
PHYSICAL REVIEW E 84, 031501 (2011)

Dynamic rheology of a supercooled polymer melt in nonuniform oscillating flows
between rapidly oscillating plates

Shugo Yasuda1,* and Ryoichi Yamamoto2,†
1Graduate School of Simulation Studies,University of Hyogo, Kobe 650-0047, Japan

2Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan and
CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

(Received 25 August 2010; revised manuscript received 26 June 2011; published 9 September 2011)

The dynamic rheology of a polymer melt composed of short chains with ten beads between rapidly oscillating
plates is investigated for various oscillation frequencies by using the hybrid simulation of the molecular dynamics
and computational fluid dynamics. In the quiescent state, the melt is in a supercooled state, and the stress relaxation
function G(t) exhibits a stretched exponential relaxation on the time scale of the α relaxation time τα (the structural
relaxation of beads) and then follows the Rouse relaxation function characterized by the Rouse relaxation time τR

(the conformational relaxation of polymer chains). In the rapidly oscillating plates, nonuniform boundary layer
flows are generated over the plate due to inertia of the fluid, and the local rheological properties of the melt are
spatially varied according to the local flow fields. The local strain and local strain rate of the melt monotonically
decrease with the distance from the plate at each oscillation frequency of the plate, but their dependencies on the
oscillation frequency at a fixed distance from the plate vary with the distance. Far from the plate, the local strain
decreases as the oscillation frequency increases such that the dynamic rheology deviates from the linear moduli at
the low oscillation frequencies rather than high oscillation frequencies. On the contrary, near the plate, the local
strain rate increases with the oscillation frequency such that the shear thinning is enhanced at high oscillation
frequencies. In close vicinity to the plate, the dynamic viscosity is mostly independent of the oscillation frequency,
and the shear thinning behavior becomes similar to that observed in steady shear flows. We show the diagram
of the loss tangent of the melt for different oscillation frequencies and local strain rates. It is seen that the melt
generates three different rheological regimes, i.e., the viscous fluid regime, liquidlike viscoelastic regime, and
solidlike viscoelastic regime, according to the oscillation frequency and local strain rate. Nonlinear rheological
properties are also investigated by the spectrum analysis and the Lissajous-Bowditch curve. It is found that the
fractional amplitude of the higher harmonics to the linear harmonics is suppressed within the boundary layer
due to the nonslip boundary on the oscillating plate. We also find that the melt exhibits intercycle shear thinning
between different positions but exhibits intracycle shear thickening at a fixed position in the vicinity of the plate.
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I. INTRODUCTION

Glassy polymeric fluids have complicated shear-dependent
dynamic rheology. In steady shear flows, glassy fluids are
highly viscous, and shear thinning occurs at sufficiently large
shear rates due to chain elongations [1,2]. In unsteady flows,
glassy fluids exhibit elastic behaviors if the characteristic time
scale of polymer dynamics is comparable to or larger than that
in the flow system. The viscoelastic property can be measured
by the shear moduli, i.e., the storage modulus G′ for the
elasticity and the loss modulus G′′ for the viscosity. The shear
moduli can be measured under uniform oscillatory shear flow
with a finite shear strain, both experimentally or numerically.
In general nonuniform flows, however, the local rheological
properties become heterogeneous depending on the local flow
variables. Thus, the rheological behaviors of glassy polymeric
fluids in highly nonuniform flows are so complicated that the
theoretical or experimental approaches to this problem are very
difficult. It is also difficult to predict the flow behaviors of such
fluids because the reliable constitutive equations are not known
in general, although there is an important accumulation of both
experimental and theoretical works to construct them [3,4].
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In the present paper, we investigate the dynamic rheology
of a model polymer melt composed of short chains between
rapidly oscillating plates by using the hybrid simulation of
molecular dynamics (MD) and computational fluid dynamics
(CFD). The temperature of the melt is so low that the
glassy behavior is observed in the stress relaxation function
in the quiescent state. Nonuniform oscillatory shear flows
are generated over the oscillating plate at sufficiently large
oscillation frequencies due to inertia of the fluid via the term
ρ∂v/∂t , which is sometimes called the transient force. Thus,
heterogeneous rheological behaviors arise according to local
flow variables.

Oscillatory shear flows under the transient force for the
viscoelastic fluid have been investigated by several researchers
so far. Scharg analytically solved the flows of a linear
viscoelastic fluid [5]. Dunwoody investigated the inertia effect
for a weak nonlinear viscoelastic fluid with the K-BKZ model
by using a perturbation analysis [6]. Yosick et al. performed
numerical analysis for a nonlinear viscoelastic fluid with
the Berkeley model [7]. Ding et al. investigated the viscous
dissipation under the transient force in the temperature field
for linear viscoelastic fluids [8]. In previous works, some
constitutive model equations have been used to calculate flow
profiles. In the present hybrid simulation, no constitutive model
is required to obtain a local stress. The local stress is generated
by a local MD simulation according to the local flow variables.
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In the hybrid simulation method, the macroscopic flows of
the melt are calculated by using the CFD scheme; however,
instead of using any constitutive equations, the local stresses
of the melt are calculated by using molecular dynamic
simulations of polymer chains according to the local strain
rates [9–11]. The basic idea of the present hybrid simulation
method was first proposed by E and Engquist [12,13], where
the heterogeneous multiscale method (HMM) is presented as a
general methodology for the efficient numerical computation
of problems with multiscale characteristics. The HMM has
also been applied to the simulation of complex fluids [16].
Equation-free multiscale computation was also proposed by
Kevrekidis et al. on the basis of a similar idea and has been
applied to various problems [14,15]. De et al. have developed
a hybrid method, called the scale bridging method, which
can correctly reproduce the memory effect of a polymeric
liquid and demonstrated nonlinear viscoelastic behavior of
a polymeric liquid between oscillating plates [17]. The
multiscale simulation based on a similar idea has also been
applied to rarefied gas flows recently [18].

