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The effective capillary interaction potentials for small colloidal particles trapped at the surface of liquid droplets
are calculated analytically. Pair potentials between capillary monopoles and dipoles, corresponding to particles
floating on a droplet with a fixed center of mass and subjected to external forces and torques, respectively, exhibit
a repulsion at large angular separations and an attraction at smaller separations, with the latter resembling the
typical behavior for flat interfaces. This change of character is not observed for quadrupoles, corresponding to free
particles on a mechanically isolated droplet. The analytical results are compared with the numerical minimization
of the surface free energy of the droplet in the presence of spherical or ellipsoidal particles.
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I. INTRODUCTION

If colloidal particles get trapped at fluid-fluid interfaces
they interact effectively via deformations of the interface.
These so-called capillary interactions can easily be tuned by
changing external fields and they depend sensitively on the
shape of the particles. This makes them good candidates for
designing self-assembling systems and provides a convenient
experimental playground for studying basic issues of statistical
mechanics in two dimensions in the presence of long-ranged
interactions [1,2]. On the other hand, recent experiments [3]
show that capillary forces between elongated particles floating
on spherical interfaces can have important consequences for
stabilizing so-called Pickering emulsions, which are formed by
particle-covered droplets (e.g., oil) in a solvent (e.g., water).

Whereas considerable theoretical progress has been made
in understanding capillary interactions at flat interfaces [4—6],
basic issues such as the balance of forces acting on the
interface and the influence of the incompressibility of the
liquid enclosed by spherical interfaces have not yet been
fully resolved. Curved interfaces of finite droplets pose the
additional difficulty [7,8] that in the presence of external forces
the condition of mechanical equilibrium demands to either fix
the center of mass of the droplet by an external body force or
to pin the droplet surface, for example, to a solid plate. The
experimentally relevant issues of the boundary conditions at
the plate and of their influence on the pair potential between
capillary monopoles representing particles subjected to radial
external forces have been studied previously [9,10]. Here
we study the cases of capillary dipoles corresponding to
particles subjected to external torques and of higher capillary
multipoles corresponding to free particles with undulating
three-phase contact lines (due to, e.g., nonspherical shapes
of the particles or inhomogeneities of their surfaces). We
derive the effective pair potentials for corresponding pointlike
particles expressed as an expansion in terms of spherical
harmonics. Within our model the particles are characterized
by constant multipole moments, that is, independent of their
spatial separation. Concerning flat interfaces the available
experimental and numerical results reported in the literature
indicate that in many cases this is a valid approximation
[11,12]. If capillary monopoles are fixed by a constant external
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force acting on the particles in the direction perpendicular
to the interface, such as gravity (or buoyancy [13]) or an
electrostatic force [14], the free energy is dominated by the
monopole-monopole term ~In(gd), where ¢~ denotes the
capillary length and d the spatial separation of the particles. If
in addition the particles of size a are spherical and there are
no external torques, the corrections to the leading monopole-
monopole term in the effective capillary interaction potential
are of the order O(a/d)* and thus negligible at separations
d/a > 1 [15]. The assumption of constant monopoles cannot
be applied in the case of particles protruding from a thin
liquid film (such as a soap film [16] or a layer of liquid
on a substrate [17]) of a thickness smaller than the particle
diameters. In such a case the monopoles are modified due to the
deformation of the interface induced by the other particle and
thus detectably depend on the particle separation [16]. Force-
and torque-free particles of nonspherical shape are sources
of a deformation field characterized by the symmetry of the
configuration of the three phase contact line. Generically, the
first nonvanishing multipole is the quadrupole, which means
that the interaction between free particles of irregular shape is
dominated by the quadrupole-quadrupole term. The strength of
this quadrupolar interaction increases with the amplitude of the
undulation of the interface around the particle, which is usually
more pronounced for elongated particles such as prolate
ellipsoids or cylinders [at least for contact angles at their
surface different from 77 /2 (see Ref. [18])]. However, in those
cases higher capillary multipoles become important already
at separations d of the order of several particle sizes [18,19].
These higher-order effects actually determine the equilibrium
orientations of the particles close to contact [20-22] and their
aggregation at high concentrations [23]. Actually, in the case of
ellipsoids the expansion in terms of elliptic coordinates seems
to be more appropriate than the usual multipole expansion [18].

Here our main goal is to study the effects of curvature
on the interaction potentials between multipoles of arbitrary
order. For monopoles and dipoles we find important qualitative
differences from the case of a flat interface, in particular the
occurrence of new local minima and metastable branches of
the free energy, whereas in the case of quadrupoles we observe
only minor quantitative differences. We note that an actual
particle can always be associated with a set of multipoles, but
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the issue of how this has to be implemented is beyond the scope
of the present study. (Concerning a flat interface we refer to
Refs. [6,21,23,24]). However, our full numerical calculations
for actual particles reveal that in the cases with external forces
and torques the point-multipole model performs very well. For
ellipsoids apparently higher-order corrections are needed.

The paper is organized as follows. In Sec. II we study
small deformations of a droplet in the presence of an external
pressure field and in Sec. III we introduce Green’s function for
the linearized capillary equation on a sphere. In Sec. IV we
derive a general formula for the interaction potentials and we
focus on the cases of monopoles, dipoles, and quadrupoles.
In Sec. V we compare these analytical results with those of
the numerical free energy minimization (obtained by using the
software SURFACE EVOLVER [25]). We discuss the results in
Sec. VL.

