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Glassy relaxation and excess wing in mode-coupling theory:
The dynamic susceptibility of propylene carbonate above and below Tc
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We explore the possibility of describing experimental susceptibility spectra of the glass former propylene
carbonate with a two-component schematic model of mode-coupling theory (MCT) from above the melting
point down to temperatures far below the critical temperature of MCT. By introducing a phenomenological
time-dependent hopping rate, the spectra are reproduced in the full frequency and temperature range available.
Literature data of dielectric susceptibilities and depolarized Brillouin light-scattering spectra are combined with
our measurements of photon correlation spectroscopy to cover up to 18 decades in frequency of spectra for
two different dynamical variables. A consistent description of all data sets is obtained by adjusting only a few
physically motivated parameters. In particular the excess wing or slow β-relaxation commonly observed in the
susceptibility spectra can consistently be modeled as originating from a coupling of the individual experimental
probe correlator to the collective density fluctuations.
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I. INTRODUCTION

The dynamic susceptibility spectra of glass-forming sys-
tems present a major challenge for any theory aiming at a
quantitative description of the slow dynamics in supercooled
liquids [1,2]. Probed by a combination of relaxation and scat-
tering techniques, they show nontrivial features spanning the
whole accessible frequency range, from a few μHz to the THz
regime of “microscopic” inter- and intramolecular excitations
[3]. A prominent feature is the final, low-frequency relaxation
peak termed α-relaxation that shows significant stretching,
i.e., is much broader than a simple Debye relaxation. It is
characterized by a relaxation time τα that dramatically shifts
to longer times when lowering the temperature T or, more
generally, upon changing control parameters that finally lead
to the formation of a glass. At the conventional glass-transition
temperature Tg , the α-relaxation by definition is 14 orders of
magnitude slower than the microscopic motion. At that point,
however, it should be kept in mind, that in general “the” α-peak
does not exist; position, strength, and shape rather depend
on the measurement technique. It therefore does not make
sense to try to assign universal parameters to these features
of the α-relaxation, and a theory needs to account for both
the universal aspects of glassy dynamics and the nonuniversal
features induced by different probes.

Relaxation and scattering experiments that probe the
relevant frequency range often uncover a secondary relaxation
peak, termed “slow β”-relaxation, that peels off the high-
frequency side of the α-peak and exhibits a much weaker
temperature dependence. Traditionally, one has distinguished
glass formers that instead of the slow β-peak show an
anomalous “wing” at the high-frequency side of the α-peak,
but there now appears to be a consensus that both cases should
be attributed to the same phenomenon [4,5].

At high T , the α-peak separates from the microscopic band,
revealing an intermediate minimum in the GHz and MHz
range that is much enhanced if one compares with the naı̈ve

expectation of a superposition of the microscopic Raman band
and the α-/slow β-peaks. In fact, the low- and high-frequency
sides of this minimum can be described by power laws ω−b

and ωa , respectively. The regime around the minimum is
somewhat confusingly also referred to as the β-relaxation
regime, sometimes called the “fast β”-regime if the need of
distinction arises.

The identification of this β-minimum regime and the
explanation of its characteristic power laws has been
the first major success of the mode-coupling theory of the
glass transition (MCT). The fractal relaxation is understood
from the theory as arising from the “cage effect”, where
molecular motion collectively slows down mainly through
nearest-neighbor steric hindrance. The minimum frequency
position ωmin is identified with a typical cage relaxation, and
the α-peak as the relaxation mode by which particles escape
their cages. In particular, MCT puts a theoretical basis to the
ω−b power law describing the initial cage-escape dynamics,
known long before only empirically as von Schweidler’s law
[6]. The asymptotic scaling forms of MCT are convincingly
demonstrated by various relaxation and scattering data around
the β-minimum at not too low temperatures [1,2].

MCT provides microscopically justified equations of mo-
tion that arise from the assumption that the main relaxation
modes are those fluctuating forces driven by pairs of density
fluctuations. The theory then predicts that caging can become
so strong that below a critical temperature Tc, these dynamical
modes no longer allow a relaxation to an ergodic liquid state.
This implies τα → ∞ and a spectrum that in the limit of
low frequencies is characterized by white noise, χ ′′(ω) ∝ ω.
The idealized glass transition temperature Tc can be identified
from experimental data through the scaling relations that MCT
predicts for the β-minimum position and height, or for the
position of the α-peak above Tc.

Fierce debates have been provoked by the fact that this
description of glassy dynamics is no longer fully adequate for
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T < Tc, and that Tc is typically found significantly above the
phenomenological and technically relevant glass transition Tg .
While for T > Tc, MCT has repeatedly and successfully been
used to quantitatively describe the available data [1,2], below
Tc the theory captures only some aspects of the dynamics, such
as a nontrivial rise in the α-relaxation strength [7–16] or the
boson peak occurring at high frequencies [17]. The predicted
divergence of τα as T → Tc is not observed experimentally.
Consequently, standard MCT cannot be used to describe the
complex α-relaxation shapes below Tc.

The common interpretation of Tc is that it marks the change
from liquid-like transport above Tc to hopping-mediated solid-
like transport below. This is, for example, backed by recent
studies of tracer diffusion in metallic melts spanning a huge
temperature and diffusivity range [18]: Below Tc, diffusion co-
efficients of various tracer atoms differ greatly and essentially
follow Arrhenius laws with rather different activation energies.
Above Tc, the values merge and follow, within experimental
accuracy, the same temperature dependence, indicative of
MCT’s collective caging motion.

Thus, generally, “hopping” motion is thought to be re-
sponsible for the dynamics below Tc, and concluded to be
lacking in the framework of MCT due to its pair-density
approximation. However, to paraphrase Kivelson and Tarjus
[19], it is not clear as to what hops over what. Extensions
of MCT to include additional “hopping” relaxation processes
have been discussed soon after the theory emerged [20], but
for various reasons these have not been generally applied.
Extended MCT scaling laws have been used [21,22], as well
as schematic models [23–26] that include an ad hoc hopping
parameter [27]. The equations used there have recently also
been rederived in an attempt to reconcile MCT with the
random first-order theory of the glass transition [28]. Since no
viable microscopic approximation for the additional hopping
term in the MCT equations was available, these studies
approximated it by a Markovian rate, and were consequently
limited to discussing deviations from the idealized MCT
scaling around the β-minimum due to hopping. They could
show that even hopping rates that increase Arrhenius-like at
large temperatures, and thus at first glance seem to become so
strong as to dominate even in the high-temperature regime,
leave the MCT scenario intact for T > Tc [27]. However,
this approach could not address the nontrivial α- and slow
β-relaxations below Tc, since the Markovian hopping rate
ultimately implies Debye-type relaxation.

