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Evaporation of solutions and colloidal dispersions in confined droplets
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We present a model that describes the drying of solutions and colloidal dispersions from droplets confined
between two circular plates. This confined geometry, proposed by Clément and Leng [Langmuir 20, 6538 (2004)],
casts a perfect control of the evaporation conditions, and thus also of the concentration kinetics of the solutes
in the droplet. Our model, based on simple transport equations for binary mixtures, describes the concentration
process of the solute inside the droplet. Using dimensionless units, we identify the different numbers that govern
the concentration field of the solute, and we detail how to extract kinetic and thermodynamic information on
the binary mixture from such drying experiments. We finally discuss, using numerical resolution of the model
and analytical arguments, several specific cases: dilute solutions, a colloidal hard sphere dispersion, and a binary
molecular mixture.
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I. INTRODUCTION

Evaporation of the solvent from a solution or a colloidal
dispersion is a major out-of-equilibrium route for crossing
dense phases starting from dilute states. Such a route is often
explored thanks to the drying of a sessile droplet on a substrate
[1]. Despite its apparent simplicity, such an experiment leads to
a wide complexity (e.g., pinning of the contact line, divergence
of the evaporation flux, thermal-induced Marangoni flows [2]),
and a complete model describing the general case of the
drying of mixtures up to dense states is missing. Moreover,
tuning the kinetics of evaporation is often a challenge in such
experiments. To overcome these difficulties, several groups
proposed confined geometries for (1) bringing a kinetic control
on the evaporation conditions and (2) being able to develop
simple models to describe the evaporation process from
dilute up to dense mixtures. Among the strategies proposed,
one can cite the solidification of dispersions or polymer
solutions confined between parallel plates as thin liquid
films [3–5] (see also the review [6] for polymer solutions),
or even continuous evaporation in nanoliter chambers using
microfluidics [7,8].

Following a similar strategy, Clément and Leng proposed
and investigated the drying of droplets squashed between
two circular plates (see Fig. 1) [9]. Typically, droplets with
volumes ranging from 0.5 to 2 μL adopt a pancake shape with
radii Ri ≈ 1–4 mm when confined between wafers separated
by spacers h ≈ 50–100μm. This axis-symmetrical confined
geometry allows a neat control of the vapor removal from the
edge of the droplet Ri toward the edge of the wafer Rw and
therefore provides a simple way to tune the drying kinetics
by changing the size of the circular plates. Moreover, this
two-dimensional (2D) geometry leads to an easy observation
of the drying process, and wettability of the circular plates
can be changed due to appropriate coatings deposited using
standard spin-coating processes.

Clément and Leng investigated the evaporation of pure
liquids in such a geometry and demonstrated that the temporal
evolution of the droplet area A(t) gives access to the gas
diffusivity of the solvent molecules in air [9]. Importantly,

they also showed that the evaporation kinetics is modified in
the case of molecular solutions, such as salty water, and that
a precise monitoring of A(t) leads to the determination of
the activity of the mixture. More recently, Leng investigated
the drying of colloidal hard sphere (HS) dispersions using the
same geometry [10]. In this case, drying leads to the formation
of a dense crust at the edge of the drop. This shell then invades
the droplet as drying continues and ultimately induces a buck-
ling instability. Similar experiments were also performed by
Pauchard et al. to investigate specifically this instability [11].
The observed phenomenology for such colloidal dispersions
differs strongly from the drying of molecular mixtures, as the
diffusive transport of the solutes (colloids vs molecules) is
different.

The aim of the present work is to provide a simple model
based on classical transport equations for binary mixtures that
can describe the drying kinetics A(t) and the concentration
field of solute φ(R,t). Such a model should describe the evap-
oration of the solvent from binary mixtures such as colloidal
dispersions, polymer solutions, or molecular solutions, for
which the solute is supposed to be nonvolatile. In the following,
we assume several hypotheses to derive a simple model whose
resolution does not require complex numerical techniques. We
also show how experimental measurements of the evolution of
the droplet area A(t) and of the concentration field of solute
φ(R,t), confronted with numerical resolution of the model,
should provide kinetic and thermodynamic information on the
binary mixture (activity and mutual diffusion coefficient; see
Sec. II C).

We then discuss several cases that are often explored
experimentally: dilute solutions, a HS colloidal dispersion, and
a molecular mixture. In the first case, we provide an analytical
formula that describes correctly the concentration field of
solute. For the colloidal dispersion, our model captures the
formation of a dense crust that invades the inner of the droplet
during drying. Finally, we illustrate the case of molecular
solutions using numerics in the case of water-glycerol mixtures
for which the evolution of the transport properties with the
solute concentration (mutual diffusion coefficient), as well as
the activity of the mixture, are well known.
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FIG. 1. (a) Three-dimensional view of the geometry of the
confined droplet squashed between two circular plates separated by
a distance h. (b) Top view: Ri(t) is the droplet radius, Rw that of the
plates, ae the external humidity condition, and φ� the concentration
at the interface. The gray scale illustrates the concentration gradients
of solute inside the droplet, and of the solvent in the vapor phase.