II. PERTURBATION THEORY

We consider a spherical droplet of radius Ry with colloidal
particles trapped at its surface with surface tension y. We
model the effect of particles in terms of an external surface
pressure field I1(£2) (see below) parameterized by spherical
coordinates 2 = (6,¢) on the unit sphere. The equilibrium
shape of the droplet subjected to the pressure field IT follows
from minimizing the corresponding free energy functional
FI{v(2)}] expressed in terms of the dimensionless radial
displacement of the interface v(2) = [r(2) — Ro]/Ry. In the
limit of small interfacial gradients |V,v| < 1 one has [7,9]

1 _ 1 22
ngj:[{v(Q)}] = fdQ [2(%0) vt = (w(§2) + M)v] ;
(D

where V, := eg0y + 81‘%8(;) is the dimensionless angular gra-
dient on the unit sphere [26]. The first two terms in Eq. (1)
represent the surface free energy, the third term corresponds
to the work done by the dimensionless external pressure
m(R2) = TI(2)Ry/y in displacing the interface, and the fourth
term serves to implement the volume conservation. The value
of the Lagrange multiplier —u follows from imposing the

volume constraint
/ dQv = 0; )

y L/ Ry can be identified with the shift in the internal pressure
of the droplet with respect to the Laplace pressure 2y /R, of
an unperturbed, perfectly spherical droplet. The condition of
mechanical equilibrium imposes an additional constraint on
the pressure field,

/ A2 7(Qe, = 0, 3)

which expresses the balance of forces acting on the droplet.
The stationary condition §F /v =0 leads to the Euler-
Lagrange equation

—(V2 +2)u(Q) = 7(Q) + 1. “4)
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We expand both the deformation v(€2) and the pressure field
7 (L2) in spherical harmonics Y;,,(€2) so that Eq. (4) turns into
an infinite set of algebraic equations [27]:

A+ 1) = 2]vy, = 7 + udpo, (5)

where [ =0,1,..., and m = —I,...,l, and the spherical
multipoles are defined as X, := [d¥ X(Q)Y;,(Q) for
X(RQ) =v(2) or X(2) = 7(2). The volume constraint in
Eq. (2) implies vgp = 0 and thus u = —mg, which means
that the internal pressure shift counterbalances the external
pressure. According to Eq. (5) the / = 1 components of the
deformation v are undefined. This is consistent with the fact
that those components describe translations of the whole
droplet without any change in shape which do not change
the free energy. On the other hand, all / = 1 components of
the external pressure 7w must cancel, reflecting the condition of
balance of forces acting on the droplet. Indeed, the multipoles
mi_1,710,71; are proportional to the Cartesian components
fx, fy, [- of the total force f acting on the droplet. Hence, the
condition f = 0 is equivalent to 7y, = 0 withm = —1,0,1.

III. GREEN’S FUNCTION AND BALANCE OF FORCES

In accordance with the above reasoning we consider a
pressure field in the form of a superposition of N forces
fi acting pointlike into directions €2; and an additional
contribution 7., (€2) which acts as to fix the center of mass
(c.m.):

N
TR =) 4i8(Q,2) + Tem (), (6)

i=1

where ¢; := fi/(yRy) and §(Q2,Q;) =360 —6;,)5(¢p —
¢;)/sin6; is the Dirac § distribution expressed in terms of
spherical coordinates and where the pressure field ., fulfills
the condition ZlN Titm + Tem. 1m = 0 for m = —1,0,1. The
interface deformation due to the point forces can be written as
a superposition of single particle contributions:

N
Q) =) q:G(Q.Q), (7

where G(2,8) is Green’s function describing the response of
the interface in direction €2 to a point force applied in direction
Q' and which, according to the constraints of constant liquid
volume and fixed center of mass, fulfills the equation [27]

!
(V2 4+2)GQ,2)=)_ > Vi @¥m(@), 8

122 m=—I

where the right-hand side is a modified Dirac § function §($2 —
Q') with the I = 0 and / = 1 components projected out. The
vanishing of the / = 0 component of G reflects the condition
of constant volume f dQ2G(R2,2") = 0 [Eq. (2)], whereas the
vanishing of the / = 1 component of G is due to the condition
that the center of mass of the droplet is fixed in space, that is,
deZ e, G(22,2) = 0 [see Eq. (3)], and due to the fact that e,
can be expressed in terms of spherical harmonics with / = 1
only.
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We note that if 7., is due to a spatially constant body
force it does not contribute to the deformation at all. Indeed,
in this case all spherical harmonics components of ., are
zero other than those with / = 1 [28] so that the corresponding
deformation [d$2'7cm (2)G(Q2,Q') vanishes because upon
construction G(£2,2") does not contain the / = 1 components.
In the following we shall assume that ., is due to a body
force.

The expression in Eq. (7) for the deformation under the
action of point forces can be generalized to the case of an
arbitrary continuous force distribution 7 (£2):

Q) = /dsz/ #(Q)HG(Q,Q). 9)

We note that the total pressure 7 acting on the interface again
encompasses the additional component 7., (such that 7 =
T + mem. [30]), which, however, as discussed above, does not
contribute to the deformation of the droplet.

One can express the free energy in terms of Green’s function
by integrating by parts Eq. (1), by using Eq. (4) and the
divergence theorem, and finally by inserting v(€2) as given
by Eq. (9) [27]:

1

1 ! = A= /
V—R(%F = —E/dQ /dQ F(QGQ,Q)7(Q).  (10)

IV. CAPILLARY INTERACTIONS

A. Free energy in the presence of an external
pressure distribution

We study the pressure 77 localized around two different
directions 21 and €2;. To this end we introduce the following
decomposition:

#(Q) =1 (R'Q) + m(Ry'Q), (11)

where I?l (1?2) denotes the rotation transforming the orig-
inal coordinate frame xyz into the coordinate frame x'y’z’
(x"y"7"), referred to as O; (0,), associated with the pressure
distribution m; (;17) (see Fig. 1). We use the parametrization
in terms of Euler angles, in which an arbitrary rotation R can
be composed of a rotation around the z axis by the angle «,
around the (rotated) y axis by the angle 8, and finally around
the (rotated) z axis by the angle y. Under the rotation R(a,B,y)
of the coordinate frame the coordinates transform according
to R, as indicated in Eq. (11).