In what follows, we characterize the linear dynamic
rheology of a model polymer melt by using the MD simulation
in Sec. II. Then, we investigate the dynamic rheology of the
melt in nonuniform oscillatory shear flows under the transient
force between rapidly oscillating plates in Sec. III, where the
simulation method, velocity profiles, shear moduli, and large
amplitude oscillatory shear (LAOS) analysis are introduced.
Finally, we summarize the results in Sec. IV.

II. LINEAR DYNAMIC RHEOLOGY OF A MODEL
POLYMER MELT

We consider a model polymer melt composed of short
chains with ten beads of a uniform density ρ0 and a uniform
temperature T0. The number of bead particles on each chain
is represented by Nb. Thus, Nb = 10. All of the bead particles
interact with a truncated Lennard-Jones potential defined by
[19]

ULJ(r) =
{

4ε
[
(σ/r)12 − (σ/r)6

] + ε (r � 21/6σ ),

0 (r > 21/6σ ).
(1)

By using only the repulsive part of the Lennard-Jones potential,
we may prevent spatial overlap of the particles. Consecutive
beads on each chain are connected by an anharmonic spring
potential,

UF(r) = − 1
2kcR

2
0 ln[1 − (r/R0)2], (2)

where kc = 30ε/σ 2 and R0 = 1.5σ . The temperature of the
melt is kBT0/ε = 0.2, where kB is the Boltzmann constant. The
number density of the bead particles is ρ0/m = 1/σ 3, where m

is the mass of the bead particle. With this number density and
temperature, the configuration of the bead particles becomes
severely jammed, resulting in a complicated non-Newtonian
viscosity and long-time relaxation phenomena characteristic
of glassy polymers [1,20]. Hereafter, unless otherwise stated,
we measure the physical quantities with units of length σ , time√

mσ 2/ε, and temperature ε/kB .
In this section, we clarify the linear viscoelastic properties

of the model polymer melt. Figure 1 shows the stress relaxation
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FIG. 1. (Color online) The stress relaxation function G(t) of the
model polymer melt in the quiescent state (the solid line). The dotted
line shows the stretched exponential form Gs(t) in Eq. (4) with G0 =
5, τs = 90, and c = 0.5. The dashed line shows the Rouse relaxation
function GR(t) in Eq. (5) with τR = 6 × 104. τα is the α relaxation
time, τα = 310.

function G(t) in the quiescent state. The stress relaxation
function G(t) of the model polymer melt was obtained in
Ref. [20] (although we recomputed G(t) in the present study
in order to calculate the accurate linear complex moduli as
seen below). The details of the molecular dynamic simulation
can be found in Ref. [20]. The stress relaxation function G(t)
is calculated as

G(t) = 〈�xy(t + t0)�xy(t0)〉/kBT V, (3)

where �xy is the space integral of the microscopic stress
tensor in the volume V . In the figure, the α relaxation time
τα and the Rouse relaxation time τR in the quiescent state,
where τα = 310 and τR = 6 × 104, are also plotted. The
α relaxation time τα represents the characteristic time of
the structural relaxation of bead particles and is calculated
from the van Hove self-correlation function, and the Rouse
relaxation time τR represents the characteristic time of the
conformational relaxation of polymer chains and is calculated
from the time-correlation function of the end-to-end vector
of each polymer chain. After the early oscillating behavior
for t � 10, which corresponds to the vibrations of the bonds
of bead particles on each chain, G(t) exhibits the stretched
exponential relaxation of the Kohlrausch-Williams-Watts form
Gs(t),

Gs(t) = G0 exp[−(t/τs)
c]. (4)

G(t) can be nicely fitted to Eq. (4) with G0 = 5, c = 0.5, and
τs = 90 (�0.33τα) for 1� t � 103. Ultimately, G(t) follows
the Rouse dynamics characterized by the Rouse relaxation
time τR . The Rouse relaxation function GR(t) is written as

GR(t) = ρ0T

Nb

Nb−1∑
p=1

exp(−2t/τp), (5)

where τp/τR = sin2(π/2Nb)/ sin2(πp/2Nb) for p =
1, . . . ,Nb. Thus, in the quiescent state, the stress relaxation
function G(t) can be approximately described by the
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FIG. 2. (Color) The storage and loss moduli, G′(ω) (red solid
line) and G′′(ω) (blue solid line), respectively, in the linear response
regime. The dashed line shows the slope of 1 as a guide. The dotted
lines show the shear moduli calculated from the superposition of the
stretched exponential form Gs(t) and the Rouse relaxation function
GR(t), Gs(t) + GR(t). The diamonds aligned on the upper horizontal
axis indicate the values of the oscillation frequencies to be used in
the hybrid simulations.

sum of the stretched relaxation function Gs in Eq. (4)
and the Rouse relaxation function GR(t) in Eq. (5), i.e.,
G(t) � Gs(t) + GR(t), except the period of initial oscillating
modes, and decreases so rapidly that it becomes negligible in
the late stage, while GR(t) is so small as to be negligible in
the early stage but can describe the late stage of G(t).