II. A SIMPLE MODEL FOR THE DRYING
OF CONFINED DROPLETS

A. Transport equations and boundary conditions

We first consider a typical experiment as described in Fig. 1.
A droplet of a solution (or a dispersion) is confined between
two parallel and circular wafers of radius Rw. In the following,
we consider binary mixtures only, with a volatile solvent
and a nonvolatile solute that does not present any specific
interactions with the wafers. The droplet keeps a circular
shape during the evaporation of the solvent, due to its surface
tension, and also because we assume there are no pinning of
the contact line (this is indeed observed experimentally as soon
as wafers with appropriate coatings are used [12]). Moreover,
confinement (h � Ri) also minimizes effects of contact line
hysteresis (as compared to the case of sessile droplets) because
receding values of the contact angle are rapidly reached upon
evaporation (the volume of the meniscus ∼Rih

2 is small
compared to the droplet’s one ∼R2

i h). We also suppose that
diffusion homogeneizes the concentration fields in the droplet
and in the vapor phase along the z direction, leading to a
simple one-dimensional (1D) axis-symmetrical description.
This situation is easily obtained when the height h separating
the wafers is small compared to the other dimensions.

Inportantly, we restrict our model to quiescent and isother-
mal droplets during drying. This may be a strong limitation
since Rayleigh-Bénard-Marangoni (thermal or solutal) insta-
bilities that induce recirculation flows are often observed in
similar drying experiments (see, for instance, Refs. [13,14]
for sessile droplets, Ref. [15] for three-dimensional droplets,
and Ref. [16] for evaporation from thin films, and references
therein). Thermal gradients coming from evaporation are
generally small in the case of slightly volative solvents (e.g.,
<0.01 K for water in a sessile droplet; see Ref. [14]), and
they have probably no significant effects on the transport

properties of the mixture considered (isothermal droplet), but
often induce Marangoni recirculation flows [13,14]. However,
in the confined geometry considered here, such instabilities
have only been observed in the case of water-surfactant
solutions [17], but not for colloidal dispersions [10] and for
several other aqueous solutions [12]. These results point to
the fact that the observed instabilities probably arise from
solutal gradients and unveil the role of confinement to prevent
thermal Marangoni flows, as noted by Leng in Ref. [10]. An
experimental and theoretical analysis of such instabilities in
this specific geometry is left for a future work, and we assume
in the following a quiescent and isothermal droplet during
drying.

1. Transport equations in the vapor phase

We define cS the molar concentration of solvent in the
vapor state, ca that of air, xS and xa their corresponding molar
fractions. We assume, as done usually, perfect gas conditions,
i.e., cS + ca = c = const. The molar solvent flux takes the
classical form [18–20]:

nS = cSvm − D̃c∇xS, (1)

where D̃ is the diffusion coefficient of the solvent in the vapor
phase, and vm the molar-averaged velocity defined by

cvm = na + nS, (2)

where na is the molar air flux in the gas phase.

2. Transport equation in the liquid phase

We consider a binary mixture composed of a volatile solvent
and a nonvolatile solute, and we restrict our analysis to the case
of a simple mixture; i.e., both constituents of the mixture are
incompressible. The volume-averaged velocity vv is defined
as [18–20]

vv = j + jS, (3)

where j and jS are the solute and solvent volumic fluxes.
For the case of a simple mixture, the mass density is a linear
function of the solute volume fraction φ, and the volume-
averaged velocity obeys divvv = 0 [21]. For a quiescent
droplet one has thus vv = 0, and the volumic flux of solute
is [18–20]

j = − jS = −D(φ)∇φ, (4)

where D(φ) is the mutual diffusion coefficient of the mixture
in the reference frame of the volume-averaged velocity (also
called long-time collective or gradient diffusion coefficient in
the context of colloidal dispersions). The conservation of the
solute in the droplet leads to

∂tφ = div[D(φ)∇φ]. (5)

The mutual diffusion coefficient D(φ) is intimately related to
bulk thermodynamic and kinetic properties of the mixture.
In the case of a colloidal dispersion, for instance, D(φ)
strongly depends on the interactions (through the osmotic
compressibility), but also on the hydrodynamic interactions
[22,23] (see Sec. III B).
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3. Boundary conditions

The jump mass balance at the liquid-gas interface moving
at a velocity Ṙi leads to the conditions [24]

n�
a = c�

aṘi, (6)

j� = φ�Ṙi, (7)

j�
S − (1 − φ�)Ṙi = νS(n�

S − c�
SṘi), (8)

where νS is the molar volume of the solvent in the liquid
state, and the symbol � indicates values taken at the interface
R = Ri(t). From the above conditions, the velocity of the
interface is related to the flux of solvent in the gas phase:

Ṙi = νS

νSc
�
S − 1

n�
S. (9)

Finally, we assume a constant humidity at the edge of the
wafer, so that xS(Rw) = xw

S is imposed (we use here the term
humidity to denote the concentration of the solvent in air, even
if the later is not water).