The total free energy can be written as F = Fj gr +
F it + AF, where F sir = —[ 7 /(4 y)]In(Ro/a;) + O(1)
is the self-energy of the pressure source 7; [9], which does not
depend on the relative position of the sources on the droplet
but depends on their spatial extent a;. Taking the source to be
located at the north pole, this is defined as the smallest distance
for which 7;(8,¢) = Oforall@ > a;/Rpand ¢ € [0,27);inthe
next section this corresponds to the solid angle circumscribing
the particle-liquid interface. The interaction free energy A F
is given by the cross terms in Eq. (10) with 7 from Eq. (11):
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FIG. 1. Angular configuration of the pressure distributions sym-
bolically represented as gray patches centered at the directions
Q2 = (0,0) (north pole) and €2, on the unit sphere. The angles
¢, and ¢, represent orientations of the local coordinate frames

"

x'y'z’ and x"y"z
main text).

associated with the pressure distributions (see

 AF=-— f dQ f dQ 7 (Ry'Q) G(Q.Q)m (R, ')

— /dQ/dQ’ Z Trm Y (R Q)
I,m

x Z ;Y5 (Y () Z e Vi (Ry '),
j.n

k,m'
(12)
where
0 for [ =0,1,
= 1
=) —— for 1>2 (13)
d+1-2

are the spherical harmonics coefficients of G(£2,’). Without
loss of generality we can take 2; = 0 such that the reference
frame O, coincides with the original reference frame xyz (see
Fig. 1), which implies that R, = 1.

Spherical harmonics transform under the representa-
tion of the group of rotations according to Ylm(ﬁ -1Q) =
an,z_l Drfw’m(R?)Y,m/(Q), where Dril/.m is the Wigner D matrix

and reads (adopting the convention used in Ref. [29])
D}, .(R) =D}, ,(a.B.y)=e"""al, (Be™™,  (14)

where d,ﬁl,,m(ﬂ) is known as the Wigner (small) d matrix. We
use the parametrization in terms of the orientations ¢; and ¢,
of the coordinate frames O; and O, respectively, relative to
the great circle connecting the points €2; = 0 and €2, on the
unit sphere (see Fig. 1). The rotation R, is then parameterized
by the triad of the Euler angles (2r — ¢, ,0,¢). By using the
orthogonality f dQQY 1, ()Y, () = 81 8um of the spherical
harmonics, and due to the identities Y} (2) = (=1)"Y; _,(£2)

m
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and D!, “(a,B,y) = (=1y"""D!

o —m(@,B,y), we finally
obtain

1

I 1
— S AF == 3" i T (D)
YRy

122 m=—Im'=—I

x gid) . (0) e Mmoo, (15)

B. Relation to colloidal particles in the limit of pointlike
pressure distributions

Having in mind colloidal particles as sources of the effective
surface pressure w, we would like to relate the spherical
multipoles ny,,, [ > 0, m = —1, ...,l, to capillary multipoles
defined for the case of a flat interface which have a clear
physical meaning. For example, the capillary monopole and
dipole are given by the total external force and torque,
respectively, acting on the particle and the capillary quadrupole
is proportional to the amplitude of the three-phase contact line
undulation at the particle surface [6]. For particle sizesa < Ry
the interface can be treated as being locally flat in the close
neighborhood AQ of angular extent O(a/Ry) around each
individual particle. Assuming for reasons of simplicity that
AR is centered at the z axis and approximating it by a circular
disk D(a) of radius a in the tangent plane we can use the
asymptotic form of spherical harmonics [31],

Yin(0.¢) ——2 1" A 0™, (16)

21+ 1( 'l
Ap = +1¢+n) , n=0,1,..., (17
4 (I —n)! 2"n!

in order to obtain

where

- / 4 () Yin(Q) ——
AQ

a/Ro—0
20+1( a
e ) = 03
4 (R()) QO "
a |m|+1 o
i|m|+mA”m‘ <_> Q‘m‘elmd)l"", m ;é 0,
Ro
(18)
|
Aan/ Qn Q;Z/

’
ana/n

yaa'  a/Ro.a/Ry—0 (=2)y"t"+nln/\y R(')'*”’

(I +n"H
(I —n)!

(—=1)" cos(ngy) P (cos 0),

27! Pi(cos ),
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where we have introduced the dimensionless moduli

d*x’ all(z)
0 = / - , (19)
D) @ 14
d2x/ GH(Z/) Z/ n
0= X (—) , 20)
D@) @ 4 a
and the phase
B 1 d2 " all(z’ AL
¢n = —arg/ —f all(z) (Z—> ) (21)
n D) @ Y a
wheren = 1,2, .. .; 7 denotes acomplex number, and I[T(x") =

y[Q'(x")]/ Ry, with x'(€2’) being a projection onto the plane
tangent to the reference sphere at €2;. Equations (19) and (20)
comprise the definitions of the capillary multipoles Q, at a
locally flat interface (see Refs. [6,11]). Accordingly, due to the
conditions of force and torque balance on a flat interface [6],
Qy represents a “capillary monopole,” that is, the total external
force acting on the particle, and Q; represents a “capillary
dipole,” that is, the total external torque. In the case of a
free particle, Q, represents the lowest nonvanishing multipole.
Furthermore, we note that for each particle i one can always
choose the orientation ¢; of the coordinate frame O; such
that the phase of the order n vanishes, that is, &i,n =0. We
can write the interaction energy A F,, for a pair of capillary
multipoles Q,, and Q/, of arbitrary orders n > 0 and n’ > 0
as a sum of terms such that in Eq. (16) the sum over / is taken
under the constraint / > max{2,n,n'} with m and m’ fixed
tom = £n and m’ = £n’; this implies AF = )" _ AF,,.
Accordingly, the interaction free energy AF,,  for a pair of
capillary multipoles Q, and Q/, scales with the droplet radius
Ry as AF,, ~ ya"t'a'"+!/RI™ . Note that in the case of
two monopoles (n = 0 and n’ = 0) the interaction does not
depend on Ry but only on the moduli Q¢ and Qy,.

