WITH OTHER PHASE-FIELD MODELS

A. Equivalence to the Kim-Kim-Suzuki model

In the two-phase model [16], the interface region is seen as a
phenomenological superposition of the two bulk phases, with
a weighting function hs(φ) that interpolates between liquid
(hs = 0) and solid (hs = 1). The main difference to the coarse-
graining approach is that the two-phase model starts with two
separate composition fields for the solid and the liquid, cs and
cl . The free energy density and the “true” composition (in the
coarse-graining sense) are then written as

f (φ,c) = hs(φ)fs(cs) + [1 − hs(φ)]fl(cl), (80)

c = hs(φ)cs + [1 − hs(φ)]cl. (81)

Since there are two equations but three variables (φ, cs , and
cl), an additional condition is needed to close the system: The
chemical potentials of the two coexisting phases are required
to be the same,

μ ≡ ∂fs(φ,cs)

∂cs

= ∂fl(φ,cl)

∂cl

. (82)

Taking this implicit relationship between cs and cl into
account, the number of independent fields is reduced to two,
and two evolution equations for, say, φ and c can be written.

This approach is completely equivalent to the grand-
potential formalism outlined above, with the difference that
the dynamical variable is c instead of μ. To see this, set
hs(φ) = gs(φ). Equation (81) becomes identical to Eq. (41).
Furthermore, since the compositions cs and cl in Eq. (41) are
defined as functions of the variable μ, Eq. (82) is automatically
satisfied. Finally, since all the equations of Ref. [16] are
developed by analogy with the pure substance model, it is not
surprising that the evolution equations, Eqs. (31) and (32) of
Ref. [16], are identical to the evolution equations (43) and (47)
of the present paper once all the notations have been properly
translated: The driving force for the phase transformation is
the difference in grand-potential density, and the quantity fcc

that appears in the evolution equation for the concentration in
Ref. [16] is identical to 1/(Va

2χ ) here.
In summary, the two-phase model can be obtained in a

fully variational manner from a grand-potential functional.
Note that, in this point of view, the introduction of two separate
composition fields is not necessary anymore: The fundamental
dynamical field is the chemical potential, and the two fields
cs and cl are simply obtained as the derivatives of the bulk
grand-potential densities with respect to μ, whereas the “real”
composition at any space point is given by the functional
derivative of the grand-potential functional.

B. Relation to the phenomenological two-phase model

At this point, it is useful to discuss the respective merits
of the grand potential and the two-phase approaches. At
first glance, the former seems to be more advantageous: The
number of fundamental fields is equal to two (as compared
to three for the two-phase model), and whereas μ has to be
obtained from cs and cl in the two-phase model by solving
Eq. (82), cs and cl are obtained from μ by simple derivatives in
the grand-potential formalism. However, an analysis in terms
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of computation time reveals that matters are not so simple. For
the sake of concreteness, consider the simplest case of constant
but distinct solute diffusivities in the solid and the liquid. In
this case, the evolution equation for the composition reduces,
in the bulk phases, to the simple linear diffusion equation. In
contrast, the evolution equation for μ has several nonlinearities
(even in the bulk) due to the presence of the factors χ (φ,μ),
which are, in general, nonlinear functions of μ. This means
that the numerical effort to integrate the equation for μ in the
bulk is higher that the one for integrating an equation for c. In
the interfaces, the grand-potential formulation does not require
much additional effort, whereas the nontrivial Eq. (82) has to
be solved in the two-phase model. However, since the interface
regions usually represent only a small fraction of all the grid
points in a numerical simulation, the equation of motion for μ

may not always be advantageous from a computational point
of view.