B. Quasistationary approximation:
Evolution of the droplet area

We now suppose that the droplet evaporation is very slow
compared to the transport in the vapor phase (only slightly
volatile solvents are thus considered x�

S � 1). Concentrations
in the gas phase thus quickly reach a steady state, on a time
scale given by R2

w/D̃, and the air and solvent fluxes verify
divna = divnS = 0. The above mass balance conditions lead
to

Rna = Ri(c − c�
S)Ṙi . (10)

According to Eq. (1), the solvent flux in the vapor phase is
now

nS = cxS

1 − x�
S

1 − xS

RiṘi

R
− D̃c

∂RxS

1 − xS

≈ −D̃c
∂RxS

1 − xS

, (11)

since Ṙi � D̃/Ri (quasistationary approximation). Finally,
the flux of solvent in the gas phase can be calculated from
the integration of the above equation using the boundary
conditions at Ri(t) and Rw:

nS = −D̃c

R ln(Ri/Rw)
ln

(
1 − xw

S

1 − x�
S

)
.

The mass balance at the interface [see Eq. (9)] leads now to
the droplet evolution:

Ṙi = νS

νSc
�
S − 1

−D̃c

Ri ln(Ri/Rw)
ln

(
1 − xw

S

1 − x�
S

)
, (12)

which depends explicitly on the molar concentration x�
S of

solvent molecules at the interface. This last equation is an
equivalent in a 2D geometry of the classical problem of
evaporation in a column (often called the Stefan tube [18–20]).

For simplicity (without loss of generality), we consider
slightly volatile solvents (x�

S � 1), and for which there is a
large difference between the densities of the vapor and of the
liquid state, i.e., νSc

�
S � 1 (x�

S ≈ 0.03 and νSc
�
S ≈ 10−5 for

pure water at room temperature). The droplet evolution during
evaporation thus takes the simpler form:

Ṙi ≈ νSD̃
(
c�
S − cw

S

)
Ri ln(Ri/Rw)

= νSD̃csat
S (a(φ�) − ae)

Ri ln(Ri/Rw)
, (13)

where csat
S is the molar concentration at saturation of the pure

solvent in the gas phase, a(φ�) the activity of the mixture at the
interface, and ae = cw

S /csat
S the relative humidity at the edge of

the wafer. This last equation is now similar to the one derived
by Clément and Leng [9] on the basis of a purely diffusive
transport in the gas phase, but with the important following
difference: The evolution of Ri(t) depends now on the activity
of the mixture at the interface, i.e., at the concentration φ�.

This last equation also shows that the drying kinetics of
the droplet roughly scales as R2

0/νSD̃csat
S [see Eq. (24) later

in the text for the prefactors in the case of a dilute solution
or dispersion]. The quasistationary approximation is therefore
valid when the transport in the gas phase (on a time scale
R2

w/D̃) is faster than the drying kinetics, i.e., for νSc
sat
S �

(R0/Rw)2.

C. Final model: Link to thermodynamic and kinetic
properties of the mixture

The final model and the boundary condition (7) now read

Ṙi = νSD̃csat
S [a(φ�) − ae]

Ri ln(Ri/Rw)
, (14)

∂tφ = div(D(φ)∇φ), (15)

−D(φ�)∂Rφ� = φ�Ṙi . (16)

An experiment measuring precisely the concentration field
of solute φ(R,t), and the evolution of the droplet radius
Ri(t) during drying, should a priori lead to estimations of
both activity a(φ) and mutual diffusion coefficient D(φ),
i.e., thermodynamic and kinetic properties of the mixture.
In this sense, such an experiment is similar to other out-of-
equilibrium routes such as sedimentation, ultrafiltration, or
microevaporation [25,26], but with a facilitated observation,
and for solutes ranging from molecules to colloids.