The frequency-dependent shear moduli, i.e., the storage
modulus G′(ω) and the loss modulus G′′(ω), in the linear
response regime are obtained by the Fourier transform of the
stress relaxation function G(t) in the quiescent state as

G′(ω) = ω

∫ ∞

0
G(t) sin ωt dt, (6a)

G′′(ω) = ω

∫ ∞

0
G(t) cos ωt dt. (6b)

G′(ω) and G′′(ω) represent the elasticity and viscosity of the
melt, respectively. Figure 2 shows the linear storage modulus
G′(ω) and loss modulus G′′(ω) versus the frequency ω. The
crossover of G′(ω) and G′′(ω) is observed at ω � τ−1

α . The
model polymer melt is rather elastic (G′ > G′′) for ω > τ−1

α ,
while it is rather viscous (G′′ > G′) for ω < τ−1

α . At the
low frequency, i.e., ω � τ−1

R , the loss modulus G′′ is quite
dominant and almost proportional to ω. This indicates that, as
the frequency ω is smaller than τ−1

R , the dynamic viscosity η′

defined as η′ = G′′/ω is approximately constant so as to be
a simple viscous fluid with a constant viscosity η′. The shear
moduli calculated from the sum of the stretched exponential
form Gs(t) and the Rouse relaxation function GR(t) are also
plotted in the figure. It is seen that, in the linear response
regime, the moduli of the model polymer melt can be well
described by those calculated from the sum of Gs(t) and
GR(t), except for the high frequency regime as ω � τ−1

α ,
which corresponds to the oscillation mode of G(t) in the early
stage (see Fig. 1).

III. THE EFFECT OF INERTIA OF THE FLUID

A. Problem and simulation method

In the rapidly oscillating plates, the oscillatory shear flow
becomes nonuniform due to inertia of the fluid via the term
ρ∂vx/∂t , say the transient force, such that the local rheological
property spatially varies according to the local velocity field.
In this section, we investigate the dynamic rheology of the
melt in the nonuniform oscillatory shear flow between rapidly
oscillating plates [see Fig. 3(a)]. The upper and lower plates
start to oscillate in the x direction at a time t = 0 as,
respectively,

vw(t) = ∓�0Hω0 cos(ω0t), (7)

where �0 is the amplitude of the strain of the system and H

is the half of width between the upper and lower plates. We
assume that the macroscopic quantities are uniform in the x

and z directions, ∂/∂x = ∂/∂z = 0. The macroscopic velocity
vα is described by the following equations:

ρ0
∂vx

∂t
= ∂σxy

∂y
, (8)

and vy = vz = 0, where t is the time and σxy is the shear stress.
We also assume a nonslip boundary condition on each plate. In
the present study, we fix the width between the plates at 2H =
5000. For the strain amplitude of the system G0, �0 = 0.5 is the
value that is mainly utilized, while G0 = 0.02 is a subsidiary
used for the comparison. However, the oscillation frequency
of the plate ω0 is widely varied in order to investigate the
effect of the changing oscillation frequency on the rheological
property of the melt. The oscillation frequencies ω0 used in the
present simulations are shown by diamonds (♦) on the upper
axis around ω0 ∼ τ−1

α in Fig. 2.
We solve this problem by using a hybrid simulation of

the MD and CFD. The details of the method can be found

y
2H
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(a) Geometry
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Δt = MΔτ
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(b) Mesh system (c) Time evolution

macro level
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FIG. 3. (Color online) Schematics of the geometry of the problem, the mesh system, and the time-evolution scheme.
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in Ref. [11]. Here, we briefly explain the hybrid simulation
method. We calculate the macroscopic velocity in Eq. (8) by
using a usual finite volume scheme with a uniform mesh system
[see Fig. 3(b)]. However, instead of using any constitutive
equation for σxy , we calculate the local stresses in small
MD cells associated with each mesh interval according to
the local strain rates, which are calculated at the CFD level,
at each time step of the CFD simulation [21,22]. The MD
simulations are performed in each MD cell for the duration of
the time-step size of the CFD calculation, and the molecular
configurations obtained in each MD cell after one MD run are
memorized as the initial configurations of molecules for the
next MD run in each MD cell [see Fig. 3(c)]. By using this
method, one can reproduce the memory effect caused by the
slow dynamics of the molecular conformation correctly. In the
present study, we divide the lower half between the plates into
128 mesh intervals with a mesh size of x = 19.5 and use the
symmetric condition at the middle between the plates for the
CFD calculation. For the MD simulation, we use a cubic MD
cell with a side length lMD = 10 so that each MD cell contains
1000 bead particles. The ratio of the mesh size of CFD x

to the side length of the MD cell lMD, which represents the
efficiency of the hybrid simulation compared to the full MD
simulation, is x/lMD = 1.95. The time-step size of the CFD
calculation t and that of the MD calculation τ are fixed at
t = 1 and τ = 0.001, respectively. Thus, 1000 time steps
are carried out in each MD run at each time step of the CFD
simulation [M = 1000 in Fig. 3(c)].