The computational disadvantage of the grand-potential
formalism in the bulk can be alleviated by an additional step,
which also brings to light the direct relation of this approach
to the phenomenological two-phase models that use a simple
partition relation between the two concentration fields [14,15].
The idea is to make a change of variables and to replace
the chemical potential field by another continuous field that
plays the same role. In order to obtain the standard diffusion
equation for this field in the liquid phase, the appropriate
field is the density (or the composition) in the liquid, ρl

or cl . Indeed, under the hypothesis that μ = ∂fl/∂ρ is an
invertible function of ρ, the function ρl = ∂ωl/∂μ is just its
inverse function, according to the properties of the Legendre
transform. Furthermore, ρs = ∂ωs/∂μ is also a function of μ

and can therefore expressed as a function of ρl ,

ρs(ρl) = ρs[μ(ρl)]. (83)

Eliminating μ in favor of ρl in Eq. (47) yields

∂tρl = χl(ρl)

χ (φ,ρl)

{
�∇ ·

[
D(φ,ρl)

χ (φ,ρl)

χl(ρl)
�∇ρl

]

+ g′(φ)

2
[ρs(ρl) − ρl]∂tφ

}
, (84)

where χl = ∂2ωl/∂μ2 = χ (−1,μ) is the susceptibility of the
liquid phase. Using the fact that χ (φ,μ) = χs(μ)gs(φ) +
χl(μ)[1 − gs(φ)] by definition, this equation can be rewritten
as

∂tρl = 1

χl(ρl){1 − [1 − gs(φ)χs/χl]}
×

{
�∇ · [D(φ,ρl)χl(ρl)[1 − (1 − gs(φ)χs/χl)] �∇ρl]

+ g′(φ)

2
[ρs(ρl) − ρl] ∂tφ

}
. (85)

For a dilute alloy, ρs/ρl = k and χs/χl = k, according to
Eqs. (58) and (64), and the above model becomes identical
to the one of Refs. [14,15]. The grand-potential formalism
thus indicates a path for the generalization of these models to
arbitrary phase diagrams.

C. Local supersaturation approximation

Further progress can be made by a simple approximation.
The crucial point is the relation between composition and
chemical potential: Its nonlinearity penalizes the grand-
potential formalism in the bulk and makes the resolution
of Eq. (82) in the two-phase model nontrivial. The idea is
thus to replace the exact relation between chemical potential
and composition in the interfaces by an approximate one
that will make it possible to write a simple equation for
the composition. This approximation is called the local
supersaturation approximation: It exploits the fact that, for
slow solidification, the chemical potential in the interfaces is
close to the value for two-phase equilibrium. This suggests
to use a Taylor expansion of the composition around the
equilibrium composition profile in the interface,

c − ceq(φ) = ∂c

∂μ

∣∣∣∣
μeq

(μ − μeq) = Vaχ (φ,μeq)(μ − μeq),

(86)

which can be easily inverted to yield

μ = μeq + c − ceq(φ)

Vaχ (φ,μeq)
. (87)

Furthermore, an expansion of the driving force around the
equilibrium chemical potential yields

ωs(μ) − ωl(μ) = c
eq
l − c

eq
s

Va

(μ − μeq). (88)

Inserting these expression in the evolution equation for the
phase field and the mass conservation law yields a simple set
of equations for φ and c,

1

Mφ

∂tφ = σ �∇2φ − Hf ′
dw − g′(φ)

2
�c

c − ceq(φ)

Va
2χ (φ,μeq)

, (89)

∂tc = �∇
[
D(φ)χ (φ,μeq) �∇

(
c − ceq(φ)

χ (φ,μeq)

)]
. (90)

Note that the second equation can also be rewritten after
applying the chain rule as

∂tc = �∇D(φ) �∇c

+ �∇
[
D(φ)

g′(φ)

2

(
�c + χ

eq
l − χ

eq
s

χ (φ,μeq)

)
�∇φ

]
, (91)

where χ
eq
s,l = χ (±1,μeq). This latter form displays explicitly

the two driving forces for solute diffusion that establish the
equilibrium solute profile and that lead to solute redistribution
out of equilibrium:composition gradients and differences
between the thermodynamic potentials in the two phases.