D. Dimensionless model

We define the following dimensionless variables:

r = R/R0, α = (Ri(t)/R0)2, β = (R0/Rw)2,

τ = t/τd,D̂(φ) = D(φ)/D0,

with

τd = R2
w

/(
4νSc

sat
S D̃

)
,

and where R0 is the initial radius of the droplet and D0 the
diffusion coefficient at zero concentration [i.e., D̂(0) = 1]. τd

is the natural time scale of the evaporation process that can be
tuned by the area of the wafers R2

w. With such dimensionless
coordinates, the initial condition for the dimensionless area of
the droplet α is α(τ = 0) = 1. We also define the following
parameter:

Pe = R2
0

/
(D0τd ) = β

4νSc
sat
S D̃

D0
,
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which is similar to a Péclet number, since it compares the
typical distance explored by diffusion D0τd during drying,
over the area of the droplet R2

0.
The evolutions of α, of the solute concentration φ, and of

the boundary condition can now be written

dα

dτ
= a(φ�) − ae

β ln(αβ)
, (17)

∂τφ = 1

r
∂r

[
r
D̂(φ)

Pe
∂rφ

]
for r <

√
α (18)

a(φ�) − ae

2
√

αβ ln(βα)
= −D̂(φ�)

Pe

∂rφ
�

φ�

at r = √
α. (19)

This model involves only three parameters, ae, Pe, and β,
that can be tuned experimentally due to the ratio R0/Rw and
the external humidity conditions (kinetic control). The model
compared to experimental results should provide estimations
of a(φ) (thermodynamics) and D̂(φ) (kinetics).

E. Numerical resolution

To solve numerically the above problem, we need a fixed
interval for the space coordinate. We thus apply the change
of coordinates φ(r,t) → φ(u,t), with r = √

αu, and u ranging
from 0 to 1. This coordinate transformation adds an advection-
like term to the evolution equation, and the above equations
now take the simple form

dα

dτ
= a(φ�) − ae

β ln(αβ)
, (20)

∂τ (αφ) = 1

u
∂u[uJ (u)], (21)

J (u) = D̂(φ)

Pe
∂uφ + uφ

2

dα

dτ
, J (u = 1) = 0.t (22)

Such a model can be solved easily using a standard discretiza-
tion of the space coordinate u, and the classical fourth-order
Runge-Kutta numerical scheme [27].

III. SOLUTIONS AND COLLOIDAL DISPERSIONS

In this section we discuss several limiting cases, dilute
solutions (or dispersions), a HS colloidal dispersion, and
finally the case of a molecular mixture (glycerol and water).
For all the investigated cases, our aim is to illustrate using
numerics and/or analytical arguments the process of solute
concentration in the droplet during evaporation.

A. Dilute solutions and dispersions

1. Influence of the Pe number on the concentration process

We first consider dilute solutions or dispersions for which
a(φ) = 1 and D̂(φ) = 1. We also assume ae = 0 for more
simplicity without any loss of generality since one can define
a new time scale of drying in the dilute case, according to
τd → (1 − ae)τd . The model thus now only depends on two
parameters: β and the Péclet number Pe. In this regime, the
evolution of the droplet area α does not depend anymore on
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FIG. 2. Dilute case, D̂ = 1, a = 1, β = 0.05 but for different
Péclet numbers Pe = 0.1 (a), 1(b), and 10(c). Left: space-time plots of
the concentration fields φ(r,t). Right: Typical concentration profiles
at t = 0.02, 0.06, and 0.1. The continuous lines are the theoretical
estimations given by Eq. (25).

the solute concentration and is simply given by integration of
Eq. (20):

τ = βα[ln(βα) − 1] − β[ln(β) − 1]. (23)

Complete drying of the droplet occurs at time τf =
β [1 − ln(β)]. Using dimensionalized units, complete drying
thus occurs for

tf = R2
0

4νSD̃csat
S

(1 − ln β); (24)

at a fixed initial radius of droplet R0, one can control the drying
kinetics through the ratio β = (R0/Rw)2.

Figure 2 displays numerical results of the concentration
field during evaporation obtained for β = 0.05 but for different
Péclet numbers Pe = 0.1 (a), 1(b), and 10(c). Pe = R2

0/(D0τd )
compares the diffusion time over the droplet R2

0/D0 and the
kinetics of drying τd . For low Pe numbers, one thus expects
that diffusion is faster than evaporation, and thus homogeneous
concentration fields, as demonstrated in Fig. 2(a). For higher
Péclet numbers (Pe > 1), significant concentration gradients
build up during drying close to the droplet edge [see Figs. 2(b)–
2(c)], as the drying kinetics is now faster than the diffusion of
solutes.
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2. High Pe regime: An analogy with filtration

In the case of high Péclet numbers (Pe > 10), the extension
of the concentration gradients is strongly localized at the
droplet meniscus, and thus smaller than the droplet radius.
In this regime the curvature of the droplet can be neglected,
and one can identify the concentration process of the solute,
from the reference frame of the meniscus, as the filtration
of solutes through a membrane at a flow rate given by the
meniscus velocity.