Some extensions of MCT merit further discussion. Ex-
tending the schematic model [27], Chong [29] has derived a
semiempirical but microscopic MCT with hopping term, and
was able to make parameter-free predictions that have been
able to explain the decoupling of diffusion processes from
the collective motion (called the Stokes-Einstein violation).
Recently, features of a so-called fragile-to-strong crossover
found in a number of experiments have been analyzed within
this theory [30,31].

The generic form of the equations of motion used in
some extended-MCT models has been questioned [32] on the
basis of generalized fluctuating hydrodynamics. This critique
does not appear to apply strictly to the form used in the
above-mentioned models [20,27,29]. Based on this critical
assessment of the equations of motion, an alternative hopping

model has been proposed by Greenall and Cates [33]. It
is based on a decay of the vertex with time, reducing the
original quadratic coupling that is responsible for the MCT
glass transition sufficiently strongly to avoid the singularity
at Tc. Another approach to incorporate ergodicity-restoring
effects is based on a continued-fraction representation of the
correlation function [34].

In the present paper we follow more closely the original
MCT proposal [20], but amend it introducing a time-dependent
hopping rate. The proposed model, although probably too
simplistic to accurately describe real-world data, is shown to
have some of the generic features of glassy relaxation below
Tc, in particular non-Debye α-relaxation and the possible
emergence of a slow β-process. Thus, in a second step, we
develop a more empirical version of the model’s equations
to test our ideas and demonstrate that one is then able to
quantitatively describe essentially all relaxation spectra of
a prototypical glass former, propylene carbonate. To this
end, we have performed new light-scattering experiments
using photon correlation spectroscopy (PCS) probing long
times and low frequencies. Our data are then combined with
available Brillouin light-scattering data at high frequencies,
and compared with broadband dielectric spectroscopy data, in
order to provide a generic picture of the dynamics in a typical
glass former spanning all the relevant variation in frequency
and temperature, from the microscopic band to the α-peak,
and from T far above the melting temperature down to Tg .

This paper is organized as follows: In Sec. II we describe
the experimental setup and data analysis methods. Section III
introduces the extended MCT model and discusses some
generic features that emerge from it. Section IV is devoted to
an analysis of experimental data within the proposed model,
and Sec. V concludes.

II. EXPERIMENTAL RESULTS

Propylene carbonate (Tg = 157 K [35], Tm = 218 K) with
a purity of 99.5% was purchased from Sigma-Aldrich. Since
even small amounts of water or other impurities are pre-
cipitated on cooling down and turn the sample turbid, the
substance was dried at least for 24 hours on a molecular
sieve to eliminate water. Following this procedure the sample
was filtered under an atmosphere of dried nitrogen gas
several times, using hydrophilic 200 nm and 20 nm teflon
(PTFE) filters. Moreover the sample was degassed over several
pump-and-freeze cycles before it was sealed in a cylindrical
cuvette.

Depolarized photon correlation spectroscopy (PCS) ex-
periments were performed in VH mode using a HeNe
laser, a Glan-Taylor polarizer, and Glan-Thompson analyzer
(extinction <10−6). The sample was mounted in a Cryovac
cold-finger nitrogen cryostat that gives access to a tem-
perature range from 77 K to 475 K. The scattered light is
collected by a “three-mode” optical fiber that is coupled
to a Perkin Elmer avalanche photo diode. To obtain the
autocorrelation function of the scattered light intensity, an
ALV5000 correlator card with a minimum lag time of 200 ns
was used.

In PCS the autocorrelation function of the scattered light
intensity g2(t) is related to the correlation function of the
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FIG. 1. (Color online) Depolarized correlation functions g2
1(t)

obtained by photon correlation spectroscopy on propylene carbonate.
Temperature decreases from 170 K to 158 K from left to right, below
168 K in steps of 1 K.

electric field g1(t) via the Gaussian approximation g2(t) =
1 + �g2

1(t). In our case a spatial coherence factor of � = 1/3
has to be considered, due to the mentioned three-mode fiber
optics system. Figure 1 shows intensity correlation functions
of depolarized scattering g2(t) − 1 corrected for the spatial
coherence factor from T = 170 K down to T = 158 K ≈ Tg .
Since in depolarized mode propylene carbonate scatters with
very low intensity, it was not possible to use the quasi-cross-
correlation technique in order to suppress after-pulsing effects.
Instead, the data were corrected for after-pulsing according to
a method suggested by Zhao et al. [36].

In order to combine our time-domain PCS data with
frequency-domain light-scattering measurements in the GHz–
THz range from the literature [37], the PCS data were
numerically Fourier-transformed,

χLS(ω) = 1

2π

∫ ∞

−∞
g1(t)e−iωt dt, (1)

using the simplified Filon method on a logarithmic grid
[38,39]. In that process, a straightforward calculation of g1(t)
involves taking the square root of the measured intensity
correlation function, and thus strongly enhances noise at long
times, where the correlation function has almost decayed.
To remedy this, we adopted the following procedure: One
observes from Fig. 2(a) that the long-time part of the decay is
well reproduced by a stretched exponential (KWW) function,
g2(t) ≈ a exp[−(t/τ )β]. Taking the square root, this trans-
forms to the same function with amplitude

√
a, shifted on the

time axis by a factor of 21/β . Therefore, we replaced the noisy
long-time values of the calculated g1(t) = {[g2(t) − 1]/�}1/2

by rescaled values of g2
1(t) in this long-time region, with the

scaling factors determined from a KWW fit to the data of g2
1(t).

We emphasize that for this procedure to work it is not necessary
that the entire g2

1(t) be reproduced by a stretched exponential
fit, since only the long-time part of the decay is reconstructed
by this procedure. The method is exemplified in Fig. 2: A
KWW function is adjusted to the original g2

1(t) (circles) at
long times (solid line), so that g1(t) can be calculated directly
for short times (t/τ � 1; squares) and obtained by the scaling
procedure for long times (t/τ � 1; diamonds). The resulting
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FIG. 2. (Color online) (a) Measured PCS correlation function
g2

1(t) (circles) and its square root g1(t) (squares). To improve the
signal-to-noise ratio at long times, g1(t) is obtained there by a scaling
procedure from g2

1(t) that avoids taking the square root numerically
(diamonds; see text for details). Black lines are fits to stretched
exponential functions for t � 0.1 s. (b) Numerical Fourier transforms
corresponding to the data in (a).

g1(t) is not necessarily a KWW function, as exhibited by the
dashed line in Fig. 2(a). The validity of the approach is checked
in Fig. 2(b) by considering the Fourier transform: The direct
FT of [g2

1(t)]1/2 (squares) is compared with the one obtained
by the scaling procedure (diamonds). Apart from the dramatic
reduction in noise on the low-frequency side of the peak in the
latter, the two transforms agree.

