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Influence of an ellipsoid on the angular order in a two-dimensional cluster
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The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through
Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the
start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2)
Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending
on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full
radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the
rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the
kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The
effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer
parabolic confinement reduces the angular stabilization.
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I. INTRODUCTION

Melting and crystallization are fundamental processes in
nature and have been widely studied. Self-assembly of con-
fined low dimensional field-responsive systems, i.e., pointlike
particles, has attracted strong interest in recent years. Part of
the interest arises from the fact that it is an ideal model system
to understand a variety of phenomena such as crystallization
and melting in condensed matter physics and the effect of
finite size on it. Examples are systems of charged particles
such as colloids [1,2] and dusty plasmas [3,4], which display
similar phase behavior as atoms and molecules with the added
advantage that the larger size and their slower dynamics
make them accessible for real space imaging [5]. Moreover,
they have practical applications in the fabrication of new
materials, such as special nanoscale magnetic dot arrays [6,7],
which are potential materials for high density magnetic data
storage devices, field response fabrics [8], and DNA separation
devices [9]. Accordingly, numerous experiments investigated
a wide variety of such systems, e.g., one-dimensional (1D)
and two-dimensional (2D) strongly coupled dusty plasmas
[10], colloidal systems restricted in a circular hard wall
[11], colloidal system of paramagnetic colloids confined in a
parabolic well [12], or hard disks at the liquid-air interface [13].
Many numerical studies have been performed to investigate the
crystallization and melting in the above systems by simulating
a model system of charged classical pointlike particles, i.e. a
Wigner-type crystal [14–25].

The random motion of microscopic particles suspended in a
fluid (colloids) is described by Brownian motion. Because the
direct detection of translational Brownian motion is relatively
easy, many experiments focused on translational diffusion.
Consequently, in all numerical studies up to now, rotationally
invariant (disklike) particles were considered. The direct
visualization of rotational Brownian motion of an ellipsoid
(i.e., a prolate spheroid) was only carried out recently [26].
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They showed that particle anisotropy leads to dissipative
coupling of translation and rotation degrees of freedom as
first explored by Perrin [27]. A uniaxial anisotropic particle
is characterized by two translational hydrodynamic friction
coefficients γa and γb parallel and perpendicular to the long
axis, respectively, with diffusion constants Da = kBT /γa and
Db = kBT /γb, where kB is the Boltzmann constant and T

the temperature. In general, γa is less than γb (7), and,
consequently, Da is larger than Db. The rotational diffusion is
defined by a rotational diffusion constant Dθ .

In this paper, the influence of such a single ellipsoid shaped
particle on the angular order of two-dimensional classical
clusters consisting of spherical particles is investigated. Note
that the influence of such an ellipsoidal particle on the diffusive
motion of all spherical particles in the cluster will differ
fundamentally from the influence of a single spherical particle
with just a reduced mobility. In the latter case, the angular
motion of the ring that the particle with reduced mobility
belongs to is hindered. The effect of the ellipsoid, however,
will depend on its orientation, and the orientation of its main
axis may be directed along the ring that the particle belongs to
or is perpendicular to it, depending on the temperature and
the motion of the other particles in the cluster. For a 2D
classical cluster with only spherical particles, it was previously
found that the particles are arranged in shells, and that melting
of finite clusters occurs in two steps [14]. With increasing
temperature, intershell motion develops and the system loses
angular order. Consecutively, radial diffusion switches on and
destroys the shell structure of the cluster. Furthermore, in
Ref. [11], a reentrant melting in two-dimensional colloidal
clusters was observed: with decreasing the interaction between
the magnetic colloidal particles, the first intershell rotation
appeared, which destroyed the angular order of the cluster.
Further decreasing the interparticle coupling resulted in an
unexpectedly regained angular order, followed by a complete
melting with a further reduction of the interaction. Brownian
dynamics simulations showed that only clusters with short-
range interparticle interaction and confined by a hard wall
well exhibit such angular freezing before melting, irrespective
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of the value of viscosity [18]. In the other cases, either of
Coulomb clusters or with parabolic confinement, the system
shows the usual [14] two-step melting behavior without any
reentrance.

In this paper, we address the following questions: (i) Has
a single anisotropic particle, which we will call an ellipsoid,
any influence on the angular melting temperature in a 2D
cluster consisting of spherical particles? (ii) How does such an
ellipsoid influence the reentrant melting behavior?