The Wigner d matrix in Eq. (15) can be expressed in terms

of the Jacobi polynomials P."*”(cos d) [31]:

b UM —m) T
D 0) = [ A+ m)\1 —m)! ] )

m'+m
X <cos E) Pl(Tme‘m”H")(cos 9). (22

By using certain properties of the Jacobi polynomials (see,
e.g., Ref. [31]), we finally obtain

e
[>max{2,n,n'} d+2)0-1)

g n'—n n'+n , . B
|:(— 1)" cos(ng + n'¢,) (cos E) (sin 5) Pl(fn'f"’" " (cos 0)

9- n'+n 9— n'—n L B
x { +cos(ng; —n'¢) (cos 5) <sin 5) P,(fn,"’" ) (cos 9):|, n>0, n >0, (23)

n>0 n =0,
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where P, and P/" are the Legendre and the associated Legendre
polynomials, respectively.

C. Effective interaction potentials

For simplicity, we evaluate the interaction energy in Eq. (23)
for a = a’ and n’ = n. In the case of two identical pointlike
monopoles,n = n’ = 0, one obtains [32]

AFo(0) Qo |:

ya?  a/R—0 47

0
3 + 50056’ +2cosf1n (sm§>i| ,

(24)

which gives Green’s function G(9) = —AFOO(G_)/(yaZQ(Z))
as first derived in Ref. [27]. We note that according to
Eq. (24) one has G(6 — 0) — —[1/(27)]1n 8 [see the dashed
line in Fig. 2(a)], which renders the deformation v(r) =
—[1/@2m)]In(r/Ry) due to a pointlike force, known for a
flat interface, where r = O Ry < Ry is the arc length (see the
dashed line in Fig. 1) and Ry plays the role of the capillary
length.

In the case of pointlike dipoles, n =n’ =1, one can
evaluate the series involving the Jacobi polynomials by using
their generating function (see Appendix A):

1 Q2
—AF11(9 b1,92) —> —
ya -0 87

2
<—0> [cos(¢1 + ¢2) f+(D)

+ cos(¢1 — ¢2) f-(O)], (25)
where ¢ and ¢, are the orientations of the particles as indicated
inFig. 1 and chosen such that the phases ¢; , defined in Eq. (21)
vanish for n = 1 and where
0 0 20 0
0):= ——— —4sin* = In(sin = | — = sin* = 42,
f+(6) Sn2(0/2) sin > n (sm 2) 3 sin 2 +

(26)
0) = 4 (cos 21 n? )+ Dol @
f-@):= (cos 5) n <sm E) + ?cos 5 27

We note that the dependences on the angular separation 8 and
on the orientations ¢;,¢, do not factorize. Therefore, in order
to minimize the free energy, the particles adopt orientations
which depend on 8. According to Eq. (28) below, one can
distinguish three branches of the free energy [see the dotted
lines in Fig. 3(a)] corresponding to three different minimal
orientations, out of which the one with the lowest free energy
is the equilibrium one. Assuming that the rotational relaxation
of the particles is much faster than the translational one, an
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(b)

FIG. 2. (Color online) (a) Rescaled effective interaction potential
[Eq. (24), solid line] between two capillary monopoles. The level of
zero energy is shifted such that AFy(@ = ) = 0. The dashed line
corresponds to the expression [In(@) — In(rr)]/(27) representing for
comparison the case of a flat interface with the equivalent spatial
separation d = Ryf of the particles. As expected, for § — 0 the
full curve approaches the dashed curve. The symbols correspond
to the results of the numerical minimization of the free energy for
droplets of various radii, with the contact angle at the particle 6, =
/2, and with the strength of the external force Qy = f/(ya) = —
(upper set of symbols at a given ) or Qg = f/(ya) = 1 (lower set
of symbols), respectively. The data terminate at an angular separation
corresponding to the contact of the particles. In (b) and (c) we show
snapshots of the triangulated droplet surface corresponding to Ry/a =
4,0, =m/2, and Qp =2 (b) or Qyp = —2 (c) with the position of
the center of mass of the liquid indicated by CM. In (b) and (c) a
cross-sectional view is shown with the plane defined by CM and the
centers of the particles.

effective interaction potential can be obtained by minimizing
the free energy with respect to ¢; and ¢;:

1 Q2 _f+(9_) + f—(é) for 0_ < 0_0’ T T or ‘1’ \L ’
W m1n {AF”(H ¢|,¢)2)} ﬁ - —f+(9_) — f,(é) for 9_0 < 9_ < 9_1, <~ — Or — <, (28)
Fo@) — f-@)  for §> 0. tloor L7,
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o0 Q6 T O|
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(d)

FIG. 3. (Color online) (a) Rescaled effective interaction potential [Eqs. (25)—(28), solid lines] between two capillary dipoles. The dashed
line corresponds to the expression (1/72 — 1/6%)/(27) representing for comparison the case of a flat interface with the equivalent spatial
separation d = Ryf of the particles. The dotted lines represent three metastable branches of the free energy [see Eq. (28)] corresponding
to three different orientations of the particles with two relevant intersection points [at §; ~ 1.83, where f,(8;) = 0, and §, ~ 0.38, where
f-(8y) = 0] indicated by solid squares. In each interval [0,0,], [f,0;], and [8;,7] the full curve corresponds to the lowest of the branches and
as such describes thermal equilibrium. The symbols correspond to the numerical results with a finite-size correction (see main text) applied in
the case <— —. In (b)—(d) we show the snapshots of the numerically calculated droplet shapes corresponding to Ry/a = 5 and § = m/3; the
unstable configuration (b) corresponds to the local maximum of the free energy with respect to the orientations of the particles, the metastable
configuration (c) to the inflection point, and the stable one (d) to the local minimum. The stability of the branches changes discontinuously at
the intersection points. In (b) and (c) the green parts denote the fixed area of the particle-liquid interface with a fixed three phase contact line.