Before proceeding further, it is useful to relate the quantities
that appear in the above equations to the phase diagram of the
binary alloy, characterized by the curves c

eq
s (T ) and c

eq
l (T ), or

equivalently by the coexistence line μeq(T ). The quantities χ
eq
ν

are related to the liquidus and solidus slopes, mν = dT /dc
eq
ν ,

1

mν

= dc
eq
ν

dT
= ∂c

∂μ

∣∣∣∣
μeq

dμeq

dT
= Vaχ

eq
ν

dμeq

dT
. (92)
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Moreover, the quantity dμeq/dT can be evaluated using a
Clausius-Clapeyron relation for the μ-T coexistence line,

dμeq

dT
= − L

T �ρ
= − LVa

T �c
. (93)

Combining these results yields

χ
eq
s,l = − T �c

Va
2Lms,l

. (94)

Thus, the susceptibilities are inversely proportional to the
liquidus and solidus slopes, and therefore, χ

eq
s /χ

eq
l = ml/ms .

Defining an effective partition coefficient by the ratio of
the liquidus solpes km = ml/ms , the evolution equations of
the phase-field model can be further simplified. Indeed, the
susceptibility along the equilibrium profile is

χ (φ,μeq) = χ eq
s gs(φ) + χ

eq
l [1 − gs(φ)]

= χ
eq
l [1 − (1 − km)gs(φ)], (95)

and the evolution equations for φ and c become

1

Mφ

∂tφ = σ �∇2φ − Hf ′
dw

− g′(φ)

2

�c

Va
2χ

eq
l

c − ceq(φ)

1 − (1 − km)gs(φ)
, (96)

∂tc

= �∇
[
D(φ)[1 − (1 − km)gs(φ)] �∇

(
c − ceq(φ)

1 − (1 − km)gs(φ)

)]
.

(97)

These equations are very similar to the ones of the dilute alloy
model, except that the partition coefficient k has been replaced
by the effective partition coefficient km which depends on the
temperature. In that sense, this approach bears some similarity
with the method used in Ref. [34] to construct a quantitative
phase-field model for arbitrary phase diagrams: The free
energy curves are first approximated by a dilute alloy phase
diagram with “effective” (temperature-dependent) partition
coefficient, melting temperature, and liquidus slope; the
equations of motion for the dilute alloy model are then applied
with these effective parameters. Here the approximation is
directly in the evolution equations and can be applied in a
straightforward manner for arbitrary free energy functions.
Also note that the two approximations are not completely
equivalent. For instance, the effective partition coefficient
in Ref. [34] is defined by the ratio of the compositions,
c

eq
s /c

eq
l , which is equal to the ratio ml/ms only for a dilute

alloy.
It should also be noted that this approximation is not

equivalent to the approximation of constant concentration gap
�c (equivalent to parallel liquidus and solidus slopes) used
in Refs. [20,22,35]. This can be easily seen from Eq. (86)
by considering a constant chemical potential deviation δμ =
μ − μeq (generated, for example, by a local curvature of the
interface): The shifts in concentration on the two sides of
the interface are proportional to χ

eq
s,l , respectively, and hence

inversely proportional to the liquidus slopes, as they should be.
The above approximation has been called “local” for two

reasons. First, this emphasizes the fact that the approximation

of the relationship between composition and chemical poten-
tial is needed only in the interfaces, while it leaves the bulk
evolution equations unchanged. Second, it is anticipated that
this method should be applicable to situations in which the
temperature field varies slowly with time and over large length
scales, such as in directional solidification or in thermosolutal
models with realistic values of the Lewis number. For this
purpose, it should be sufficient to apply the above equations
with the local value of the temperature for each point of the
interface, which implies that �c, χ eq

s,l , and km are not constants
but vary between different interface points.