II. MODEL SYSTEMS

We focus on two representative experimental systems,
namely, charged particles in a parabolic potential (as in
Refs. [3,4]), and colloidal particles confined within a circular
hard wall (as in Refs. [11,28]). The 2D parabolic confinement
of a particle is modeled by a parabolic potential VP (r) =
1
2m∗ω2r2, where m∗ is the effective mass of the particle,
ω the confinement frequency, and r the particle distance
to the center of the confinement potential. Two particles,
located at positions �ri and �rj , experience a screened Coulomb
repulsion as typically found in dusty plasmas (and for charged
colloids moving in a liquid environment) given by V (�ri,�rj ) =
(e2/|�ri − �rj |) exp(−κ|�ri − �rj |), where e is the particle charge,
and 1/κ the screening length where we took κ = 2/a0, with
a0 the average interparticle distance.

For the colloidal particles confined in a 2D circular hard
wall, the potential has the form VP = 0 for r � R and Vp = ∞
for r > R, where R is the radius of the vessel and r the
particle distance to the center of the vessel. The colloids
under consideration have a macroscopic magnetic moment
in the presence of an external magnetic field, which is directed
perpendicular to the 2D plane where the particles are moving
in. The resulting repulsive magnetic dipole interaction between
the colloidal particles is given by V (�ri,�rj ) = qiqj /|�ri − �rj |3,
where qi = Mi

√
m0/4π is the “charge,” �ri the coordinate of

the ith particle, and m0 the magnetic permittivity. The insets of
Fig. 1 show typical configurations of such a colloidal crystal
of spherical particles and an ellipsoid at one of the shells.

The characteristic energy of the interparticle interac-
tion for the screened Coulomb cluster is defined as E0 =
e2 exp(−κa0)/a0 and E0 = q2/a3

0 for dipole clusters, where
a0 = [e2/(εmω2

0)]1/3 for parabolic confinement and a0 =
2R/

√
N for the hard wall, with N the total number of particles.

The coupling parameter is given by � = E0/kBT .
In both examples, the ratio of the particle velocity relaxation

time versus the particle position relaxation time is very small
due to the high viscosity of the medium. Consequently, the
motion of the particles is diffusive and overdamped.

Following Ref. [18], which obtained very good qualitative
agreement with Ref. [11] in the case of spherical colloidal
particles, we neglect the effect of hydrodynamic interactions
for spheroids, and following Ref. [29], write the following
stochastic Langevin equations of motion for the position of
the particles:

d �ri

dt
= D

kBT

{
dVtot

d�r +
�F i
L

mi

}
, (1)

FIG. 1. (Color online) (a) System containing N = 29 dipole
particles in a circular cavity forming a close-packed configuration
with the ellipsoid placed at the inner ring (see inset). (Right scale)
The angular diffusion coefficient 	θ2 as a function of the coupling
parameter � for aspect ratios of the ellipsoid φ = 1 (black squares),
φ = 5 (green diamonds), and φ = 10 (blue triangles). (Left scale)
	R2 of the spheroids at the middle ring (red circles) for a system
with aspect ratio φ = 1 as function of the coupling parameter �. (b)
Same as (a), but with the ellipsoid placed at the middle ring. The
green diamonds show the angular diffusion coefficient of the system
for fix particle angle of the ellipsoid. (c) Same as (a), but with N = 34
in a non-close-packed configuration

where Vtot(�ri) = ∑N
j=1 V (�ri, �rj ) + VP (�ri), D is the self-

diffusion coefficient of an isolated spherical particle, mi is
the particle mass of the ith particle, N is the total number
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of particles (i.e., the spherical ones plus the ellipsoid), and
�F i
L is a randomly fluctuating force acting on the ith particle

due to the surrounding media with variance, given by the
fluctuation-dissipation theorem of 〈2D〉.