where 8y = arccos[1 — 2exp(—10/3)] ~ 0.38 and &; ~ 1.83
are the zeros of f_(8y) =0 and f, () =0, respectively;
the arrows indicate the minimal orientational configuration.
(The tips of the arrows indicate the direction in which the
effective pressure is positive, or, equivalently, the direction
of the positive tilt of the particle, so that, for example, 1 1
corresponds to ¢ = /2 and ¢, = 7 /2, etc.)

In the case of pointlike quadrupoles, n =n’ =2, one
obtains (see Appendix A)

—_ —
a/Ro—0

302 4
IQ; (1%,) cos(21 + 2)
1

X St (@/2)

1 ~
— AF»(0,91,¢2)
ya

(29)

Distinct from the case of dipoles, the free energy has
a minimum for ¢ + ¢» =kn, k =0,1,... [which implies
cos(2¢1 + 2¢,) = 1] independently of 9, so that

SQ% a\*
64r RO
1
X —-".
sin*(0/2)

1 _
—— min {AF»(0,¢,, —_—
e {¢1,¢2}{ 2(0,¢1,¢2)} TR

(30)

This corresponds to a monotonic attraction [see the thick solid
line in Fig. 4]. We note that the corresponding asymptotic form
AFy = —[303/(4m)]la/(RyH)]* of the interaction potential,
which is strictly valid only in the limit § < 1, is actually a
good approximation at all angular separations [see the black
dashed line in Fig. 4(a)].

V. NUMERICAL RESULTS

In this section we compare our approximate analytic
theory with the numerical minimization of the free energy
for colloidal particles floating at the surface of a droplet. We
employ a method based on steepest descent [25] in order
to study spherical particles subjected to external forces and
torques as well as the case of free ellipsoidal particles. The
numerical procedure consists of the iterative evolution of a
body of liquid from a predefined initial configuration, which
is as simple as possible (e.g., a cube), under given constraints
at the particle surfaces and preserving the volume of liquid.
The triangulated liquid surface evolves toward the equilibrium
shape following the steepest descent of the free energy given
by the following functional:

f[{r(Q)}vhlsh27wlvw2;évd)l’¢21f17f29T11T2s0p7a7‘/la)"]

=S+ Y (—ycos0,Syi — fihi = Ti-¥,)
i=1,2

— AV = V)). (€29

The above functional is minimized with respect to the shape
of the interface {r(2)}, the immersions of the particles 4;,
and their tilts ; = |¥,;| while the angular separation § and
the tangential orientations ¢; are kept fixed. The immersions
can be defined with respect to an arbitrary reference radial
position, the choice of which is of no importance because
the free energy depends only on their relative changes. For
simplicity we adopt the spherical drop without the particles
and with radius Ry as the reference configuration. Each tilt
vector ¥; is determined by the direction of the axis of tilt and
the tilt angle ;. The axis lies in the plane perpendicular to

031401-6



CAPILLARY INTERACTIONS IN PICKERING EMULSIONS

PHYSICAL REVIEW E 84, 031401 (2011)

07‘ T
gﬂ /
" 0.6 /i# oo Ry/b=5
> i Ro/b=6
é‘: i - Ry/b=38
<
k= 1'2TI' o Ry/b=5
\: |1 Ro/b=6 }
S
-1.8ff
i
1 L 1
1 _ 2
(a) 0

FIG. 4. (Color online) (a) Rescaled effective interaction potential between two capillary quadrupoles [Eq. (30), thick solid line]. The black
dashed line corresponds to the expression 3(1/w* — 1/6*)/(4m) representing for comparison the case of a flat interface with the equivalent
spatial separation d = Ryf of the particles. The symbols correspond to the results of the numerical minimization of the free energy for two
force- and torque-free ellipsoidal particles with aspect ratio a/b = 3, contact angle 6, = 27/3, various droplet radii Ry, and two different
orientational configurations: tip-to-tip (full lines) and side-to-side (dashed lines), as visualized by the snapshots shown as insets. In view of
large relative numerical errors for small values of A Fy, the zero of the free energy is taken as a mean value of the data points with § > 1.5.
The colored lines connecting the symbols are guides to the eye. The variables describing the spatial configuration of particle i are explained
in (b). The immersion /; and the tilt angle ¥; of the long axis of the particle with respect to the plane perpendicular to the direction €2; are
both subjected to minimization, while the orientation ¢; is kept fixed. (c) Contour of the interface around a single particle at the north pole of a
droplet, with Ry/b = 8 and for ¢; = 7 /2, quantified in terms of the radial position r(x,y) of the interface (symbols) at a fixed distance (equal
to 3b) from the particle center. For comparison the corresponding undulation (Au/2) cos(2¢), with the amplitude Au/b = 0.102 chosen to be
the same and with ¢ = arctan(y/x), for a pure quadrupole placed at the particle center is plotted as the full red line.

the direction €2; and is determined by the orientation ¢; of
the particle i [see, cf., Fig. 4(b)]. Accordingly, the rotations
around €2; are frozen in so that one has to perform independent
calculations for various ¢; in order to be able to compare their
free energies. Sy, is the area of the liquid-gas interface and S ;
are the areas of the particle-liquid interfaces. For convenience
we assume that the contact angle 6, on both particles is the
same. The shape of the particles enters as an implicit parameter,
and we assume that both particles are of identical shape and
size (the latter denoted by a). The third and the fourth term
in Eq. (31) represent minus the work done by the external
forces f; and torques T';, respectively, in shifting and rotating
the particles, whereas the last term ensures conservation of
the liquid volume V; with A as the corresponding Lagrange
multiplier. In the cases with nonvanishing torques we consider
pinned contact lines at the particle surfaces, which implies
Spi,i = const so that the value of 6, is actually irrelevant in
those cases (for further explanations, see below). In all cases
studied the center of mass of the droplet is fixed at the origin
of the coordinate system, that is, at the center of the droplet
without particles (which forms a perfect sphere).