B. Velocity profile

Figure 4(a) shows snapshots of the velocity profile of the
melt for ω0 = 0.0015 and �0 = 0.5. Due to the transient force,
the amplitude of the oscillatory velocity rapidly decreases with
distance from the oscillating plate, and a thin boundary layer
forms over the oscillating plate. The thickness of the boundary
layer lb, which is defined as vx(y = lb)/v0 = e−1, is also shown
at different oscillation frequencies ω0 for �0 = 0.02 and 0.5 in
Fig. 4(b). The solid line shows the thickness of the boundary
layer for the linear viscoelastic fluid with a linear storage and
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FIG. 4. (Color online) The snapshots of the velocity profile for
ω0 = 0.0015 and �0 = 0.5 (a) and the thickness of boundary layer lb
for various oscillation frequencies ω0 (b). In (b), the solid line, dashed
line with squares, and dashed line with triangles show the results for
the linear regime (�0 
 1), �0 = 0.5, and �0 = 0.02, respectively.
The dotted line in (b) shows the slope of ω−1/2 for the Newtonian
fluid.

loss modulus shown in Fig. 2. As is seen in Fig. 2, at the low
frequency (i.e., ω � τ−1

R ), the storage modulus G′ is much
smaller than the loss modulus G′′ and the dynamic viscosity
η′, which is calculated as G′′/ω, becomes almost constant.
Thus, the slope of ω−1/2 for the Newtonian fluid arises at the
low frequency in Fig. 4(b). The thickness of the boundary
layer of the present polymer melt is close to that of the linear
viscoelastic fluid at low oscillation frequencies for the small
strain amplitude of the system, �0 = 0.02; however, as the
oscillation frequency increases, the boundary layer of the melt
becomes much thinner than that of the viscoelastic fluid. The
thickness of boundary layer for the large strain amplitude,
�0 = 0.5, is thinner than that for the small strain amplitude,
�0 = 0.02, at any of the oscillation frequencies. These features
are caused by the shear thinning of the melt because the
local strain becomes larger near the oscillating plate as the
oscillation frequency ω0 and the strain amplitude of the system
�0 increase. Due to the emergence of the boundary layer, the
rheological properties of the melt become more complex in
nature, as we see below.

C. Storage and loss modulus

In this section, we investigate the “local” rheological
properties of the melt in the slab in terms of the storage
modulus G′ and loss modulus G′′. The local moduli are
calculated from the first harmonics of the Fourier series of the
time evolutions of the local shear stress and strain. By using
the Fourier transform of the time evolution of the local strain
γ (y,t) and selecting the mode of the oscillation frequency
of the plate ω0, we can approximate the time evolution of
the local strain γ in the form of γ = γ0(y) cos[ω0t + ψ(y)].
Here, γ0(y) is the strain amplitude, and ψ(y) is the phase
retardation. In the same way, the local shear stress can also
be written as σxy = σ ′(y) cos(ω0t + ψ) − σ ′′ sin(ω0t + ψ).
The local storage modulus and loss modulus are obtained as
G′(y) = σ ′(y)/γ0(y) and G′′(y) = σ ′′(y)/γ0(y), respectively.
We note that the contribution of the higher harmonics is also
important in the LAOS regime and is actually detected in
the present simulations. However, the amplitude of the higher
harmonics is smaller than that of the first harmonics; the
fractional power spectrum of the higher harmonics of the local
shear stress is at most 2.8% in the present simulations. Thus,
the storage and loss modulus represent the basic viscoelastic
properties of the melt in the slab. (The nonlinear effect of
higher harmonics is investigated in the next section.) In the
present section, we fix the strain amplitude of the system as
�0 = 0.5 and change the oscillation frequency of the plate ω0

variously in order to investigate the dependency of the local
rheological property on the oscillation frequency of the plate.

Figure 5 shows the dependency of the storage and loss
modulus on the oscillation frequency, G′ and G′′ vs ω0

and that of the strain and strain rate amplitudes on the
oscillation frequency, γ0 and γ̇0 vs ω0, at a fixed position.
Figure 5(a) shows the storage and loss modulus versus
oscillation frequency and the strain and strain rate amplitudes
versus oscillation frequency at far distances from the plate and
Fig. 5(b), those at the near distances from the plate. It can
be seen that, at the high oscillation frequency, say ω0 = 0.01,
the storage modulus G′ is larger than the loss modulus G′′
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FIG. 5. (Color) The local dynamic rheology, G′, G′′ vs ω0, and the amplitude of local strain and that of the local strain rate, γ0 and γ̇0,
respectively, versus the oscillation frequency ω0 far from the plate (a), e.g., y = 1309 (blue), y = 771 (green), and 381 (red), and near the plate
(b), e.g., y = 185 (blue), y = 88 (green), and 10 (red). The black lines show the linear moduli depicted in Fig. 2. The open circles in the upper
figure of (a) show the crossover points of G′ and G′′. The dotted lines in the lower figure of (a) show γ0 = 0.02.

at large distances from the plate, e.g., y = 1309 (blue) and
771 (green) in Fig. 5(a), while G′ is smaller than G′′ as the
distance decreases, e.g., y = 381 (red) in Fig. 5(a) and at
smaller distances in Fig. 5(b). In close vicinity to the plate,
e.g., y = 10 in Fig. 5(b), the viscosity is quite dominant,
G′′ � G′. Thus, the local rheological properties of the melt
vary considerably according to the local flow fields such
that three different rheological regimes, i.e., the viscous fluid
regime, the liquidlike viscoelastic regime, and the solidlike
viscoelastic regime, are formed over the rapidly oscillating
plate. On the contrary, at a low oscillation frequency, say
ω0 = 0.001, the differences of the storage modulus G′ and
loss modulus G′′ are not as large as those at a high oscillation
frequency at any distance, and the loss modulus G′′ is larger
than the storage modulus G′. The differences of local modulus
between the different distances are also not as large as those
at a high oscillation frequency. Thus, the local rheological
properties of the melt vary moderately between the plates, and
the melt has liquidlike viscoelastic behaviors throughout the
slab.