D. Nonvariational model and antitrapping current

The next step is to incorporate into the model two features
that have been widely used to increase the precision and
performance of phase-field models. The first is motivated by
the fact that a nonvariational model can be more efficient for
computational purposes than a strictly variational formulation.
This was first highlighted by Karma and Rappel [1], and
their method has since been used in many other models.
In the terms of the present formulation, it amounts to keeping
the interpolation function g(φ) in the evolution equation of the
phase field, but using a different interpolation function for the
number density and the susceptibility. Let h(φ) be a function
that has the property h(±1) = ±1, and let

hs(φ) = 1 + h(φ)

2
. (98)

Then, the concentration is defined as

ρ(φ,μ) = c(φ,μ)

Va

= ρs(μ)hs(φ) + ρl(μ)[1 − hs(φ)],

(99)

instead of Eq. (40); as a consequence, the equilibrium
composition profile given by Eq. (42) is also modified and
becomes

ceq(φ) = ceq
s hs(φ) + c

eq
l [1 − hs(φ)]. (100)

The susceptibility is still defined as the derivative of the number
density with respect to the chemical potential and becomes

χ (φ,T ,μ) = ∂ρ(φ,T ,μ)

∂μ
= hs(φ)χs(T ,μ)

+ [1 − hs(φ)]χl(T ,μ). (101)

The second feature is the so-called antitrapping current, which
was developed in order to counterbalance spurious solute
trapping [17,23]. Indeed, if the solute diffusivity in the solid is
substantially lower than in the liquid, as is usually the case in
alloy solidification, the upscaling of the interface thickness
magnifies the solute trapping effect, whose magnitude is
proportional to the interface thickness [36]. To restore local
equilibrium at the interface, as appropriate for low-speed
solidification, an additional solute current is introduced which
“pushes” the solute out of the freezing material, and which is
given by

�jat = aW [ρl(μ) − ρs(μ)]n̂∂tφ, (102)

where n̂ = −�∇φ/| �∇φ| is the unit normal vector pointing from
the solid to the liquid, W is the interface thickness, and a > 0 is
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a constant to be determined by a matched asymptotic analysis
[17]. The current thus defined is proportional to the interface
velocity (via the factor ∂tφ) and to the composition difference
between solid and liquid, and is directed from the solid to the
liquid for a solidifying interface, for which ∂tφ > 0. The mass
conservation law [Eq. (27)] reads now

∂tρ = −�∇( �jρ + �jat)

= �∇{M(φ,μ) �∇μ − aW [ρl(μ) − ρs(μ)]n̂∂tφ}. (103)

Taking these modifications into account, the evolution
equation for the chemical potential [Eq. (47)] is replaced
by

∂tμ = 1

χ (φ,μ)

{
�∇ · [D(φ,μ)χ (φ,μ) �∇μ − aW [ρl(μ)

− ρs(μ)]n̂∂tφ] − h′(φ)

2
[ρs(μ) − ρl(μ)]∂tφ

}
; (104)

the evolution equation for φ remains unchanged.
In the local supersaturation approximation, the composition

difference in the expression for the antitrapping current
is approximated by its equilibrium value, ρl − ρs = (ceq

l −
c

eq
s )/Va = �c/Va . The evolution equation for the composition

[Eq. (97)] is then replaced by

∂tc = �∇
[
D(φ)[1 − (1 − km)hs(φ)] �∇

(
c − ceq(φ)

1 − (1 − km)hs(φ)

)

− aWn̂�c∂tφ

]
. (105)

E. Relation to the quantitative dilute alloy model

As usual, the parameters of the phase-field model have to be
related to the quantities that appear in the sharp-interface theo-
ries by matched asymptotic analysis. The complete asymptotic
analysis for the general Eqs. (43) and (47) will be presented
elsewhere. Here, only the behavior of the model in the local
supersaturation approximation is discussed, because for its
analysis the analogy to the dilute alloy model [17] can be
exploited.