Having obtained the Fourier-transformed PCS spectra, we
can compare with previous light-scattering results obtained
with a Tandem-Fabry-Perot (TFP) setup, Ref. [37]. The result
is shown in Fig. 3. Here we are faced with the need to
consistently normalize both data sets. While for the TFP
data of Ref. [37] the normalization could be determined
independently, this was not possible in the present experiment,
due to the very low scattering intensity of propylene carbonate.
Thus, we make use of the sum rule [40]:∫ ∞

0
χ ′′(ω) d ln ω = π

2
. (2)

At T = 165 K, both PCS and TFP data exist, but the TFP
data just cover the range down to the MCT β-minimum, ω ≈
0.1 GHz, while our PCS data only allow a reliable Fourier
transform up to ω ≈ 1 kHz. For the purpose of estimating the
normalization, missing data in this gap were interpolated by
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FIG. 3. (Color online) Susceptibility spectra χ ′′
LS(ν) of propylene

carbonate at different temperatures (T = 160, 161, 163, 165, 167,
170, 185, 200, 210, 220, 235, 300, 400, and 455 K) obtained
from depolarized light scattering. Data above ν = 108 Hz are from
Tandem-Fabry-Perot measurements of Ref. [37]; low-frequency data
are our PCS measurements. The dashed line indicates a simple
interpolation between the two data sets for T = 165 K used to
normalize the PCS data (see text). The solid line is a Cole-Davidson
fit.

a trapezoidal rule indicated by a dashed line in Fig. 3. With
this interpolation, Eq. (2) was be evaluated to determine the
normalization factor needed for the raw PCS data. The same
normalization has then been applied to the PCS data sets at the
other temperatures.

Although the dashed line in Fig. 3 only represents a
crude interpolation, it still suffices to point out that some
additional relaxation modes likely exist on the high-frequency
side of the measured α-peak. This is suggested by the
enhancement of the dashed line over the phenomenological
Cole-Davidson function (sold line) that is often used to
describe stretched-exponential relaxation in the frequency
domain. From dielectric spectroscopy measurements, such
contributions are known either in the form of the slow β-mode
or the excess wing, also in propylene carbonate [4,5,41].
Although the particular form of the relaxation spectra is known
to differ among the two methods [42,43], we thus find evidence
for an excess β-mode to also exist for propylene carbonate
in light scattering. This contribution, however, appears to be
rather small, in agreement with previous findings for salol,
2-picoline, and dimethyl phtalate [44], where the excess wing
was consistently found to be stronger in dielectric spectra than
in depolarized light scattering.

III. MODE-COUPLING THEORY

A. Hopping model

The mode-coupling theory of the glass transition (MCT)
aims at capturing the slow dynamics induced by slow
relaxation of density fluctuations in dense liquids [2,45,46].
It formulates a closed equation of motion for the density auto-
correlation function 
q(t) = 〈�∗(
q,t)�(
q,0)〉, where �(
q,t) =∑

k exp[i 
q · 
rk(t)]/
√

N is the density fluctuation at wave
vector 
q in a system of k = 1, . . . ,N structureless, spherically
symmetric particles with positions 
rk(t). This function is in

principle directly accessible, e.g., in neutron scattering, and is
thought to indirectly also govern the autocorrelation functions
measured in light scattering or dielectric spectroscopy [47,48].
The MCT equations are a set of nonlinear coupled integro-
differential equations that completely determine the dynamics
of 
q(t), given the static information. Essentially, the static
structure factor S(q) and similar equilibrium static correlation
functions enter here. This allows for a first-principles com-
parison of the theory with simple glass-forming liquids, most
prominently the hard-sphere system [49–52]. Details of the
theory are found in Ref. [2].

Although the theory is readily extended to deal with
nonspherical molecules [53–56], the resulting mathematical
complexity typically hinders direct tests of the full MCT for
the standard glass formers. One way to apply MCT beyond its
asymptotic scaling laws in such cases is to employ so-called
schematic models. Here, one single-handedly reduces the large
set of coupled MCT equations to only a few, in practice
just one or two. This often amounts to dropping the wave-
vector dependence, although the true justification is that one
reduces the model to the simplest one that falls into the same
universality class of MCT glass transitions [2]. The resulting
simplicity is paid for by the introduction of fit parameters that
replace the microscopically derived connection between S(q)
and the theory’s coupling vertices. On the other hand, adjusting
these parameters as fit parameters often leads to a remarkable
quantitative agreement with experimental data [23–25].

Turning an apparent weakness to a strength, schematic
MCT models also provide a flexible testing ground for
extensions of MCT. This was demonstrated for the inclusion
of hopping processes earlier [27]. Extending the schematic
MCT by a constant hopping term, susceptibility spectra of
propylene carbonate from neutron scattering, light scattering,
and dielectric spectroscopy could be fitted in the high-
frequency regime, and an apparent violation of the MCT
scaling laws could be explained by typical preasymptotic
corrections [43]. To uncover these corrections to scaling,
it is essential to consistently analyze spectra from multiple
experimental methods.

Introducing the Laplace transform of the correlator,


(z) = i

∫ ∞

0
eizt
(t) dt, (3)

we write the equation of motion for our schematic model as


(z) = −
[
z + �(z) − 2

z + iν + 2m(z)

]−1

. (4)

Equations of this form are common in a correlation-function
description of the dynamics of a many-particle system,
and are derived by using a projection-operator formalism
introduced by Zwanzig and Mori [57]. Here, m(z) is a memory
kernel of fluctuating forces that is the core target of MCT’s
approximations. 2 and ν are constants taken to reflect the
microscopic short-time motion; neglecting �(z) and m(z)
completely results in a damped harmonic-oscillator equation
for 
(z) that mimics the peak visible in the THz regime of
Fig. 3. This description of the Raman band is not accurate at all,
but we shall be concerned with the low-frequency respectively
long-time behavior of the correlation functions only.
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The original schematic MCT is obtained by setting �(z) ≡
0 and approximating the memory kernel m(z) as a nonlinear
functional of the correlator in the time domain, m(t) =
F[
(t)]. The simplest schematic MCT model that allows one
to reproduce the whole range of asymptotic power laws pre-
dicted by the microscopic theory is the F12 model, specified by

m(t) = v1
(t) + v2
(t)2. (5)