At large distances from the plate [Fig. 5(a)], the local strain
γ0 monotonically decreases as the oscillation frequency ω0

increases because, as we have seen in Fig. 4, a thin boundary
layer forms over the rapidly oscillating plate, and the thickness
of the boundary layer becomes thinner as the oscillation
frequency ω0 increases. Thus, the local moduli deviate from
the linear moduli more at the lower oscillation frequencies due
to the shear thinning, while they are rather close to the linear
values at the high oscillation frequencies.

The shear thinning behaviors of the local moduli to the
local strain amplitude γ0 are shown in Fig. 6. It is seen that the

storage modulus G′ decreases when the local strain γ0 is larger
than about 2%, while the loss modulus G′′ starts to decrease
at a larger strain amplitude (γ0 > 2%). The nonmonotonic
behavior of the loss modulus G′′ on the strain amplitude γ0

is also observed at a high oscillation frequency [Fig. 6(c)];
the weak shear thickening occurs at a small strain amplitude
γ0 � 0.1, and then, the shear thinning occurs at a large strain
amplitude γ0 > 0.1. The storage modulus G′ decreases more
rapidly than the loss modulus G′′. These features of the shear
thinning behaviors can explain the crossover behavior of the
local storage modulus and loss modulus shown in Fig. 5(a). At
the high oscillation frequencies, both local moduli are close to
the linear moduli because the local strain amplitude is smaller
than about 2%. In the linear regime, the storage modulus G′ is
larger than the loss modulus G′′ at high oscillation frequencies.
The local storage modulus G′ deviates from the linear modulus
as the oscillation frequency ω0 decreases, and the local strain γ0

exceeds about 2%, while the local loss modulus G′′ remains
close to the linear modulus at γ0 ∼ 2%. Thus, the storage
modulus G′ crosses over the loss modulus G′′ at a certain
oscillation frequency, say a crossover frequency ωc

0. The loss
modulus G′′ also starts to decrease as the oscillation frequency
ω0 is smaller than the crossover frequency ωc

0. However,
because the storage modulus G′ decreases more rapidly than
the loss modulus G′′ as the strain amplitude γ0 increases, the
storage modulus G′ is smaller than the loss modulus G′′ for
oscillation frequencies smaller than the crossover frequency,
ω0 < ωc

0.
Figure 7 shows the local Deborah numbers, Deα and

DeR , versus the oscillation frequency ω0. The local Deborah
numbers, Deα and DeR , are defined by the products of the
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FIG. 6. The local storage and loss moduli, G′ and G′′, vs the local strain amplitude γ0 for ω0 = 6.1 × 10−3 (a), 1.2 × 0−2 (b), and
2.5 × 10−2 (c).

oscillation frequency ω0 and the shear-dependent α relaxation
time τα(γ̇0), Deα = ω0τα(γ̇0), and the shear-dependent Rouse
relaxation time τR(γ̇0), DeR = ω0τR(γ̇0), respectively. Here,
we use the fitting functions for the relaxation times τα and
τR for the simple shear flows obtained in Ref. [20]. It is seen
that the local Deborah numbers Deα are equal to unity around
the crossover frequencies for each local moduli ωc

0. In the
lower figure in Fig. 5(a), the local strain rate γ̇0 increases as
the distance from the plate y decreases, while it does not
so much depend on the oscillation frequency ω0 but only
slightly decreases as the oscillation frequency ω0 increases.
The α relaxation time τα(γ̇ ) is the monotonically decreasing
function on the strain rate γ̇ . Hence, in Fig. 7(a), the local
Deborah number Deα decreases as the distance from the plate
y decreases but does not alter the shape of the curve very much,
such that the oscillation frequency at which the local Deborah
number Deα is equal to unity, i.e., the crossover frequency ωc

0,
shifts to a higher value as the distance y decreases. As the local
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FIG. 7. (Color) The local Deborah numbers defined as Deα =
ω0τα(γ̇0) and DeR = ω0τR(γ̇0) far from the plate (a) and near the plate
(b). Here, τα, R(γ̇0) are the α and Rouse relaxation times depending
on the local strain rate γ̇0. We use the formulas for τα, R(γ̇ ) that are
obtained by the molecular dynamic simulations of the model polymer
melt in steady shear flows [20]. The solid lines show Deα and the
dashed lines show DeR . The black lines show the Deborah numbers
defined via the oscillation frequency ω0 and the relaxation times of
the melt in the quiescent state τα, τR

(0). The downward arrows show
the crossover frequencies ωc

0 at each distance from the plate, which
are also shown by open circles in Fig. 5(a).

Deborah number Deα is less than unity, the loss modulus G′′
also decreases as the oscillation frequency ω0 decreases as is
seen in Fig. 2 for the linear moduli.