For the motion of the ellipsoid, we assume that the distance
between the bottom of the cavity and the particles is large with
respect to the particle size. When an ellipsoid with semiaxes
(a,b,b) moves along one of its principal axes with velocity v

through a fluid with viscosity ν at low Reynolds number, the
translational and rotational drag coefficient can be estimated
as well:

γa = 6πνbGa,

γb = 6πνbGb, (2)

γθ = 6νV Gθ,

where Ga , Gb, and Gθ are the geometric factors that character-
ize the particle anisotropy and V is the volume of the ellipsoid
[30]. The geometric factors for prolate ellipsoid diffusion in
3D are analytically given by Perrin’s equations [31,32]

Ga = 8

3

1[
2φ

1−φ2 + 2φ2−1
(φ2−1)3/2 ln

(
φ+

√
φ2−1

φ−
√

φ2−1

)] ,

(3)

Gb = 8

3

1[
φ

φ2−1 + 2φ2−3
(φ2−1)3/2 ln(φ +

√
φ2 − 1)

] ,

and [27,33]

Gθ = 2

3

φ4 − 1

φ

[
2φ2−1√

φ2−1
ln(φ +

√
φ2 − 1) − φ

] , (4)

with φ = a/b the aspect ratio. Note that, when φ = 1, the
above equations reduce to the translational and rotational
Stokes laws.

Further, we will assume that the non-Brownian forces, i.e.,
the interparticle forces, act on the center of the particles.
Following [26,29], we can write the stochastic Langevin
equations of motion for the position of the ellipsoid as

d�r
dt

= DE(θ )

kBT

{
dVtot

d�r +
�FL

mi

}
,

(5)
dθi

dt
= εθ (t),

where DE(θ ) is a 2 × 2 matrix with elements DE(θ ) = (Da +
Db)δij /2 + (Da − Db)Mij [θ (t)]/2 and

Mij (θ ) =
(

cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (6)

where �FL is a randomly fluctuating force acting on the ellipsoid
due to the surrounding media with variance DE(θ ). εθ (t)
represents a random source of noise for angular motion of
the particles with variance 2Dθ .

The results reported in the next section are obtained from
extensive numerical simulations of Eqs. (1) and (5), with
a time step 	t � 10−4/(nD), where n = N/(πR2) is the
density of the particles with N the total number of particles
and R the radius of the system. The radius of the circular

vessel R = 36 μm and the self-diffusion coefficient of the
spheroid D = 0.35 μm2/s, are taken from the experiment
[28]. The diffusion coefficients of the ellipsoid are calculated
according to Eqs. (2)–(4) considering the same magnetic
content and mass as the spherical particles. In this way,
we avoid introducing effects due to a charge difference
between the particles (which would also lead to different
configurations).

The competition of the circular confinement on the one hand
and the interparticle interaction on the other hand leads to the
formation of a ringlike structure. All investigated structures in
this paper contain three rings, and we placed the ellipsoid on
the inner or middle ring. In order to characterize the angular
order of the system, we calculate the angular diffusion of the
particles over a 30 min × 1000 time interval. The relative order
between the inner and middle ring can be quantified by

	θ2 = {〈	θ (t)2〉 − 〈	θ (t)〉2}/t, (7)

where 〈. . .〉 refers to a time averaging, and the mean relative
angular displacement rotation of the first shell θ1(t) relative to
the second θ2(t) one is defined as 	θ (t) = θ2(t) − θ1(t), where
θ1(t) and θ2(t) are defined as the average angular displacement
of the particles at the first and second rings, respectively, at
time t . 	θ2 is a measure for the rate at which the two rings
rotate with respect to each other, and is thus a measure for the
angular order in the system. Note that this expression is not
the squared one of 	θ .

The mean squared radial diffusion (MSRD) coefficient is

	R2 = 1

N

N∑
i=1

[〈ri(t)
2〉 − 〈ri(t)〉2]/a2

0, (8)

which is a measure of the radial order in the system. Further,
in this paper, we will consider the MSRD of the middle ring,
i.e., we take N in this expression as the number of particles on
the middle ring.

III. RESULTS

As mentioned before, we will consider in our simulations
systems consisting of spherical particles together with one
ellipsoid confined in a circular cavity or a parabolic trap.
The competition of a circular confinement on the one hand
and the interparticle interaction on the other hand leads
to the formation of a ringlike structure. In Refs. [11,34],
the melting and reentrant freezing of 2D spherical colloidal
particles in confined geometry was studied experimentally and
theoretically, respectively. In this paper, the angular stability of
this ringlike structure is investigated as function of the aspect
ratio of the ellipsoid.

Before starting the Brownian dynamics simulations, we
find the zero temperature ground-state configuration, using
the Monte Carlo technique as in Ref. [34] and the obtained
configuration is used as the starting configuration for the
Brownian dynamics simulations.