Here, v1 and v2 are coupling coefficients that encode the
molecular interactions and are assumed to be smoothly
increasing functions of external control parameters such as
density, pressure, or inverse temperature. The appearance of a
quadratic term in Eq. (5) is essential; it gives rise to bifurcations
in the long-time limits of the correlators, f = limt→∞ 
(t),
identified as the idealized-MCT glass transition. Although the
coupling coefficients change smoothly, at critical values along
a line (vc

1,v
c
2), f jumps discontinuously from zero to a finite

value f c—the solutions of the model become nonergodic
in this idealized glass state. Apart from special higher-order
singularities, there is an exponent parameter λ ∈ [1/2,1[
associated to every transition point, that determines
nonuniversal power-law exponents a and b governing the
long-time dynamics asymptotically close to the transition.
Specifically for the F12 model one has vc

1 = (2λ − 1)/λ2, and
vc

2 = 1/λ2. The transition gives rise to the celebrated two-step
decay scenario for 
(t), with an initial decay asymptote

(t) ∼ f c + h(t/t0)−a toward a plateau given asymptotically
by f c, and a von Schweidler decay 
(t) ∼ f c − h′(t/tσ )−b

from the plateau toward zero on the liquid side of the transition.
Here, t0 is a time scale characteristic of the short-time motion,
implicitly set by 2 and ν; tσ is a time scale that diverges
upon approaching the transition. In the frequency domain,
the two asymptotes translate to the low- and high-frequency
power laws around the β-minimum mentioned above. The
approach to the idealized MCT transition at (vc

1,v
c
2) from the

liquid side is accompanied by a second divergent relaxation
time in 
(t), the α-relaxation time that governs the long-time
decay of the correlation functions.

The central idea of schematic extended-MCT models is
to incorporate additional relaxation processes not captured
in the spirit of Eq. (5), that restore ergodicity even in the
idealized glass state. Recall that in this case 
(z) ∼ −f/z

for z + i0 → 0 is implied by f > 0 through Eq. (3), so that
for �(z) ≡ 0 the last term in the brackets of Eq. (4) needs
to become arbitrarily small in order to support a nonergodic
solution. This is indeed guaranteed by Eq. (5) since with
limt→∞ 
(t) = f then also m(z) ∼ −m[f ]/z from Eq. (3).
It is also easily seen that any finite �(z) will make the
solution ergodic again. Physically, Eq. (4) expresses a parallel
relaxation scheme: The last term encodes the cage effect
described by MCT, a relaxation channel that is effectively
closed in the glass. �(z) on the other hand describes a second
slow relaxation channel that presumably, due to it being a small
correction to the cage effect relaxation, can be dropped in a first
approximation as long as the cage relaxation is not completely
arrested—this is the idealized MCT. If the primary MCT
relaxation channel however vanishes, any nonzero contribution
to �(z), however small, will dominate the solutions at long
times and thus needs to be taken into account.

Transforming Eq. (4) into the time domain, one gets


̈(t) + (� ∗ 
̇)(t) + [�(t) + 
̇0δ(t)] + ν
̇(t)

+ ν(� ∗ 
)(t) + 2
(t) + 2(m ∗ 
̇)(t)

+ (� ∗ m ∗ 
)(t) = 0. (6)

Here, we have abbreviated the convolution of two func-
tions f (t) and g(t) by (f ∗ g)(t) = ∫ t

0 f (t − τ )g(τ ) dτ .
Equation (6) has to be solved with the initial conditions

(0) = 1 and ∂t
(t)|t→0 = 
̇0 = −�(0). Approximating
�(t) ≈ δ0δ(t) as a Markovian rate, i.e., �(z) ≈ iδ0, leads
to the extended-MCT model studied before [21,27], also
in the context of wave-number-dependent correlators [29].
Equation (6) holds for systems governed by Newton’s equa-
tions of motion. On the other hand, for colloidal suspensions
an overdamped dynamics can be formulated. Note that the
results we discuss below for long times (low frequencies) are
not affected by such a change. This is in line with findings that
both the cage effect and hopping-induced motion are universal
among both system classes [58].

Clearly, the time dependence of �(t) is of importance if
one wants to describe the nonexponentiality of the relaxation
below Tc. For a time scale t � tσ and in the absence of
�(z), the cage-effect channel in Eq. (4) has already attained
its long-time limit; i. e., m(z → 0) ∼ −m[f ]/z with m[f ] =
f/(1 − f ) [59]. Inserting this into Eq. (4), we obtain 
(z) =
−1/[z/f + �(z)], or in the time domain,


̇(t) = −f

∫ t

0
�(t − t ′)
(t ′) dt ′ (7)

with initial condition 
(t) = f . Of course, this approximation
neglects the effect of �(z) on the memory kernel via Eq. (5)
and thus does not capture the exact long-time behavior of
Eq. (6). However, it was recognized earlier [60,61] that any
empirical distribution of relaxation times, such as that for a
stretched exponential relaxation 
(t) ∝ exp[−(t/τ )β], can be
written in the form of Eq. (7) if one admits the generalization

�(t − t ′) ≈ �(t,t ′) ≈ �̂(t ′)δ(t − t ′), (8)

so that 
(t) ∼ f exp[−R(t)] where R(t) = ∫ t

0 f �̂(t ′)dt ′.
Equation (8) has to be understood as an approximation
valid for intermediate and long times only. It apparently
violates time-translational invariance and, like many of the
commonly applied phenomenological model functions such
as the stretched exponential function, is not expected to be
correct for t → 0. Thus, it should be applied on mesoscopic
timescales only. One may envisage the relaxation to be
composed of random events that have a nonuniform rate
�(t), which in turn may be a useful approximation to model
dynamic heterogeneity [61] and intermittent relaxation. The
interpretation to describe the relaxation of density fluctuations
as a random process of the form 
(t) = E{exp[−H (t,ω)]}
(where E{·} denotes the expectation value and ω is a random
variable), i.e., exponential relaxations with random local time
H , has been suggested by Sjögren [62] to be central to
MCT. The connection of Eq. (8) to Feller’s theory of renewal
processes [63] has been pointed out previously [61]. We hence
conclude that Eq. (8) allows one to capture the physics of
dynamically heterogeneous activated dynamics, in line with
the common interpretation of dynamics below Tc.
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Inserting the approximation (8) into Eq. (6) leads to
a significant simplification of the latter, as many of the
convolutions drop out:


̈(t) + [(ν + �̂(t)]
̇(t) + [2 + ν�̂(t)]
(t)

+2(m ∗ 
̇)(t) + 2�̂(t)(m ∗ 
)(t) = 0. (9)

The convolution-less appearance of memory kernels in the
equations of motion for correlation functions can be derived
formally using modified projection operators introduced by
Mori and Tokuyama (MT) [64]. These authors have argued that
such a route is better suited than the Zwanzig-Mori projection
scheme used to derive Eq. (4) to address random frequency
variations in stochastic oscillators and related problems. A
description of glassy dynamics on the basis of this MT scheme
has been suggested [65]. But note a crucial difference to our
Eq. (9): Here, we still rely on the retarded friction kernel m as
suggested by MCT to provide the essential features of glassy
dynamics, in stark contrast to Ref. [65]. But consistent with the
interpretation of Ref. [64], we model the hopping contribution
�̂ in a way that could conceivably be derived within the MT
projection scheme.

Clearly, in a single-correlator model the time dependence of
�̂(t) is responsible for the stretching of the hopping-induced
relaxation, while its overall magnitude controls the relaxation
time scale. For the former, an MCT-inspired ansatz suggests
a polynomial in 
(t). For the latter, Chong [29] has recently
suggested a simple semiempirical model: Assuming localized
hopping events that are embedded in the glassy structure,
one derives a rate that is given by an Arrhenius form where
the strength of the frozen matrix—its elastic modulus—
enters the effective barrier height for the activated events.
The longitudinal elastic modulus exhibits a thermodynamic
contribution that varies smoothly across the MCT transition,
and a nonergodic contribution essentially given by the MCT
memory kernel m(t → ∞) = m[f ] [66], that arises in the
glass only. In the schematic model, we set

f̃ �̂(t) ≈ 
(t)2 e−Mm[f̃ ]/(� kBT ), (10)

where f̃ = f in the glass, and f̃ = f c in the liquid. Here, M

represents the longitudinal elastic modulus and � and kB are the
number density and Boltzmann constant, respectively. In the
following we set M/(� kBT ) ≈ 50 as a typical value of elastic
moduli in dense liquids whose interactions are dominated by
hard-core repulsion [66]. We note here that smaller values
of M will enhance the hopping contribution and that m[f ]
increases as one enters deeper into the glass. Let us also stress
that the precise form of the Arrhenius factor in Eq. (10) is not
essential for our discussion. One could equally try to estimate
these hopping rates based on different approaches [67]. The
quadratic dependence of �̂(t) on 
(t) could be replaced
by a linear one as suggested by Greenall and Cates [33],
in a slightly different context, to be more appropriate for
intermittent hopping relaxation. This would result in somewhat
less stretching of the final relaxation, but would not change
our results qualitatively. Ultimately, the correct form cannot
be decided within a schematic model.

Numerical results for the schematic model with memory
kernel Eq. (5), and hopping kernel specified by Eqs. (8) and
(10), are shown in Fig. 4. Here, the critical point corresponding
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FIG. 4. Schematic F12-model correlators 
(t) with hopping ker-
nel according to Eqs. (8) and (10). Parameters (v1,v2) = [vc

1,v
c
2(1 +

ε)] with ε = −0.1, −0.01, −0.001, −0.0001, 0.01, and 0.05, from
left to right. (vc

1,v
c
2) are fixed according to λ = 0.7 (see text). A dashed

line shows the solution without hopping term for ε = −0.0001. The
dash-dotted line is a stretched exponential function, f exp[−(t/τ )β ]
with β = 0.6; the dotted line shows pure exponential relaxation for
comparison.

to an exponent parameter λ = 0.7 has been selected. State
points close to this critical point are then chosen according
to v1 = vc

1 and v2 = vc
2(1 + ε). Hence, ε < 0 corresponds to

liquid states, and ε > 0 to states in the idealized-MCT glass.
Sufficiently far from the critical point on the liquid side,

the solutions with and without hopping kernel coincide;
for the parameters chosen, this holds up to ε = −0.001.
As noted in Ref. [27], even a hopping rate that increases
with an Arrhenius law—as expected for thermally activated
processes—is eventually dominated by the cage effect, given
a sufficiently low activation energy. This justifies the use of
idealized MCT for those liquid states. Close to the transition,
the relaxation is enhanced by hopping, as exemplified for
ε = −0.0001 in Fig. 4, where a dashed line indicates the
corresponding idealized-MCT result, �(t) ≡ 0. In the present
model, this simply amounts to a shift in the final relaxation
time, essentially without a change in shape. Hence, the
idealized-MCT divergence of relaxation times is cut off, and
the transition “avoided”.

In the ideal glass, ε > 0, Fig. 4 shows the hopping-induced
decay of the correlation function. This is still nonexponential,
as shown by comparison with a pure exponential (dotted
line). Indeed a stretched-exponential curve (dash-dotted) with
stretching parameter β = 0.6 provides a reasonable fit for
ε = 0.01. For the specific model here, the stretching is very
similar to the one also found on the liquid side of the transi-
tion. However, the original glass-transition singularity is still
evident, since for ε > 0, the plateau value rises asymptotically
as f ∼ f c + h

√
ε, where h is a constant critical amplitude. In

the liquid, one has f ∼ f c asymptotically (up to corrections
that are linear in ε), so that the point ε = 0 can in principle
be identified as the position of a square-root singularity. This
was demonstrated experimentally by various methods for a
number of commonly studied glass-forming liquids [7–16].
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The scenario of Fig. 4 also qualitatively explains recent
findings for hard-sphere-like colloids [68].

B. Probe-correlator model

We now discuss the dynamics of probe-density fluctuations
that are measured by a given spectroscopic technique in lieu
of the underlying collective dynamics of the system which is
described by the extended F12-model correlator.

Following Sjögren [69], the coupling is most simply
expressed by writing an analog of Eq. (4) for a second
correlator 
s

A(z), expressing the fluctuations of a dynamical
variable A that is probed in experiment. This could be the
reorientation of permanent dipoles or a polarizability tensor or
describe the q-dependent coupling of incoherent scattering
to the collective density fluctuations in neutron scattering
[26,27]. In particular, the Laplace transform of the correlator
determines the dynamic susceptibility of the probe variable A:

χA(z)/χA = z
s
A(z) + 1, (11)

where χA is the thermodynamic susceptibility. We will in the
following mainly discuss the normalized susceptibility spectra,
χ ′′

A(ω)/χA = ω�
s
A(ω), connected to the imaginary part of the

Laplace-transformed correlator for real frequencies ω = z +
i0. We are not intending a theory of thermodynamic features,
so χA is treated as an adjustable parameter, temperature
independent for the sake of simplicity.