The behaviors of the storage modulus and loss modulus
and the amplitude of the local strain and strain rate versus
oscillation frequency near the plate are shown in Fig. 5(b).
The dependency of the local strain and strain rate, γ0 and γ̇0,
on the oscillation frequency ω0 near the plate is quite different
from those far from the plate. The local strains γ0 at y = 88 and
185 slightly increase with the oscillation frequency in the low
oscillation frequencies, e.g., ω0 � 0.002, but decrease as the
oscillation frequency increases in ω0 � 0.002, while the local
strain at y = 10 monotonically increases with the oscillation
frequency. The local strain rate γ̇0 monotonically increases
with the oscillation frequency in close vicinity of the plate,
i.e., y = 88 and 10, while the strain rate at y = 185 shows
the nonmonotonic dependency on the oscillation frequency.
The spatial variations of local strains and local strain rates
are small at low oscillation frequencies and are large at high
oscillation frequencies. This feature also holds for the local
moduli.

In Fig. 7(b), we show the local Deborah numbers near
the plate. The nonmonotonic dependency of the local storage
modulus G′ on the oscillation frequency ω0, which can be
seen in Fig. 5(b), e.g., G′ at y = 88 and 185, might be related
to the local Deborah number DeR in Fig. 7(b). As can be
seen in Fig. 5(b), the local strain rate γ̇0 rapidly increases
as the oscillation frequency ω0 increases at low oscillation
frequencies; however, at high oscillation frequencies, it shows
a different dependency on the oscillation frequency ω0. The
local strain rate slightly decreases at y = 185, does not
change much at y = 88, and monotonically increases at y = 10,
as the oscillation frequency ω0 increases. The Rouse relaxation
time τR monotonically decreases as the strain rate γ̇0 increases.
Hence, the local Deborah number DeR , DeR = ω0τR(γ̇0),
decreases even if the oscillation frequency ω0 increases at
low oscillation frequencies because the Rouse relaxation time
τR rapidly decreases. On the contrary, at high oscillation
frequencies, DeR increases at y = 88 and 185 as the oscillation
frequency ω0 increases because τR dose not change much
or rather increases slightly. The elasticity grows as the local
Deborah number DeR , but it becomes negligible as DeR is less
than unity. Thus, the local storage modulus G′ at y = 88 and
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FIG. 8. The dynamic viscosity η′ vs the amplitude of the strain
rate γ̇0 for ω0 = 3.1 × 10−3, 1.2 × 10−2, and 2.5 × 10−2. Here, η′ =
G′′/ω and γ̇ = ω0γ0.

185 in Fig. 5(b) varies according to the local Deborah number
DeR , but the local storage modulus G′ at y = 10 becomes
negligibly small except at low oscillation frequencies.

In Fig. 8, we also show shear thinning behavior of the
local dynamic viscosity η′(=G′′/ω0) to the local strain rate
γ̇0 for various oscillation frequencies, i.e., ω0 = 1.5 × 10−3,
6.1 × 10−3, 1.2 × 10−2, and 2.5 × 10−2. It is seen that, at large
strain rates, e.g., γ̇0 � 0.01, the dependence of the dynamic
viscosity η′ on the oscillation frequency ω0 is weakened due to
which the results for different oscillation frequencies coincide
with each other for γ̇0 � 0.1. A second Newtonian regime
is also observed at very large strain rates, e.g., γ̇0 > 0.4. We
also find that the slope of the shear thinning is similar to that
observed in steady shear flows, in which the slope is about
−0.7 [20]. Thus, the shear thinning behavior similar to that of
the steady shear flows is observed in the vicinity of the plate
at high oscillation frequencies.

We also show a diagram of the loss tangent tan δ, which is
defined as the ratio of the viscosity to the elasticity, tan δ =
G′′/G′, for different oscillation frequencies and local strain
rates in Fig. 9. In the diagram, the dashed and dotted lines
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-1
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5
2
1
0.5

log10 ω0

lo
g 1

0
(γ̇

0
)

tan δ

τR(γ̇0)−1=ω0

τα(γ̇0)−1=ω0

Near the plate

Far from
the plate

FIG. 9. (Color) The amplitude of the loss tangent tan δ, which is
defined as tan δ = Ḡ′′/Ḡ′, for different oscillation frequencies and
local strain rates. Here, Ḡ′ and Ḡ′′ are averages of the local storage
modulus and loss modulus provided that the local strain rate is in each
interval with 0.5 logarithmic scale centered at the value of the local
strain rate of each plot, respectively. On the dashed and dotted lines,
the inverses of the shear-dependent α and Rouse relaxation times,
τα(γ̇ ) and τR(γ̇ ), equal the oscillation frequency, respectively.

show that the inverses of the shear-dependent α and Rouse
relaxation times, τα(γ̇ )−1 and τR(γ̇ )−1, equal the oscillation
frequency ω0; i.e., on the dashed and dotted lines, the local
Deborah numbers Deα and DeR are equal to unity, respectively.
The upper side of the diagram indicates the smaller distance
from the plate while the lower side indicates the larger distance
because the local strain rate decreases as the distance from the
plate increases. No symbols are plotted for large and small
strain rates at low oscillation frequencies because no data are
available given that the spatial variations of local strain rates
are small at low oscillation frequencies as we have seen in
Fig. 5. Below the dashed line, the loss tangent is less than
unity, while above the dashed line, the loss tangent is larger
than unity. Thus, the crossover of the storage modulus and
loss modulus takes place at the dashed line. Near or above the
dotted line, the loss tangent is quite large, and the elasticity
may be negligible. Hence, the melt behaves as a viscous fluid
provided that the value of the local strain rate is larger than
or close to values that lie on the dotted line. Thus, the melt
forms three different rheological regimes, i.e., the solidlike
viscoelastic, liquidlike viscoelastic, and viscous fluid regimes,
according to the local strain rates and oscillation frequencies.