Following Ref. [18], we consider first dipole clusters
in a circular hard wall cavity consisting of N = 29 and
34 particles, which have a different type of packing. The
ground-state configuration for N = 29 is found to be (3:9:17) a
close-packed triangular structure while with N = 34 (4:11:19)
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FIG. 2. The angular diffusion coefficient 	θ2 of a dipole cluster
for the � = 30 ring as a function of the aspect ratio φ of the ellipsoid
for a system containing N = 29 dipole particles in a circular cavity
forming a close-packed configuration with the ellipsoid placed at the
inner ring. The horizontal dotted line shows the limiting case that φ

goes to infinity.

a non-close-packed structure. Now, we proceed by replacing
one of the spheroids of the inner shell by an ellipsoid and
start the Brownian dynamics simulations. This approach is
justified since the shape of the particle does not influence the
ground-state energy and configuration.

Figure 1(a) shows 	θ2 (right scale) for the close-packed
system consisting of 28 spherical particles and one ellipsoid
on the inner ring for different aspect ratios of the ellipsoid:
φ = 1 (i.e., all spherical particles, black squares), 5 (green
diamonds), and 10 (blue triangles). One can clearly see that the
onset of the angular melting around � = 300 is unchanged in
the presence of the ellipsoid. However, the value of 	θ2, which
is a measure of the angular order in the system, is strongly
reduced by a factor of about 2 for φ = 5. The dependence
of the aspect ratio on the angular stabilization is shown in
Fig. 2, which gives the value of 	θ2 at � = 30 as function of
the aspect ratio φ. This figure shows a fast decaying relation
between the eccentricity of the ellipsoid and 	θ2. Note that
even a small anisotropy in particle shape has immediately an
influence on the angular order. For example, an eccentricity of
φ = 2 leads to a reduction of the angular diffusion coefficient
by 10%. This curve decays to the limiting case, where the
ellipsoid is pinned at its initial position, given by the dotted
line in Fig. 2. Figure 1(a) shows only the MSRD for the case
of φ = 1, as the results for φ different from 1 are very similar.
The radial melting starts around � = 10.

If we place the ellipsoid at the middle ring of the N = 29
system, however, the enhancement of the angular order is
much less pronounced, as can be seen in Fig. 1(b). This can
be explained by the fact that the inner ring consists of only
three particles while the middle ring contains nine particles.
The larger the number of particles in a ring, the less the
influence of the ellipsoid in that ring has on the angular order of
the system.

In Fig. 1(a), a small reentrant melting behavior can be
observed between � = 10 and 30. (A reentrant behavior
is a behavior where a physical quantity increases first,
subsequently decreases, and then increases again as a function
of a tuning parameter, here �.) However, a strongly enhanced

reentrant behavior in the angular order is observed when the
ellipsoid is put on the middle ring, as can be seen from the
dip around � = 10 in Fig. 1(b). This is a consequence of the
fact that the configuration changes around � = 10. Around this
point, the ellipsoid jumps from the middle ring to the inner ring,
which immediately reduces 	θ2 to its value of Fig. 1(a). Once
the ellipsoid is in the inner ring, it does not return to the middle
ring anymore. The reason is that the ellipsoid exhibits slower
dynamics than the spherical particles, and it is energetically
more favorable to sit in a region with lower particle density,
which is at the inner ring. If the spherical particles have enough
kinetic energy to cross the potential barrier imposed by the
ellipsoid, the neighbor spherical particles push the ellipsoid to
the center where there is a lower particle density. This behavior
is further enhanced if one fixes the angle of the ellipsoid, with
the long axis in the direction of the center of the confinement
(which can be realized experimentally by applying an external
field). The ellipsoid is then stimulated to go to the center of the
confinement because it moves much faster in the direction of
the center of the confinement than in the azimuthal direction.
This is expressed by the big dip in 	θ2 shown around � = 10
in the curve with green diamonds in Fig. 1(b). The lowest point
of this dip corresponds with the angular diffusion curve with
blue triangles in Fig. 1(a) at � = 10 and φ = 10.

Let us now look at a non-close-packed system with N = 34
particles. From the black squares in Fig. 1(c), for φ = 1 one can
see that, even for very large � values, there is no angular order
between the inner and middle rings. Note that, also in this case,
placing an ellipsoid (with φ = 5) reduces the value of 	θ2

significantly [see blue triangles in Fig. 1(c)]. Furthermore, the
presence of an ellipsoid results in a two-step angular melting
process. Around � = 30, 	θ2 reaches the same value of the
spherical particle system when � is further reduced. From
this point on, the ellipsoid behaves like a spherical particle,
although with a different mobility as the spherical particles,
because it is not able to hinder the angular motion of the
spherical particles: their kinetic energy is large enough to cross
the potential barrier imposed by the ellipsoid. Additionally, the
average rotation speed of the ellipsoid becomes much faster
than the time scale of rotation of the different rings. Decreasing
then � below 10 results in a fully angular and radially melted
system.