In order to apply directly the results of Ref. [17], it is useful
to cast the evolution equations in dimensionless form. From
Eqs. (89) and (90), it is clear that the dimensionless variable
that generalizes the quantity U of the dilute alloy model defined
by Eq. (69) is

U = χ
eq
l

χ (φ,μeq)

c − ceq(φ)

�c
= c − ceq(φ)

�c[1 − (1 − km)hs(φ)]
.

(106)

Indeed, this expression can be rewritten using the fact
that ceq(φ) = c

eq
l [1 − (1 − k)hs(φ)], where k = c

eq
s /c

eq
l is the

standard partition coefficient,

U = 1

1 − k

1 − (1 − k)hs(φ)

1 − (1 − km)hs(φ)

c − ceq(φ)

ceq(φ)
, (107)

which reduces to Eq. (70) for a dilute alloy, since k = km in
this case.

In terms of this variable, Eq. (90) becomes

[1 − (1 − km)hs(φ)]∂tU = �∇{
D(φ)[1 − (1 − km)hs(φ)] �∇U

+ aWn̂[1 + (1 − km)U ]∂tφ
}

+ [1 + (1 − km)U ]∂ths(φ).

(108)

A form formally identical to Eq. (69) in Ref. [17] is obtained by
choosing a particular interpolation for the diffusion coefficient
D(φ), namely, by setting

D(φ)[1 − (1 − km)hs(φ)] ≡ Dlq(φ), (109)

where Dl is the solute diffusivity in the liquid, supposed to
be constant. Note that, since the left-hand side is actually
the product of the diffusivity and the susceptibility, strictly
speaking the function q(φ) is an interpolation of the mobility
rather than of the diffusion coefficient. The final result for the
evolution equation is

[1 − (1 − km)hs(φ)]∂tU

= �∇{Dlq(φ) �∇U + aWn̂[1 + (1 − km)U ]∂tφ}
+ [1 + (1 − km)U ]∂ths(φ). (110)

This equation is indeed identical to the one used in the
asymptotics of the dilute alloy model, except that the dilute
alloy partition coefficient k is replaced by the ratio of
the solidus and liquidus slopes km. This is very natural, since
this quantity controls how the composition difference between
solid and liquid depends on the chemical potential at the
interface.

The replacement of c by U in the evolution equation for the
phase field leads to

1

Mφ

∂tφ = σ �∇2φ − Hf ′
dw − g′(φ)

2

(�c)2

Vaχ
eq
l

U. (111)

This equation is now divided by the constant H , which
amounts to nondimensionalizing the free energy and grand-
potential densities (since H has dimension of energy per unit
volume). Furthermore, the function g is now chosen to be
the standard fifth-order polynomial g(φ) = 15(φ − 2φ3/3 +
φ5/5)/8, the function h(φ) = φ, and the double-well function
to be fdw = 1/4 − φ2/2 + φ4/4. The resulting equation reads

τ∂tφ = W 2 �∇2φ + φ − φ3 − (1 − φ2)2λU, (112)

where τ = 1/(MφH ) is the relaxation time for the phase field,
W = √

σ/H is the interface thickness defined by Eq. (13), and
the constant λ is given by

λ = 15

16

(�c)2

HVa
2χ

eq
l

. (113)

Equation (112) is identical to the standard evolution equation
for the phase field [1,17].

As announced previously, the results of the asymptotic
analysis of Ref. [17] can now be exploited since Eqs. (110)
and (112) are identical to the model analyzed in this reference.
Therefore, the variable U obeys, in the liquid, the free
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boundary problem

∂tU = Dl
�∇2U, (114)

Uint = −d0K − βVn, (115)

[1 + (1 − km)Uint]Vn = −Dl∂nU |int, (116)

where K and Vn are the local curvature and interface velocity,
respectively, d0 is the capillary length, and β the kinetic
coefficient. Equation (115) is the generalized Gibbs-Thomson
equation, and Eq. (116) is the Stefan boundary condition that
describes mass conservation at the phase boundary.