The memory kernel ms
A(z) appearing in the analog of Eq. (4)

is then written as

ms
A(t) = vs

A
(t)
s
A(t). (12)

In the following, we will analyze dynamic light scattering data,
A = LS, and dielectric spectroscopy data, A = DS.

We make use of the fact that hopping motion will be present
both for the collective density correlator 
(t), and for the probe
correlator 
s

A(t). To simply model the decay to an ergodic
state, a hopping term for the former would suffice, due to the
linear coupling expressed in Eq. (12). But as we will see below,
the intricate shape of the combined α- and slow β-relaxations
are better modeled by taking both terms into account.

As an example, consider the obvious generalization of
Eq. (10):

f̃ s �̂s(t) ≈ 
(t)
s
A(t) e−Mm[f̃ ]/(� kBT ), (13)

where we have assumed that the time dependence is governed
by probe-density correlations, and that the escape rate even of
the single particle is still given by the collective rate (modulo a
static structure factor as a prefactor [29], which is unity here).
The appearance of 
(t) in Eq. (13) embodies the fact that
hopping relaxation in glass formers is a highly collective effect,
as seen in the absence of an isotope effect in tracer diffusion
in metallic glass formers both above and below Tc [70].

Figure 5 shows the dynamic susceptibilities χ ′′(ω) cal-
culated from the correlators 
(t) and 
s

A(t) in the model
thus defined. For this example, we have set vs

A = 50, a value
that is of the typical magnitude fitted to experimental data
(see below). Turning first to the spectra of the collective
correlator 
(t) (top panel), one again clearly identifies the
features of nonexponential relaxation even inside the ideal-
glass state. A comparison with a Debye-relaxation function,

10
-3

10
-2

10
-1

χ″(ω)

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ω / Ω

10
-3

10
-2

10
-1

χ″A(ω)

FIG. 5. (Color online) Dynamic susceptibilities calculated from
the schematic Sjögren model with hopping terms according to
Eqs. (10) and (13); vs

A = 50. Top panel: χ ′′(ω) corresponding the
collective correlations 
(t). Bottom panel: χ ′′

A(ω) corresponding to
the probe-variable fluctuations. Parameters as in Fig. (4); distance
parameters shown are ε = −0.1, −0.01, −0.001, −0.0001, 0.001,
and 0.01. For χ ′′(ω), the result for ε = −0.0001 without hopping
term is shown as a dashed line. The dotted line is a Debye function
for reference.

χ ′′
Debye(ω) ∝ ωτ/[1 + (ωτ )2], shown in dotted, reveals this.

Shown in dashed is a spectrum without hopping term close
to the transition on the liquid side. Comparing with the results
including hopping, one finds that the stretching almost stays
constant as one crosses the glass transition.

The susceptibility spectra (lower panel of Fig. 5) follow the
same qualitative trend. As typically found [27], the stretching
for χ ′′

A(ω) is less, and the strength of the α-relaxation peak
is simultaneously enhanced for the choice of large coupling
strength vs . For the state points farthest into the glass,
one notices the splitting of the relaxation peak into two
contributions. This is a result from the coupling between

s

A(t) and 
(t) in the model. The relaxation of 
(t) induces
relaxation in 
s

A(t), but on the same time scale, the slightly
slower hopping term constitutes a second relaxation mode;
thus, two time scales can be identified in the decay of 
s

A(t).
The shorter time scale corresponds to the decay of collective
fluctuations, and induces a shoulder in the high-frequency flank
of the α-relaxation peak in χ ′′

A(ω). This shoulder bears some
reminiscence of a slow β-peak that emerges as one moves
deeper into the idealized-glass state.
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C. Model with Kohlrausch relaxation rates

So far, the schematic Sjögren model with ad hoc time-
dependent hopping rates has been presented as an example
of how to generate stretched decay inside the MCT glass
state, and how density and probe correlators can conspire to
yield a feature akin to a slow β-peak in the presence of two
distinct hopping-rate kernels. The model, however, has some
drawbacks that do not allow us to fit it to experimental data:
The broadening of the spectra, in particular in the β-peak (or
HF-wing) region, is much less than observed. We attribute this
to the assumed form of the hopping rate, �̂(t) ∼ 
(t)2, being
still too narrow. A particular consequence is the appearance of
a deep minimum in the spectra for T < Tc that is not consistent
with experimental data [71].

To show that the interpretation of the slow β-modes as
the interplay between collective relaxation and probe-variable
relaxation is still consistent within the extended MCT, we thus
return to the generalized hopping rate Eq. (8) and set

�̂KWW(t) = β
tβ−1

f τβ
(14)

to obtain a stretched exponential relaxation as solution of
Eq. (7). Although the stretched-exponential relaxation for
long times is only an empirical description going back to
Kohlrausch [72], the original MCT is in a certain limit
compatible with such a limiting form of the correlation
functions [73]. Note that �̂KWW(t) diverges as t → 0, since
the stretched-exponential relaxation has no regular short-time
expansion. To make the model well defined, we regularize this
rate and set in Eq. (9)

�̂(t) =
{

�̂KWW(1/) , t < 1/,

�̂KWW(t) , t� 1/,
(15)

which seems reasonable as the model is only intended to be
applied for times larger than the time scale of microscopic
motion set by 1/. A corresponding expression is used for
the probe correlator.

In summary, our model introduces the following set of
fit parameters: (,ν) and (s

A,νs
A) are used to model the

microscopic dynamics and to fix the units of frequency and
energy. The dependence of the low-frequency part of the
solutions on these parameters is negligible, up to a rescaling
of frequencies. (v1,v2) from Eq. (5) are the crucial control
parameters driving the collective correlator 
(t) through its
idealized glass transition. vs

A determines the strength for the
coupling between probe and collective motion via Eq. (12); it
must not be chosen too small in order for the probe to become
arrested when the host liquid does [69]. Finally, there remain
the hopping parameters, (τ,β) and (τ s

A,βs
A). They explicitly

determine the shape of the α-relaxation below Tc, and are
hence crucial in fitting this part of the data. No predictive
power can be assigned to these fit parameters, as they are
merely a more flexible way to adapt the shape of the relaxation
peaks. However, once the hopping in the collective density
fluctuations is fixed by (τ,β) this will subsequently affect the
hopping terms in all individual probe correlators.