In the case of one-dimensional filtration of dilute solutes
through a membrane (along the x direction), the flux of
solutes is given by j (x) = vφ − D0∂xφ and vanishes at the
membrane position (x = 0). In the asymptotic regime, i.e., for
a constant flux, j (x) is proportional to j (x) ∼ 1 − exp(−x/ξ )
where ξ = D0/v is the natural length scale balancing diffusion
and convection. In this asymptotic regime, the solute concen-
tration increases linearly with time and is approximatively
proportional to φ ∝ exp(−x/ξ )t . By analogy with this simple
filtration problem, we propose a similar approximation for the
concentration field in the high Péclet regime:

φ(r,t) ≈ 1 + A(t) exp

(
r − √

α

ξ

)
, (25)

where ξ is the length scale that comes from the competition
between convection and diffusion, which is written with our
dimensionless units in the case of the confined droplet:

ξ = −2
√

α

Pe
β ln αβ.

The evolution of A(t) can be calculated analytically from the
conservation of the solute in the droplet during evaporation:

2
∫ √

α

0
drrφ(r,t) = 1. (26)

This analytical estimation of the concentration field is
plotted in Fig. 2 for the different investigated Péclet numbers.
For Pe > 10, Eq. (25) gives a good approximation of the
concentration field as expected, since the extension of the
concentration gradients is small compared to the droplet
radius. Interestingly, the same formula gives rather good
approximations of φ(r,t) for small Pe numbers and thus may
serve as a guide without a numerical resolution of the problem.

B. Hard sphere colloidal suspensions

1. Observed phenomenology for hard sphere suspensions

We now turn to colloidal dispersions, and more precisely
to HS dispersions, for which there are only entropic colloidal
interactions [22]. Leng investigated recently [10] the drying of
confined droplets (Fig. 1) of a well-known colloidal system
that presents HS interactions in decalin [28]. During the
slow evaporation of decalin from the droplet, Leng observed
the following scenario. The droplet first starts receding as a
consequence of decalin removal. Then, a front separating a
dense crust and a dilute dispersion starts to invade the inner
of the droplet from its edge. Finally, droplets do not keep
their circular shape during the complete drying process as a
buckling instability occurs leading to complex morphologies
(invagination [11], fracture, etc.). Interestingly, a careful

analysis reveals that the crust corresponds to either amorphous
deposits of colloids or well-organized crystallites, depending
on the experimental conditions (e.g., size of the colloids).
Note that formation of crusts upon drying is ubiquitous as
soon as drying is used to promote self-assembly of colloids
or nanoparticles (in the case of sessile droplets, for instance,
even leading to perfectly ordered monolayers [29]). It is clear
that our simple model cannot reproduce the rich complexity
of these observations; however, we illustrate below how it can
predict the formation of the crust and its growth during drying.

2. A model for a(φ) and D̂(φ) in the case
of hard sphere dispersions

First, the experimental conditions investigated in Ref. [10]
are close to the approximations done to derive our model (slow
evaporation of the solvent, binary and simple mixture, etc.). We
can thus safely use Eqs. (20)–(22) to describe the concentration
process, at least before the observed instabilities (i.e., when the
suspension does not present solid properties).

Second, colloidal interactions in a HS dispersion hardly
affect the evaporation rate, and the activity of the solvent is
a(φ) ≈ 1. Indeed, a(φ) follows

a(φ) = exp

[
−vm

vc

φZ(φ)

]
, (27)

where vc is the volume of the colloids, vm that of the
solvent molecules, and Z(φ) the osmotic compressibility of the
colloidal dispersion [22]. Due to the huge difference between
vc and vm (vm/vc ≈ 5 10−9 for decalin and colloids of radius
230 nm), the colloidal assembly does not alter significantly
a(φ), and thus the evaporation rate [30].

Finally, as HS dispersions are well documented in the
literature, one can find numerous measurements as well as
theoretical calculations for Z(φ), and for the sedimentation
coefficient K(φ), that describes hydrodynamic interactions at
finite concentration φ [22]. These two quantities lead to an
estimate of the long-time collective coefficient diffusion D(φ)
due to the generalized Stokes-Einstein equation [22,31]:

D(φ) = D0K(φ)
dφZ(φ)

dφ
, (28)

where D0 corresponds to the diffusion coefficient in the dilute
limit.