At last, we investigate the effect of the functional form
of the confinement potential and the interaction. Therefore,
we consider a screened Coulomb cluster in a circular hard
wall cavity and compare the results with those of a parabolic
dot. First, we choose a system consisting of N = 30 particles
interacting through a short-range screened Coulomb potential
confined by a hard wall with ground-state configuration
(3:9:18) [see Fig. 3(a)]. Then, we consider a system of N = 25
particles interacting through a short-range screened Coulomb
potential in a parabolic dot with ground-state configuration
(3:9:13) [see Fig. 3(b)]. The number of particles were chosen
such that they have the same number of particles on the first
two rings. We put in both systems the ellipsoid in the inner
ring.

We can see from Fig. 3 that the influence of an ellipsoid on
the system for a screened Coulomb interaction but still with a
hard wall confinement is similar as for a system with a dipole
interaction: the onset of the angular melting is unchanged,
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FIG. 3. (Color online) System containing N = 30 and 25
screened Coulomb particles with the ellipsoid placed at the inner
ring in a (a) circular cavity or (b) parabolic well, respectively. The
angular diffusion coefficient 	θ2 of the system as a function of the
coupling parameter � for aspect ratios of the ellipsoid φ = 1 (black
squares) and φ = 10 (blue triangles). 	R2 (red circles) of the system
as a function of the coupling parameter � for aspect ratio of the
ellipsoid φ = 1.

however, the angular order is increased. Furthermore, a clear
two-step angular melting is observed in Fig. 3(a), as was found
for the non-closed-packed system with dipole interparticle
interaction. Although there is an enhancement in angular order
due to the ellipsoid in the case of a parabolic confinement
potential, it is much smaller than for the hard wall case, as can
be seen in Fig. 3(b).

IV. CONCLUSIONS

In this paper, we investigated the influence of an ellipsoid
on the dynamics of the molten system of 2D classical clusters
using Brownian dynamics simulations. We compared the

results for particles interacting through dipole (i.e., long-
range interaction) and screened Coulomb (i.e., short-range)
interaction confined by a hard wall or parabolic confinement
potential. As a representative system, we took the number of
confined particles such that we have a three ring structure. We
found that, for the system consisting of particles interacting
through a dipole potential and confined by a hard wall, which
is a good model system for confined magnetic colloids, the
presence of an ellipsoid does not influence the start of the
angular melting but reduces the rate at which the inner rings
can rotate with respect to each other. Even a small eccentricity
of the ellipsoid leads to a stabilization of the angular order
of the system. The effect of the ellipsoid is most pronounced
when it is situated on the inner ring. The ellipsoid was also
found to be energetically preferentially situated at this inner
ring. Consequently, a reentrant behavior was found in the
angular melting when the ellipsoid was placed on the middle
ring because of a configurational change: when the kinetic
energy of the particles is large enough, they push the ellipsoid
to the inner ring, which results in a sudden increase of the
angular order. Another effect of the ellipsoid is that it can lead
to a two-step angular melting process: First, the rotation of
both inner rings with respect to each other is hindered by the
ellipsoid, but when further increasing the kinetic energy of
the system, the ellipsoid just starts to behave as a spherical
particle with different mobility. Further, it was shown that
these effects of the ellipsoid on the dynamics of the molten
system of 2D classical clusters do not depend crucially on
the functional form of the interparticle interaction. However,
the angular stabilization of the cluster due to the ellipsoid
was found to be less pronounced for particles confined in a
parabolic trap.

At present, no experiment has been performed on the
investigated system and we hope that our results will be a
motivation for experimentalists. A possible experiment would
be on a colloidal system consisting of paramagnetic spheroidal
colloids in a circular cavity as described in Ref. [11] or a
parabolic confined finite size dusty plasma system as in the
experiment of Ref. [35] where one changes the eccentricity of
one of the spheroids. Our results can serve as a guide on the
effect of the anisotropy of particles on the angular and radial
order in such 2D clusters.
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