In Fig. 2 we compare the numerical results for two spherical
particles subjected to radial external forces (f; = f> = f) in
the absence of torques (7; = 0) with the analytical results
for pointlike monopoles of strength Q¢ = f/(ya). Due to the
mirror symmetry of the system, it is sufficient to determine
only one half of the droplet with one of two particles. (The
corresponding case of a hemispherical droplet sitting on a pla-
nar substrate with contact angle 6y = /2 has been thoroughly
studied in Ref. [9].) In the present case of a full droplet the free

energy is simply twice the free energy of a sessile droplet. We
note that for the droplet sizes Ry/a = {4,6,8} the agreement
with the theoretical expression in Eq. (24) for pointlike dipoles
is only achieved after subtracting from the numerical results
acorrection 8 Foo/(ya®) = —Qo(a/Rp)? cos?(A/2) accounting
for the work done by the external force in displacing the center
of mass of the droplet when the configuration of the immersed
parts of the particles changes [33]. With this finite-size
correction taken into account the agreement is almost perfect,
which indicates that the higher-order multipoles induced by
the particles are negligible.

Similarly, from Fig. 3 it follows that the numerical results
for particles subjected to external torques (|T| = |T,| =
T) in the absence of forces (f; = 0) are almost perfectly
reproduced by the analytic model with capillary pointlike
dipoles of strength Q, = T/(ya?*) [34]. We study spherical
particles with the three phase contact lines pinned at the
particle equators which prevents sliding of those lines on
the particle surfaces. Physically, such a pinning can be
accomplished by using so-called Janus particles composed
of two hemispheres of different wettability. In the case of the
configuration <— — (¢; = m,¢, = 0) a semiempirical finite-
size correction 8F11/(ya2) = Ql(a/RO)3 sin@ is subtracted
from the numerically calculated free energy in order to
facilitate comparison with Eqs. (26)—(28). [This correction
does not apply to the other two branches 1 1 and 1 | (see
Appendix B).] We have checked the validity of this correction
for Q) = 1,2 and droplet radii Ry/a = 4,5, and 8 (the case
Ro/a = 8 is not shown in Fig. 3). For Ry/a <5 and at
large angular separations the correction is comparable with
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FIG. 5. (Color online) Particles inside thin spherical liquid films
(double droplets or bubbles). (a) A trapped spherical hydrophilic
particle corresponds to two capillary monopoles of positive (4) and
negative (—) sign induced at the external and at the internal interface
of the film, respectively. (b) An elongated particle with a hydrophilic
and a hydrophobic part corresponds, accordingly, to two capillary
dipoles with opposite orientations, one at each side of the film. In
both cases the sum of all the monopoles or dipoles associated with
the particle at both interfaces is zero due to the condition that there
are no external forces or torques acting on the particle.

the gap between the metastable branches of the free energy.
Accordingly, in those cases the finite size of the particles may
affect the stability of individual branches and the equilibrium
orientations of the particles. However, the effect becomes
negligible for larger droplets [35].

Finally, we consider freely floating prolate ellipsoidal
particles with semiaxes a and b, a > b (Fig. 4). The maximal
size of the droplets accessible in our numerical calculations is
limited by the relative numerical errors, which for Ry/b = 8
become so large that they actually smear out the angular
dependence of the free energy. (The errors grow NR(‘)‘ , that
is, much faster than ~R§, as in the case of dipoles; in the
case of monopoles the errors practically do not depend on
Ry.) For the same reason we consider only particles with
a large aspect ratio (a/b = 3) for which the undulation of
the contact line Au/a [see Fig. 4(c)] is large enough so
that the amplitude of the free energy dominates over the
numerical noise. In order to facilitate comparison with the
analytic theory [Eq. (30)], the capillary quadrupole of each
particle is approximated by the expression Q, = 27 Au/a,
where Au = maxyr(0 =a/Ro,¢) —ming r(6 = a/Ro,¢) is
the undulation of the interface at the angular distance 6 =
a/ Ry from the center of a single particle placed at the north
pole of the droplet [see Fig. 4(c)]. The above relation between
0, and Au is approximately valid for a single particle at
a flat interface [6]. As an approximation for a droplet we
adopt the same relation, Q»(Ry) = 2w Au(Rp)/a, with the
radius-dependent undulation Au(Rp). This undulation has
been calculated numerically for droplets with three different
radii: Au(Ry/b =5)/a = 0.028, Au(Ry/b = 6)/a = 0.031,
Au(Ry/b = 8)/a = 0.034. Here R is the radius of the droplet
without the particles. According to the data shown in Fig. 4(a)
the effective interactions between two identical ellipsoids
are monotonically attractive for both their tip-to-tip and
side-to-side orientation. In the latter case the particles can
approach each other closer and therefore this configuration
at contact corresponds to the global minimum of the free
energy. However, at a fixed angular separation the free
energy is actually lower for the tip-to-tip configuration. The
overall scaling of the free energy ~(Ry/a)™* is observed at
intermediate angular separations. At small separations the
scaling breaks down while at large separations the accuracy of
the data is insufficient to confirm this scaling. A more detailed
comparison of these results with the analytic theory for point
quadrupoles is discussed in the following section.
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VI. DISCUSSION AND CONCLUSIONS