The simple Sjögren model, in which one determines the
hopping rates from 
(t) and 
s

A(t) directly, as proposed in the
previous section, has a number of inherent limitations that are
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FIG. 6. (Color online) Fit of dielectric spectroscopy data for
propylene carbonate at T = 157 K (symbols; from Ref. [74]) with the
extended schematic-MCT model incorporating KWW-like hopping
rates outlined in the text (solid line). The hopping contributions
stemming from the collective correlator 
(t) and from the probe-
variable correlator 
s

DS(t) are indicated separately (dashed and
dash-dotted lines).

artifacts of the restriction to only two relevant correlators. For
example, one finds for T > Tc a strict connection between the
α-peak height and its stretching, which is not present in the
full theory, although its trend is sufficiently close to reality to
make fits viable in the first place. However, a fit of real-world
experimental data covering up to 18 orders of magnitude is a
rather demanding test of any model, so that we levy the arti-
ficial, model-built restrictions by using Eq. (15) for 
(t) and
its analog for 
s

A(t). The emphasis will then be on the subtle
interplay between these two hopping processes stipulated by
Eq. (12) that is unique to the MCT ansatz. The possibility to
consistently fit two different data sets, A = LS and A = DS,
using the same parameter set for the underlying 
(t), is thus
a nontrivial conclusion that can be drawn from our model.

An example for the interplay between 
(t) and 
s
A(t) is

given in Fig. 6. Here we show dielectric relaxation spectra
χ ′′

DS(ω) for T = 157 K from Ref. [74], far below Tc. The solid
line interpolating the data symbols is the fit using the extended
schematic model. Additionally, we have depicted both hopping
contributions separately by making use of the approximations
(7) and (8). Their relaxation times τ and τ s

DS and stretching
indices β and βs

DS were chosen differently; as a result, the
hopping contribution from the collective density correlator
contributes a rather flat and extremely stretched background
that serves to capture the excess wing contribution in the range
1 Hz � ν � 0.1 GHz. The α-peak properties are then deter-
mined by the hopping term chosen for the probe relaxation.
Thus, by choosing the hopping parameters for the collective
density fluctuations, the fits for different probe variables will
not be independent any more, even in the region below Tc.

IV. DATA ANALYSIS

Fits of the schematic model to propylene carbonate data are
shown in Fig. 7. The model outlined above turns out to provide
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FIG. 7. (Color online) Susceptibility spectra for propylene carbonate as measured by dielectric loss spectroscopy (left; data from Ref. [74]),
and by deploarized light scattering (right; data from Ref. [37] above 108 Hz; own measurements below 104 Hz); temperatures as indicated.
Solid lines are fits with the extended schematic-MCT model. Dashed lines are fits with the ideal MCT model, i. e., without hopping term for
comparison.

a consistent fit for both the combined PCS and Brillouin-
scattering data set shown in Fig. 3 (Ref. [37] and our data), and
the dielectric-spectroscopy data by Lunkenheimer et al. [74].
To achieve the quality of the fit visible in Fig. 7, we varied all
fit parameters smoothly with temperature in a controlled way
that reflects their physical meaning, as we shall describe below.
With this procedure, the model gives an accurate account of
all available data spanning up to 18 orders of magnitude in
frequency, and 3 orders of magnitude in amplitude variation,
for temperatures from around the melting temperature, down
to below Tg .

The fit is consistent because it describes both data sets
as originating from the same underlying model of collective
dynamics 
(t). In other words, for LS and DS data at
the same temperature, the fit parameters entering 
(t) were
fixed simultaneously; only the fit parameters entering the
respective 
s

A(t) were allowed to differ. In particular, the
microscopic-relaxation parameters entering 
(t) were fixed
temperature-independently as (,ν) = (10,0) THz. For the
dynamics above Tc, the coupling coefficients entering the
memory kernel, v1 and v2, were then determined. Specifically,
at Tc, the critical coupling coefficients (vc

1,v
c
2) were chosen in

agreement with the known asymptotic behavior close to the
MCT transition. Earlier analyses [21,27,43,75] gave values
between λ = 0.72 and 0.78; iterative refinement of the fits
here resulted in λ ≈ 0.75 at Tc ≈ 187 K.

Having fixed this point along the glass-transition line, one
imposes that v1(T ) and v2(T ) should be increasing functions
of decreasing temperature, to express the increased coupling
strengths as the liquid is further cooled. Here, we adopted the
procedure of Ref. [27], demanding that the values follow a
smooth path in the (v1,v2) parameter space of the model, and
that their distance to the critical point is a linear function of the
temperature difference to Tc. This is expressed by demanding
that the separation parameter σ = λ[(v1 − vc

1)(1 − λ) + (v2 −
vc

2)(1 − λ2)] derived from an asymptotic analysis of the model
equations [2] is a linear function of T close to Tc. It ensures
that the nontrivial variation of τα above Tc is a feature of the
model, and not of the variation of the fit parameters. Initially,

a prescribed smooth curve for (v1(T ),v2(T )) was imposed;
free fits with these starting values in a second step lead to
only slight deviations. The variation of v1 and v2 is shown in
Fig. 8 both directly in the (v1,v2) parameter space (inset),
and in a representation that allows us to check the linear
dependence σ ∼ (Tc − T ). In this figure, independent results
for the DS and LS data are shown; we demand them to lie on
the same path. This is fulfilled with good accuracy, proving
the consistency of the fits.

Next, the MCT parameters for the probe correlators 
s
LS(t)

and 
s
DS(t) are adjusted. s

A and νs
A were allowed to vary

smoothly with temperature [76], but this procedure only
serves to give a satisfactory fit of the THz frequency regime.
No physical significance can be further attached to these
parameters since they are only representatives for what in
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FIG. 8. (Color online) The separation parameter σ (v1,v2) used in
the fits of Fig. 7 as a function of temperature; a dotted line indicates
the expected linear relation σ ∼ (Tc − T )/Tc close to Tc, and σ = 0
identifies the critical temperature Tc ≈ 187 K. Independent fit results
from analysis of the light-scattering (triangles) and dielectric-loss
data (circles) are shown. The inset shows the fit parameters v1 and v2

in the parameter space of the model; the solid line indicates the line
of glass transitions in the F12 model.
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FIG. 9. (Color online) Coupling coefficients vs
A describing the

strength of probe-dynamics coupling to collective density dynamics
in Eq. (12). Triangles show results for A = LS, diamonds for A = DS.
The dashed line represents Tc.

reality is a superposition of wave-number dependent oscillator
contributions.