To estimate D(φ), we consider here for simplicity that
the HS dispersion does not crystallize upon concentration but
becomes glassy around φg ≈ 0.64, the random-close packing
fraction. Indeed, nucleation and growth of colloidal crystallites
may not occur during evaporation of the droplet, due to the
competition between the nucleation kinetics and that of the
solute concentration [32]. This was observed experimentally
for large colloids in the confined droplet [10], but also for
polydisperse dispersions in several other experiments. We can
now use an analytical formula derived by Peppin et al. for
Z(φ) [see Eq. (2.17) in Ref. [33]]:

Z(φ) = 1 + a1φ + a2φ
2 + a3φ

3 + a4φ
4

1 − φ/φg

,

with a1 = 4 − 1/φg , a2 = 10 − 4/φg , a3 = 18 − 10/φg , and
a4 = 1.85/φ5

g − 18/φg . This formula approximates the
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FIG. 3. (a) Collective diffusion coefficient D̂(φ) for a HS dis-
persion according to Ref. [33]. D̂(φ) diverges approaching the
random-close packing fraction at φg ≈ 0.64. (b) Space-time plot of
the concentration field φ(r,t) obtained by numerical resolution of
Eqs. (20)–(22) in the case Pe = 10, β = 0.1, φ0 = 0.1 (these values
are close to those investigated in Ref. [10]).

classical Carnahan-Starling equation at low φ and matches
the divergence of Z(φ) approaching φg according to Z(φ) =
1.85/(φ − φg) [22,34,35]. For the sedimentation factor K(φ),
we tested several formulas (experimental data [36,37], or
theoretical estimations from the permeability of randomly
packed monodisperse spheres [38]) that all give similar results,
and we use in the following the same law used by Peppin et al.,
i.e.,K(φ) = (1 − φ)6.

Figure 3(a) displays D̂(φ) = D(φ)/D0 calculated from
Eq. (28) due to the above estimations of Z(φ) and K(φ).
As already mentioned by Russel et al. [22], the collective
diffusion coefficient shows a weak dependence on the volume
fraction for φ < φg , as the hydrodynamic interactions almost
cancel the increase of osmotic compressibility. However, D̂(φ)
rapidly diverges around φg as the colloidal assembly cannot be
packed anymore (divergence of the osmotic compressibility)
but still presents a finite permeability (solvent can flow through
the close-packed assembly).

3. Concentration process and growth of a dense crust

Figures 3(b) and 4 display a numerical resolution of
Eqs. (20)–(22) using a(φ) = 1, and the collective diffusion
coefficient D̂(φ) displayed in Fig. 3(a). We chose to illustrate
the experiments done by Leng, using a droplet of a HS colloidal
dispersion at an initial volume fraction φ = 0.1, with β = 0.1
and Pe = 10, these values being close to those investigated in
Ref. [10]. We also consider that there is no decalin vapor in
air, and thus ae = 0.

As shown in Fig. 4, the model reproduces quantitatively
the observed phenomenology [10]. At early times, the con-
centration of colloids increases at the edge of the droplet,
up to the maximal packing fraction φg . At later times, a
shell corresponding roughly to φ ≈ φg invades the inner of
the droplet as the droplet still recedes (see Fig. 4, bottom).
As mentioned above, the collective diffusion coefficient D(φ)
displays a weak dependence with volume fraction below φg .
This is again confirmed in Fig. 4 (top), where we plotted the
estimations of the concentration profiles given by Eq. (25),
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FIG. 4. The case of a HS dispersion for the parameters Pe = 10,
β = 0.1, φ0 = 0.1. Concentration profiles corresponding to the space-
time plot displayed in Fig. 3. Top: Times t before the growth of a crust
at φ ≈ φg . The continuous lines are the theoretical estimations given
by Eq. (25) (see text). Bottom: Later times t > tn. Inset: Position
of the front of the crust rc(t) (dots), and of the droplet radius ri(t)
(continuous line). The arrow indicates the time tn at which the dense
shell invades the inner droplet estimated using Eq. (25) (see text).

i.e. for a dilute dispersion, and thus for a constant diffusion
coefficient. The agreement between the estimations and the
numerical resolution of the model thus confirms that the
colloidal assembly behaves roughly as a dilute suspension
below the random-close packing fraction.

For later times, as the osmotic compressibility and thus
D(φ) diverge, a front separating a dilute suspension and a
dense crust invades the inner of the droplet for t > tn ≈ 0.09.
The position rc(t) of that crust is plotted against time t in the
inset of Fig. 4. We estimate rc(t) at the positions r given by
φ(r,t) = 0.635, but other values in the range 0.62–0.64 give
similar results, because D(φ) strongly diverges at φ ≈ φg . As
evidenced in this plot, rc(t) rapidly deviates from the meniscus
position ri(t) = √

α(t), and its velocity increases at longer time
scales. The estimation of the concentration profiles given by
Eq. (25) for a dilute dispersion also permits us to estimate
analytically tn, the time at which φ reaches φg at the droplet
interface. This estimation is in clear agreement with the data
displayed in the inset of Fig. 4.