In terms of the phase-field parameters, the capillary length
and the kinetic coefficient are given by

d0 = a1
W

λ
, (117)

β = a1
τ

λW

(
1 − a2

λW 2

τDl

)
, (118)

with a1 = 5
√

2/8 and a2 = 0.6267; these values are identical
to those obtained by Karma and Rappel [1].

In terms of physical quantities, this expression for the capil-
lary length is, in fact, identical to the standard thermodynamic
definition [32]. Indeed, the number a1 = 5

√
2/8 quoted above

is equal to (15/16)I , where I , the numerical constant defined in
Eq. (12), is equal to 2

√
2/3 for the standard fourth-order double

well potential used here. With the help of these relations,
Eq. (117) can be rewritten as

d0 = IWHVa
2χ

eq
l

(�c)2
. (119)

Then, the use of Eqs. (12) and (46) yields

d0 = γVa
2χ

eq
l

(�c)2
= γ

(�c)2 ∂2fl (c)
∂c2

∣∣∣
cl

. (120)

VI. NUMERICAL TESTS

The relations found in the preceding section are now used
to perform some illustrative simulations on a concrete model
system. The ideal solution model is chosen, with the same
parameters as those used in Ref. [12] to model the nickel-
copper alloy. This alloy exhibits a typical lens-shape phase
diagram with a rather narrow coexistence zone. Concretely, the
free energy densities given by Eq. (73) are used; the free energy
differences (between solid and liquid) of the pure substances
are given by

f Ni
s (T ) − f Ni

l (T ) = LNi

T Ni
m

(
T − T Ni

m

)
, (121)

f Cu
s (T ) − f Cu

l (T ) = LCu

T Cu
m

(
T − T Cu

m

)
, (122)

with the melting temperatures T Ni
m = 1728 K and T Cu

m =
1358 K and the latent heats LNi = 2350 J/cm3 and LCu =
1728 J/cm3. The molar volume is taken to be 7.42 cm3, and
the surface tension γ = 3.3 × 10−5 J/cm2.
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FIG. 1. Growth velocity of a two-dimensional dendrite in the
Ni-Cu alloy at 1710 K, for different choices of the interface width W .

For a temperature of 1710 K, the equilibrium concentra-
tions are c

eq
s = 0.045 988 and c

eq
l = 0.058 098, the partition

coefficient is k = 0.7916, the ratio of the liquidus slopes is
km = 0.8017, and the capillary length calculated by Eq. (120)
is d0 = 6,426 × 10−6 cm. Isothermal dendritic solidification
is simulated in two dimensions. The anisotropy needed to
obtain stable dendritic growth is introduced in the standard
way [1,17,23] by making the surface tension dependent on the
angle θ between the interface normal and a crystallographic
axis, here chosen to coincide with the x direction. A standard
fourfold anisotropy, γ (θ ) = γ̄ [1 + ε4 cos(4θ )], is used, with
ε4 = 0.025. The initial composition of the liquid is chosen
as (ceq

s + c
eq
l )/2, which corresponds to a supersaturation

of 0.5.
Four simulations are carried out with the equations of

motion in the local supersaturation approximation, with
λ = 1.596,3.192,4.788, and 6.384, which corresponds to
interface widths of W = 116,232,348, and 464 nm. For each
simulation, the relaxation time of the phase-field equation is
chosen such as to eliminate interface kinetics (β = 0 for all
orientations). The steady-state growth velocity of the dendrites
is measured as described in Ref. [1], and the result is displayed
in Fig. 1. It exhibits the behavior that is typical for quantitative
phase-field models: The simulation results converge to a
constant value with decreasing interface thickness W , and
the convergence is roughly quadratic in W , which can be
expected since all terms linear in W have been eliminated
by the model formulation. It is not surprising to find such
behavior, since the model used here is essentially identical
to the dilute alloy model for which rapid convergence with
W has been demonstrated [17,23]. Moreover, the parameters
chosen here are in a region of the phase diagram in which the
dilute approximation should still work quite well. However,
this is not a limitation of the approach: Simulations at
T = 1410 K, where the ratio of the liquidus slopes km =
1.2609 is very different from the partition coefficient k =
0.9590, yield a similar convergence plot. This shows that
the model can be applied to alloys with arbitrary phase
diagram.
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VII. SUMMARY AND PERSPECTIVES

The most important conclusions of the present work can be
summarized as follows.