D. LAOS analysis

As the local strain increases near the oscillating plate,
the amplitude of higher harmonics of the local macroscopic
quantities becomes large, and thus, the time evolution of the
local quantities deforms evidently from that of pure sinusoidal
curves. In the present section, we carry out LAOS analysis
[23–25] to examine the nonlinear effects of higher harmonics
on the local macroscopic quantities.

Figure 10 shows the power spectra of the local shear
stress and strain rate, |σ̃xy(ω)|2 and | ˜̇γ (ω)|2, in the rapidly
oscillating plates with an oscillation frequency ω0 = 0.025.
Here, σ̃xy(ω) and ˜̇γ (ω) represent the Fourier coefficients of
the shear stress and strain rates, respectively. The peaks of
the higher harmonics are detected in the odd harmonics, 3ω0,
5ω0, . . ., near the oscillating plate but disappear far from the
plate. The higher harmonics arise both in the local stress and
strain rate because the higher harmonics of the local strain
rate is induced by the local stress with the higher harmonic
contribution and the higher harmonics of the local stress is
also induced by that local strain rate.

Figure 11 shows the spatial variation of the fractional
amplitude of the third harmonics to the basic oscillation for
various oscillation frequencies ω0 at �0 = 0.5. The horizontal
axis is the normalized distance with respect to the thickness of
boundary layer shown in Fig. 4. Even though the local strain
monotonically increases while approaching the oscillating
plate, the fractional amplitude of the third harmonics rather
decreases rapidly in the boundary layer, i.e., y � lb. This is
caused by the boundary effect because the velocity at the
oscillating plate is purely sinusoidal, and higher harmonics are
not allowed in the local strain rate on the oscillating plate. Thus,
the contribution of the higher harmonics for the local stress is
depressed in the boundary layer. The fractional amplitude of
the third harmonics takes the maximum value at the outside of
the boundary layer for each oscillation frequency, y > lb, and
then decreases as the normalized distance increases. We also
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FIG. 10. The power spectra of the local shear stress and strain rate, |σ̃xy(ω)|2 (the upper figures) and | ˜̇γ (ω)|2 (the lower figures), at different
positions for ω0 = 0.025 and �0 = 0.5.

show the fractional amplitude of the third harmonics versus
local strain amplitude at different strain amplitudes of the
system, �0 = 0.5 and 0.02, for various oscillation frequencies
ω0 in Fig. 12. For a large strain amplitude of the system,
�0 = 0.5, the fractional amplitude of the third harmonics
has a maximum value around the position where the local
strain amplitude is unity, γ0 � 1, and rapidly decreases in the
thickness of boundary layer, y � lb. On the contrary, for a
small strain amplitude of the system �0 = 0.02, the maximum
occurs not at γ0 � 1 but around the position that the value
of the distance from the plate coincides with the value of
the thickness of boundary layer, y � lb. For �0 = 0.02, the
position at which the local strain amplitude is unity lies at the
inside of the boundary layer. Thus, the intrinsic maximum of
the fractional amplitude of the third harmonics for γ0 � 1 is
suppressed inside the thickness of boundary layer, y � lb.

Figure 13 shows the Lissajous-Bowditch curves of local
shear stress σxy versus local strain γ at different oscillation
frequencies of the plate ω0 with �0 = 0.5. The dotted line
(green) indicates a perfect ellipse drawn by the storage and

0 1 2 3 4 5 6 7 80
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ω0=3.1*10-3
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(3

ω
0
)|2

/
σ̃

x
y
(ω

0
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FIG. 11. (Color online) The spatial variation of the fractional
amplitude of the third harmonics to the first harmonics of the
local shear stress, |σ̃xy(3ω0)|2/|σ̃xy(ω0)|2, for various oscillation
frequencies of the plate ω0 at �0 = 0.5. The horizontal axis shows
the distance normalized to the thickness of the boundary layer at each
oscillation frequency ω0, shown in Fig. 4.

loss modulus calculated from the Fourier coefficients of the
first harmonics. Thus, the deviation of the Lissajous-Bowditch
curve from the pure ellipse represents the contribution of the
higher harmonics in each figure. At each oscillation frequency,
the deviation is more evident at some distance away from
the plate than in close vicinity to the plate. This agrees
with the fact that the contribution of the higher harmonics is
depressed inside the boundary layer and that the fractional
amplitude of the third harmonics assumes a maximum at
the outside of boundary layer. In Fig. 13, the thicknesses of
the boundary layer lb are lb = 223, 45, and 20 for ω0 =
1.5 × 10−3, 6.1 × 10−3, and 0.025, respectively. We also show
the minimum-strain modulus G′

M and large-strain modulus G′
L

defined as G′
M = dσxy/dγ |γ=0 and G′

L = σxy/γ |γ=γ0 [25],
respectively. The minimum-strain modulus G′

M yields the
elasticity at the point where the change of strain rate is
zero, dγ̇ /dt = 0, and the large-strain modulus G′

L yields the

10-1 100 1010
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γ0

FIG. 12. (Color online) The fractional amplitude of the third
harmonics to the first harmonics of the local shear stress,
|σ̃xy(3ω0)|2/|σ̃xy(ω0)|2, versus the amplitude of local strain, γ0, at
the different amplitudes of strain of the system �0 = 0.5 and 0.02
for various oscillation frequencies ω0. The shape of the symbol
represents the oscillation frequency ω0, which is the same as in
Fig. 11. The downward and upward arrows show the position of
y = lb for each oscillation frequency of the plate at �0 = 0.5 and
�0 = 0.02, respectively.
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FIG. 13. (Color) The Lissajous-Bowditch curves of the local shear stress σxy vs the local strain γ at different oscillation frequencies of
the plate ω0 with �0 = 0.5. The dashed line (blue) shows the minimum-strain modulus (or tangent modulus) G′