Finally, Fig. 4 evidences concentration gradients in front
of the dense shell for t > tn. As the crust invades the
inner of the droplet, the gradients of concentration become
stiffer, since the velocity of rc(t) increases with time. A
detailed theoretical study, such as done in Ref. [39] in a
similar context (evaporation from films containing colloidal
dispersions), should a priori provide analytical formulas to
describe precisely the concentration profiles close to the
front.
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FIG. 5. Growth velocity of the crust vc vs φ0. The parameters of
the simulations are Pe = 10 and β = 0.1; vc is defined as the initial
slope of the width of the crust wc(t); wc are displayed against t − tn
in the inset for various φ0 in the range 0.1–0.6. The continuous line
is the approximation of vc given by Eq. (30).

4. Crust velocity growth

We can also estimate from our simulations the width wc

of the crust as a function of time, defined by wc = ri − rc

(see Fig. 4). The inset of Fig. 5 displays wc as a function of
time t , for several initial conditions φ0 in the drying droplet.
For all these numerical simulations, Pe = 10 and β = 0.1 as
before, and we subtracted the nucleation times tn to compare
the different curves. Here wc increases linearly with time at
early stages and then speeds up, at least for the small φ0.
We define the growth velocity of the crust vc as the initial
slope of wc(t), as done experimentally by Leng in Ref. [10].
Figure 5 displays vc as a function of φ0, the initial volume
fraction in the droplet. As shown on this plot, vc diverges
approaching the random-close packing fraction φg . This was
also observed experimentally by Leng [10], and explained
in terms of a truncated dynamics by analogy with a similar
problem in the context of deposit formation in evaporating
sessile droplets [40]. For large Pe numbers, the extension of
the gradients of concentration in front of the crust can be
neglected, and the droplet is divided in two domains: φ = φ0

for r < rc(t) and a deposit at φ ≈ φg for r > rc(t). Within this
approximation, mass conservation of the solute then leads to

vc = −ṙi

φ0

φg − φ0

(
1 + φgwc

φ0rc

)
≈ −ṙi

φ0

φg − φ0
, (29)

the last approximation being valid for early times, when the
width of the crust verifies wc/rc � φ0/φg . A simple estimate
of ṙi can be given for t ≈ 0 using the droplet evolution equation
[see Eq. (20)], and the velocity of the growth of the crust finally
follows at early times:

vc ≈ −1

2β ln(β)

φ0

φg − φ0
. (30)

This last relation is plotted in Fig. 5 and accounts well for
the data at high φ0, as also demonstrated experimentally in
Ref. [10]. Indeed, nucleation times tn are small at high initial
volume fractions φ0, and the condition wc/rc � φ0/φg is
easily satisfied. However, vc versus φ0 deviates from the above
approximation at smaller φ0. This is first due to the fact that

ri(t) cannot be approximated at t ≈ 0 since the formation of
the crust occurs at longer time, but also because wcφg/(rcφ0)
cannot be neglected anymore. Note that this regime of small
φ0 (<0.2) was not explored by Leng in Ref. [10].

C. Solutions: The case of a water-glycerol mixture

We finally turn to the case of a solution, for which both
the activity and the mutual diffusion coefficient vary with
the concentration φ. Such a situation is often encountered
for molecular mixtures or polymers in solution. We decide to
illustrate this case with water-glycerol solutions, first, because
it corresponds to a simple binary mixture, but also because
thermodynamic a(φ) and kinetic properties D(φ) can be found
in the literature.

1. Activity a(φ) and collective diffusion coefficient D(φ)

Figure 6(a) displays the density ρ of such mixtures against
the volume fraction of glycerol φ [41]. Here ρ(φ) is very well
approximated by ρ(φ) = ρgφ + (1 − φ)ρw, with ρg and ρw

the densities of pure glycerol and pure water, respectively,
and this indicates a simple mixture; i.e., both constituents
are incompressible upon mixing [21]. Figures 6(b) and 6(c)
display the activity a(φ) as well as the mutual diffusion
coefficient D(φ) computed from several measurements found
in the literature [42–47]. Data for D(φ) are rather dispersed
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FIG. 6. Properties of water-glycerol mixtures vs glycerol volume
fraction φ at T = 25 ◦C. (a) Density extracted from Ref. [41];
the continuous line is ρ(φ) = ρgφ + (1 − φ)ρw , with ρg and ρw

the densities of pure glycerol and water, respectively. (b) Mutual
diffusion coefficients extracted from Refs. [42–44]; the various
symbols correspond to the different references. (c) Activity extracted
from Refs. [45–47]. The continous lines in (b) and (c) correspond to
Eqs. (31).