(i) A phase-field model for alloy solidification has been
obtained in a completely variational framework, starting from
a phenomenological grand-potential functional that is a simple
sum of bulk and interface contributions. In this model, the
two dynamic variables are the phase field and the chemical
potential field. A complete analogy can be established with
the standard phase-field model for the solidification of a pure
substance, in which the variables are the phase field and the
temperature field. The main difference between the two sets of
equations is that the relation between the composition and the
chemical potential (the extensive and the intensive variable)
is nonlinear, whereas the relation between temperature and
internal energy is usually assumed to be linear.

(ii) The resulting model is shown to be completely equiv-
alent to the model of Kim, Kim, and Suzuki [16], with the
chemical potential replacing the composition as the dynamic
field. As a result, in the present model no “partitioning” of the
solute into coexisting phases is necessary; the (auxiliary) com-
positions in each of the phases can be simply obtained from
the chemical potential. With an additional change of variables,
the simpler models with constant partition coefficient [14,15]
can also be recovered and extended to general alloy phase
diagrams. These developments show that these two-phase
models, despite a seemingly quite different starting point, can,
in fact, also be obtained by a coarse-graining procedure if the
appropriate thermodynamic potential is used.
(iii) The equations of the new model can also be written

in terms of a phase field and the composition field. They
thus have essentially the same computational complexity as
the original phase-field models for alloy solidification [10,11]
derived in the coarse-graining framework. However, in contrast
to the latter models, they have a decisive property which
is required for quantitative simulations: Bulk and interface
thermodynamic properties can be adjusted independently. This
difference in behavior is due to the different interpolations
of the relevant thermodynamic potentials (free energies in
Refs. [10,11], grand potentials here).

(iv) With an additional approximation—a linearization of
the relation between chemical potential and composition

inside the interfaces—the model becomes equivalent to the
quantitative dilute alloy model studied in Refs. [17,23]. This
feature makes it possible to include the additional antitrapping
current as in that model and to apply the detailed asymptotic
analysis of Ref. [17]. As demonstrated for one particular case
here, efficient and accurate simulations are thus possible for
arbitrary alloy phase diagrams.

Numerous interesting perspectives for future work arise
from the present results. First, the model has been worked
out here for isothermal solidification only, but it can be
easily extended to nonisothermal situations: coupled equations
for the phase field, the temperature field, and the chemical
potential field can be developed by following the same steps
as done here for each transport field separately, taking also
into account off-diagonal elements in the Onsager matrix
of transport coefficients as well as cross-derivatives of the
thermodynamic potentials. This is anticipated to yield a
generalization of the thermosolutal model of Ref. [18].

Moreover, the generalization of the formalism to mul-
ticomponent systems should be straightforward. This is
particularly interesting because general models for multi-
component multiphase solidification have been developed
in the two-phase framework [4,24,37]. In these models, the
determination of the compositions in the individual phases for
given global composition requires to solve a generalization
of Eq. (82), which represents a set of coupled nonlinear
equations (one for each component). A formulation in terms of
the chemical potential would completely avoid this problem
and thus potentially offer important gains in computational
performance.

It should also be mentioned that the two-phase approach has
been used in other contexts. One example is the treatment of
fluid flow in solidification [15] and two-phase flows [38,39],
where two separate velocity fields, one for each phase, are
introduced, in contrast to “coarse-graining” models in which
a single velocity field is used [40]. It would be interesting to
reassess the relations between these different models in the
light of the present findings.
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