M , G′
M = dσxy/dγ |γ=0, and

the dash-dotted line (red) shows the large-strain modulus (or scant modulus) G′
L, G′

L = σxy/γ |γ=γ0 . The dotted curve (green) shows the pure
ellipse formed by the storage and loss modulus for the first harmonics.

elasticity at the point where the instantaneous strain rate is
zero, γ̇ = 0. Both the minimum-strain G′

M and large-strain
moduli G′

L coincide with the elastic modulus G′ in the
linear regime, G′

M,G′
L → G′ for small γ0. It is seen that the

large-strain modulus G′
L is larger than the minimum-strain

modulus G′
M within a cycle of Lissajous-Bowditch curves at

the close vicinity of the plate, e.g., y = 10. Thus, intracycle
stiffening occurs in close vicinity of the plate, although the
storage modulus G′ exhibits shear-thinning behavior for the
local strain amplitude γ0, i.e., intercycle softening (see also
Fig. 6).

Finally, we show the 3D Lissajous-Bowditch curve of
the local shear stress σxy , local strain γ , and local strain

rate γ̇ near the rapidly oscillating plate (see Fig. 14). The
2D projections on each plane are also shown. The cycle of
γ̇ -σxy curve is very narrow, and a secondary loop [26] is
observed at a large instantaneous strain rate. The γ -γ̇ curve
also deviates from conforming to a perfect ellipse because the
higher harmonics are also involved in the local strain and strain
rate.

IV. SUMMARY

We investigated the dynamic rheology of a model polymer
melt in nonuniform oscillatory shear flows under the transient
force between rapidly oscillating plates by using a hybrid

031501-9



SHUGO YASUDA AND RYOICHI YAMAMOTO PHYSICAL REVIEW E 84, 031501 (2011)

-20

-10

0

10

20

-0.5
-0.25

0
0.25

0.5

-2

-1

0

1

2

σxy

γ
γ̇

σxy

γ

σxy

γ̇

γ̇

γΓ0=0.5, ω0=3.1×10−3, y=29
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simulation of the molecular dynamics and computational fluid
dynamics. In the quiescent state, the melt is in a supercooled
state, where the stress relaxation function exhibits a stretched
exponential form on the time scale of the α relaxation time τα

and then follows the Rouse relaxation function characterized
by the Rouse relaxation time τR (see Fig. 1).

In the rapidly oscillating plates, the melt forms a thin
boundary layer over the plates due to the transient force (see
Fig. 4) such that the dynamic rheology of the melt spatially
varies considerably according to the local flow field. At a
high oscillation frequency, the melt forms three different
rheological regimes, i.e., the viscous fluid regime (G′ 

G′′), the liquidlike viscoelastic regime (G′ < G′′), and the
solidlike viscoelastic regime (G′ > G′′), over the oscillating
plates according to the local Deborah number, while at a
low oscillation frequency, the spatial variation of the storage
modulus and loss modulus is rather small, and the loss modulus

is larger than the storage modulus, G′ < G′′, at any distance
from the plate.

The dependency of the local moduli on the oscillation
frequency, G′ and G′′ vs ω0 at a fixed position changes
according to the distance from the plate. Far from the plate
[Fig. 5(a)], the local strain γ0 decreases as the oscillation
frequency ω0 increases such that the local moduli deviate
from the linear moduli larger at a low frequency than at
a high oscillation frequency. Near the plate [Fig. 5(b)], the
dependency of the local strain and strain rate on the oscillation
frequency is quite different from that far from the plate, e.g.,
in close vicinity to the plate, the local strain and strain rate
monotonically increase as does the oscillation frequency. As
the local strain rate becomes larger than about 0.01 near
the plate, the shear thinning of the dynamic viscosity is
increased, and the shear thinning behavior becomes similar
to that observed in steady shear flows (see Fig. 8).

The diagram of the loss tangent of the melt for different
oscillation frequencies and local strain rates is also shown in
Fig. 9. It is seen in the diagram that the melt generates different
rheological regimes according to the oscillation frequency and
local strain rates.

We also investigate the nonlinear rheological properties in
the LAOS regime in the vicinity of the oscillating plate. The
odd higher harmonics, 3ω0, 5ω0, . . ., are detected in the power
spectra of the local macroscopic quantities near the oscillating
plate (see Fig. 10). The fractional amplitude of the higher
harmonics rapidly decreases inside the boundary layer while
approaching the oscillating plate, although the local strain
increases monotonically (see Fig. 11). This is because higher
harmonics are not allowed in the velocity on the oscillating
plate due to a nonslip boundary, and thus, the higher har-
monics of local quantities are suppressed within the boundary
layer.

The Lissajous-Bowditch curve of the local shear stress
versus local strain changes the shape due to the contribution
of the higher harmonics depending on the distance from the
plate. The elastic modulus exhibits shear-thinning behavior
between the different positions (interthinning) (see Fig. 6),
but shear-thickening behavior is observed in a cycle of the
Lissajous-Bowditch curve at a fixed position in the vicinity of
the plate (intrathickening) (see Fig. 13).
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