031406-7



L. DAUBERSIES AND J.-B. SALMON PHYSICAL REVIEW E 84, 031406 (2011)

since this quantity is difficult to measure precisely. We fit these
two quantities according to

D(φ) = 0.6517φ2 − 1.6012φ + 0.9994,
(31)

a(φ) = (1 − φ)(1 + 0.8714φ − 0.094φ2 + 1.009φ3),

and we use these formulas to solve numerically the model
describing the confined droplet, Eqs. (20)–(22). A similar
strategy was adopted by Doumenc et al. to model the
drying of a solution in a moving meniscus but for polymer
solutions [48].

2. Concentration in the confined droplet

We illustrate the case of such water-glycerol mixtures in the
confined droplet by solving Eqs. (20)–(22) for several sets of
typical parameters β and Pe. We set ae = 0 for simplicity, as
this parameter can be easily tuned to zero in the experiments
[9]. Figure 7 displays two typical cases for droplets at an
initial volume fraction φ = 0.4, but for two different β. β

corresponds to the ratio of the area of the initial droplet over the
area of the wafer, and thus directly tunes the Péclet number Pe
(see Sec. II D).

Figure 7 evidences that drying is faster for β = 0.2, since
the final concentration φ ≈ 1 is reached at a smaller time
compared to β = 0.8. This is a nontrivial effect as compared
to dilute solutions, because one expects that smaller β induces
slower drying kinetics. Actually, the Péclet number is also
small for small β, and evaporation of the solvent does not
induce concentration gradients in the droplet (see Fig. 7, left).
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FIG. 7. Space-time plots of the concentration of glycerol in the
evaporating droplet. Left: β = 0.2, Pe = 0.088; right: β = 0.8, Pe =
1.408. In both cases, we take into account the variation of activity
and of diffusivity Eq. (31), and the glycerol-water mixture is initially
at a volume fraction φ0 = 0.4. Bottom: Estimated activities from the
variation of the area of the droplet against the estimated concentration
in the droplet φ0/α (see text, ◦ → β = 0.2, � → β = 0.8). The
continuous line is the activity of water-glycerol mixture vs φ.

For higher β, Pe > 1, and strong concentration gradients build
up in the droplet during drying (Fig. 7, right). In this case, the
concentration of glycerol becomes rapidly large at the edge
of the drop and creates a barrier for evaporation, since the
activity decreases with the glycerol concentration [Fig. 6(c)].

Finally, one can extract the activity of mixtures from such
drying experiments without measuring the concentration field
of solute [9]. Indeed, a precise monitoring of the area of
the droplet only permits an estimation of the activity of the
mixture, since its evolution [see Eq. (20)] depends on a(φ�),
φ� being the solute concentration at the edge of the droplet. For
small β and thus small Pe numbers, concentration gradients
are small in the droplet, and the concentration in the droplet is
simply estimated from the measurement of α and the volume
conservation φ ≈ φ� ≈ φ0/α. The evolution of the activity
during evaporation is then simply calculated using Eq. (20),
i.e., β ln(βα)α̇ = a(φ�). Such measurements lead to a good
estimation for a(φ) in the case of small Pe numbers (β = 0.2,
see Fig. 7) but deviates clearly at higher Péclet numbers
(β = 0.8).

IV. DISCUSSIONS AND CONCLUSIONS

In this paper we derived a simple model based on classical
transport equations that describes both the kinetics of drying
and the concentration field of solute in confined evaporating
droplets. We also illustrate several experimental cases already
explored [9,10], and we provide a simple analytical formula
in the case of dilute solutions.

Our simple model may serve as a starting point for
more complex investigations, such as surfactant solutions
and other colloidal dispersions. We believe that the droplet
method combined with analytical tools measuring the con-
centration field may give new insights in the physics of
dense mixtures. This may be an important issue, namely,
for charged dispersions and nanoparticles, since dynamical
properties such as the collective diffusion coefficient D(φ)
are difficult to measure but important in the context of
solidification [4,49,50].

Finally, several improvements may be done to the present
model. For instance, it would be simple to add the case of co-
existing phases in the droplet, as already done in other similar
studies (microevaporation [25] and sedimentation [36]). This
may be useful to describe the concentration of surfactants
that leads to the formation of organized mesophases [17].
Importantly, a crucial point is to go beyond the assumption
of quiescent droplet during evaporation. Indeed, recent ex-
periments on surfactants [17] reveal important hydrodynamic
recirculations, probably due to a solutal Marangoni instability.
We are working currently on that issue, and our aim is to
determine the regimes where droplets stay quiescent during
evaporation.
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