First, we discuss the influence of the curvature of the
interface on the interaction potentials by comparing the
expressions for the curved interfaces [Egs. (25)—(29) and solid
lines in Figs. 2—4] with the well established results for a flat
interface (see, e.g., Ref. [11], dashed lines in Figs. 2-4),
where the corresponding spatial separation d between the
particles is given by d = Ryf. A striking difference is the
nonmonotonicity for curved interfaces of the free energy for
monopole-monopole and dipole-dipole interactions, which in
both cases leads to short-ranged attraction and long-ranged
repulsion. The monopoles are apparently attracted toward one
of the two configurations in which the particles stretch the
droplet along a single direction, that is, when the particles are
either in close contact or when they are at opposite antipodes of
the droplet. In each of those two configurations the radial dis-
placement of the particles is locally largest, which corresponds
to the maximal work fh done by the external force f on each
particle. This, in turn, corresponds to the local minima of the
free energy. In contrast, in the case of dipoles the branches
of the free energy for given orientational configurations of
the particles vary monotonically. It turns out that the locally
minimal orientations [1 1,i.e., ¢; = 7/2,¢, = /2 for small
angular separations and 1 |, i.e., ¢; = 7/2,¢o = —m/2 for
large ones; see Eq. (28), Fig. 3(a) and inset therein] are those
in which the external torques acting on the particles add up
so that their effect on the droplet is maximized. As such, in
general, the nonmonotonicity of the free energy can be traced
back to the presence of external forces or torques. We note that
for n = 0,1 the expected reduction of the results for curved
interfaces to those for a flat interface occurs only for very
small angular separations. This is not the case for quadrupoles
(n = 2), for which at all separations there is no qualitative
discrepancy and only a minor quantitative difference from the
flat limit. Interestingly, in the case of dipoles (n = 1), our
results indicate that the equilibrium orientation of the particles
is sensitive to the curvature of the interface even for @ < 1, that
is, in the limit of very large droplets and a fixed interparticle
separation. It turns out that an infinitesimal curvature lifts the
degeneracy of the free energy (as compared to the flat case)
with respect to the configurations 1 1 (¢, = /2,0 = 7 /2)
and < — (¢ = 7,¢p = 0) pointing toward the former as
the one corresponding to the global minimum [see the inset
in Fig. 3(a)]. Accordingly, the orientation of the particles
serves as a probe of the curvature. However, this is not the
case for pure quadrupoles, for which the analogous degen-
eracy is not lifted. In our arrow notation the configurations
< <>, ¢ ¢, and the remaining ones for which ¢; + ¢ =
7 are all equivalent; that is, they have the same free energy
independent of the curvature. This degeneracy is lifted for
actual ellipsoidal particles but not due to the finite curvature
but, as discussed below, due to the presence of higher-order
multipoles.

Now we compare the analytic theory with the numerical
results for particles of extended size. Very good agreement
between both methods for particles subjected to forces and
torques (Figs. 2 and 3) indicates that in these cases higher
capillary multipoles are negligible. However, they become
important in the case of freely floating ellipsoidal particles. The
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effective potentials (Fig. 4) obtained numerically for prolate
spheroids with aspect ratio a/b = 3 and droplet radii Ry/b =
5,6,8 differ for particles oriented tip to tip (¢; = ¢» = 0) and
side to side (¢; = ¢, = 7 /2). This, as already mentioned,
signals the importance of capillary multipoles higher than
a quadrupole, because the point-quadrupole approximation
yields the same free energy for both orientations [see Eq. (30)].
The deviation from the quadrupole approximation manifests
itself also in the undulation of the interface around a single
ellipsoid which deviates significantly from the one correspond-
ing to a pure quadrupole [see Fig. 4(c)]. Accordingly, having
in mind that for the studied droplet sizes the spatial separation
between the particles never exceeds several multiples of the
long axis of the particle, the observed discrepancies in the
free energy relative to the point-quadrupole approximation
are actually not surprising. The additional dependence on the
orientations revealed by our numerical calculations, which
goes beyond the quadrupole approximation, resembles that
of the well established case of a flat interface, which has been
analyzed experimentally [19] and theoretically [18] in terms
of a multipole expansion. Those studies showed that the point-
quadrupole approximation, within which tip-to-tip and side-
to-side configurations have the same free energy, is reliable
only either for particles with a very small eccentricity (b >~ a)
or at large spatial separations d > a. Otherwise, one should
rather consider an expansion in terms of elliptic coordinates,
from which it follows that at a fixed spatial separation the
tip-to-tip configuration is energetically more favorable [18].
This prediction agrees with the experimental observations [19].
Our numerical calculations indicate that also in the case of
spherically curved interfaces the same configuration is the
preferred one. However, we have not analyzed all possible
orientations. In this context it is noteworthy that optimal
orientations other then tip to tip and side to side have been
observed at a flat interface for a pair of ellipsoidal particles of
different sizes [20].

Finally, we propose an experimental setup for realizing
capillary monopoles and dipoles bound to a spherically curved
interface. To this end we consider a particle which is confined
inside a spherical film, like the one formed by a soap bubble.
If the diameter of the particle exceeds the film thickness, the
boundary condition of a given contact angle at the particle
surface imposes deformations of both the internal and the
external surface of the film around the particle [see Fig. 5(a)].
The resulting long-ranged deformations correspond to those
due to one capillary monopole induced at each side of the
film. They have the same amplitude but the opposite sign
so that the normal forces on the particle in the film add
up to zero; for a similar setup in the case of a flat film,
see also Refs. [16] and [11]. However, without an additional
restoring force in both setups the total force on each interface
separately is not balanced. In the case of a flat film mechanical
equilibrium is restored by pinning both interfaces, for example,
at arectangular frame. In the case of a spherical bubble another
mechanism is required, such as viscous friction of the liquid
inside the film. The viscosity generates so-called lubrication
forces [36] which for thin films asymptotically grow as the
inverse thickness of the film, thus preventing its thinning.
In the case of a thin spherical film constituting the bubble
this leads to an effective fixing of the center of mass of the
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bubble [37]. Equivalently, instead of an air-water-air system
one can also study an oil-water-oil system, that is, a dropletin a
droplet. Highly stable double droplets (or ensembles of thereof,
frequently referred to as double emulsions) can be produced
and manipulated in microfluidic devices. This has been already
demonstrated by various authors (for recent assessments see,
e.g., Ref. [38]). In particular, it is possible to control the
thickness of the liquid shell and therefore, indirectly, also the
strength of the monopoles. Introducing colloidal particles or
droplets of high surface tension into the shell appears to be
experimentally feasible.