More interesting are the coupling strengths entering the
memory kernel Eq. (12), vs

A. These are shown for the dielectric,
A = DS, and the light-scattering, A = LS, data in Fig. 9.
Again, both parameters are smoothly increasing functions of
decreasing temperature. As discussed earlier [27], the coupling
vs

DS for the dielectric probe to the collective density dynamics
is significantly stronger than that for vs

LS. This is expected
on grounds of the different rotational contributions probed
by the two techniques: Dielectric spectroscopy is sensitive
to dipole relaxations related to the Legendre polynomial of
degree � = 1, while depolarized light scattering has several
possible microscopic origins connected to � = 2. Generically,
the coupling strengths decrease with increasing � [42]. Note
that the vs

A also determine, below Tc, the appearance of the
excess wing relative to the α-peak. This means that a consistent
description of the wing in both data sets by our model is a
nontrivial result. It should however be noted that the large gap
in the accessible frequency window for the light-scattering
techniques does not allow us to draw a final conclusion
regarding this aspect of the model.

Below Tc, the hopping parameters τ and β are decisive.
Again, we demand that the parameters entering 
(t) agree for
both data sets. This is again confirmed by independent fits, as
shown in Fig. 10 (triangle symbols). The parameter β is found
to decrease with decreasing temperature, and becomes very
small around Tg , reflecting the broadness of the excess wing
or slow β-peak. At the same time, the stretching parameters
βs

A entering the probe correlators are only weakly temperature
dependent reflecting the approximate validity of the time
temperature superposition principle. For A = LS, the values of
βs

A are lower, which reproduces the known correlation between
α-peak strength and stretching [27,42].

The hopping time scales are shown in the lower panel
of Fig. 10. The fit procedure yields that these cannot be
modeled by simple Arrhenius behavior. This is consistent
with the expression equivalent to Eq. (10) obtained by
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FIG. 10. (Color online) Hopping model parameters τ (lower
panel) and β (upper panel) entering the collective density correlator

(t) (triangles) and the observable-specific correlators 
s

A(t) (circles
for A = DS; pentagons for A = LS). For comparison, the mean
relaxation time 〈τ 〉A determined from KWW fits to the experimental
data are shown.

Chong et al. [29,30], where hopping is incorporated into
MCT by the dynamical theory for diffusion-jump processes.
In this framework the plateau height enters the expression
for the hopping rates, in particular the activation energy.
As this plateau height is temperature independent above
Tc and follows the square-root dependence below, an extra
temperature dependence of the activation energy is generated,
which leads to a crossover from a rather weak temperature
dependence of the hopping rates and τhop > τMCT above Tc to
a high activation energy of the hopping times below the critical
temperature [30].

V. SUMMARY AND CONCLUSIONS

We have presented an ad hoc generalization of schematic
models of the mode-coupling theory of the glass transition, to
describe the stretched-exponential relaxation due to hopping
effects in deeply supercooled liquids close to Tg . The model
describes hopping motion as an intermittent stochastic process
that can be viewed as a superposition of individual cage-escape
events due to density fluctuations, occurring with a time-
dependent rate distribution. While not justified by a complete
microscopic derivation along the lines applied for the original
MCT, this model incorporates ideas from both the original
MCT literature as well from descriptions more amenable to
activated events in amorphous solids.

In the simplest self-consistent approximation for the hop-
ping rate, our model already gives rise to stretched-exponential
decay in the glass, with stretching exponents close to those
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observed on the liquid side of the transition. For probe-variable
fluctuations, the susceptibility spectra show α-relaxation peaks
that develop a shoulder on their high-frequency side reminis-
cent of the slow β-peak found in many glass formers. This can
be achieved by adopting an activation barrier for the hopping
rates that depends on the elastic properties of the medium,
similar to the one recently proposed by Chong [29], which for
our model introduces only one additional globally adjustable
parameter. The model then serves to highlight the possible
interplay of collective and probe-density fluctuations below
Tc. In its simplistic form put forward above, it is, however, not
directly applicable to describe experimental data.

Spectra from dielectric spectroscopy and light scattering
can be fitted over up to 18 decades in frequency, covering a
temperature range including Tg , Tc, and Tm, if, instead, one
applies a more empirical ansatz for the hopping rate. We show
that the emergence of nontrivial high-frequency features of the
α-relaxation peak that are consistent with both measurements
can indeed be well described by the model. Data from further
techniques, such as mechanical spectroscopy, would be needed
to make the test of the model even more stringent; our present
fits then already fix a number of fit parameters for such a test.

Our model assigns two different mechanisms to the two
prominent features of the low-frequency dynamics below Tc:
The α-peak is described as a hopping-induced relaxation of
the probe motion itself, which differs in strength, shape, and
position among the measurement techniques, because these
techniques couple to different probe variables. The slow β-
excess wing, on the other hand, is assigned to the hopping-
induced sub-Tc motion of the collective density matrix, which
on its own is not accessible in either dielectric spectroscopy or
light scattering.

If true, several consequences arise: The β-peak/excess
wing should in first approximation have a similar position

and width/slope independent of the measurement technique.
The process can in principle appear as a wing, or as a
separate slow β-relaxation peak, depending on the position,
strength, and shape of the α-relaxation that is dominated by
the probe-variable dynamics. And indeed, it has been noted
that the excess wing shows a high degree of universality in
many systems [77]. We also note that our model is fully
consistent with the idea that both excess wing and β-peak,
which previously were used to distinguish two types of glass
formers [78], have in fact the same underlying mechanism
[4,5]. Of course, the slow Johari-Goldstein β-relaxation, to
which the excess wing can most probably be assigned [79], is
thought to involve intermolecular degrees of freedom [80].
However, depending on the particular molecular structure,
secondary processes also occur due to intramolecular motion
in nonrigid molecules. But even in the latter case the present
model would still be valid, as long as collective fluctuations
are involved in the observed secondary process.

As one approaches Tc from below, the hopping-induced
motion eventually is dominated by the idealized-MCT cage
effect. Here, a strong coupling of the different dynamical
variables and the vicinity of a bifurcation critical point (at Tc)
imply that the difference between α- and slow β-relaxation
vanishes; only a single α-peak survives above Tc. This is
consistent with the finding in many glass-forming systems
that the high-frequency wing contribution tends to vanish at a
temperature around Tc upon heating [77].
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