Obtaining capillary dipoles calls for more sophisticated
particle structures. For this purpose one can use elongated
shapes, for example, prolate ellipsoids or capped cylinders,
which minimize their surface free energy by aligning their
long axis tangentially to the interfaces of the film. If in addition
those particles have two halves of different wettability chosen
such that the regions of positive and negative deformation of
the adjacent liquid interfaces occur at the opposite poles of the
particle, these particles would correspond to capillary dipoles
[see Fig. 5(b)]. Again, we assume that the corresponding
torques on each interface of the film are balanced by the
viscous friction of the liquid inside the film. One has to choose
the system parameters carefully in order to minimize the effect
of the associated capillary monopoles which otherwise would
dominate the free energy. (As already mentioned, the sum of
monopoles associated with the particle at both interfaces is
always zero due to the condition of balance of forces acting on
the particle but the capillary interactions with another particle
are actually calculated for each interface separately; therefore,
one has to avoid residual monopoles induced at each interface
separately.) To this end one should arrange for contact angles
/2 — 860 and m /2 + &6, with arbitrary but not too large 56,
on the hydrophilic and the hydrophobic parts, respectively.

In both cases described above the proposed setup renders
monopoles and dipoles which are not constant because they
are not fixed by external forces or torques. Instead, they are
induced at the particles according to the local film thickness
which in turn is a function of the spatial separation between
the interacting particles. This slightly modifies the power law
for the distance dependence of the capillary interactions. (In
the case of a flat film this modification, being of the order of
a few percent, has been even measured experimentally [16].)
Our theoretical framework can be extended to such a case of
distance-dependent effective multipoles.
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APPENDIX A: CALCULATION OF SERIES CONTAINING
JACOBI POLYNOMIALS

In Eq. (23) for n = n’ = 1 the following series appears:

sy = Y U DG D)+

Gray T, @D

j>1
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where (01,01) = (2,0) or (0,2), and forn = n’ = 2:
S;o'z,/oz)(x) — Z(J +2)(j +3)(2j + S)P;cfquz)(x)’

j=0

(A2)

where (02, 0,) = (4,0) or (0,4). Those series can be evaluated
using the generating function [39]:

1 X 21 PP (x)

(0.p) — —
S = R R 42 1 Ry 2 e

(A3)

where R = /1 —2xz + z? and |z| < 1. One finds the rela-
tionships
! y 3 d 9
S(m,pl) X :2/ d 2[ dZZ72_Zl/2_Z2_Z
! ( ) 0 ry 0 9z dz 0z
x [2770 g0 (x 2) — 1] (A4)
and

ad a ,0
S(O'Zapl) — 202+/)2+1 1 1/2 2 2 _(02,p02) A5
) (x) lim =2 o272 (x,2), (AS)

which can be evaluated with the results

4 4 1—x\ 20
§P0Gy =" 4 T 9] — = (A6
I R A ) 30 (A0
1—x 20
0,2)
S| (x):—21n( 5 )—?, (AT)
96
S5O = ——, A8
W = (A8)
and

SOV = 0. (A9)

Taking x = cosf and inserting these results into Eq. (23)
finally yields Eqgs. (25)—(27) and (29).
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APPENDIX B: FINITE SIZE CORRECTION 4§ Fyy

We present the line of reasoning leading to the formula for
the correction § F}; to the free energy used in Fig. 3(a). The
starting point is the assumption that this correction can be as-
sociated with the work — f ., - rc.m. done by the external body
force f_ . in displacing the center of mass of the liquid by
—rcm., Where r. . is the deviation of the position of the center
of mass due to the nonvanishing volume of the immersed parts
of the particles. For simplicity, we assume that the two particles
lie in the xz plane and that their positions are given by the
directions Q| = (9/2,0) and Q, = (8/2,7). In such a case and
for spherical Janus particles composed of equal hemispheres
one obtains approximately 7., = [0,0, — (a®/ R(z)) cos(6/2)].
The body force f., counterbalances the net force acting on
the center of mass due to the external torques acting on the
particles. It follows from the spherical geometry that a capillary
dipole Q; is associated with a net force on the droplet of
magnitude 6f/(ya) = Q1a/Ry in the direction determined by
the orientation of the particle ¢; in the plane perpendicular
to ;. Accordingly one obtains f,, = [0,0,28f sin(6/2)]
for the configuration <——, f.. = (0, —28f,0) for 1 14,
and f., =0 for + |. This finally yields §F),/(ya®) =
01(a/Ry)sinf for < — and §F;; =0 for the remaining
two configurations.

The above finite-size correction leads to a very good
agreement between the analytical and numerical results and as
such provides a useful semiempirical formula. However, our
argumentation here does not amount to a strict derivation. Pro-
moting the present line of reasoning toward a consistent overall
finite size theory for all multipoles including monopoles and
dipoles appears to be nontrivial in that the boundary condition
for the contact line turns out to be relevant (our numerical
calculations of Fyy were performed for a free contact line and
those of Fi; for a pinned one). Extending this finite size theory
is left for future research.
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