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Scaling behavior of a square-lattice Ising model with competing interactions in a uniform field
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Transfer-matrix methods, with the help of finite-size scaling and conformal invariance concepts, are used
to investigate the critical behavior of two-dimensional square-lattice Ising spin-1/2 systems with first- and
second-neighbor interactions, both antiferromagnetic, in a uniform external field. On the critical curve separating
collinearly ordered and paramagnetic phases, our estimates of the conformal anomaly c are very close to unity,
indicating the presence of continuously varying exponents. This is confirmed by direct calculations, which also
lend support to a weak-universality picture; however, small but consistent deviations from the Ising-like values
η = 1/4, γ /ν = 7/4, β/ν = 1/8 are found. For higher fields, on the line separating row-shifted (2 × 2) and
disordered phases, we find values of the exponent η very close to zero.
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I. INTRODUCTION

The study of frustration in magnetism has been a very
active field of research in the recent past, both theoretically
and experimentally. While experimentally realizable frustrated
magnets typically have a closer correspondence to quantum
(i.e., Heisenberg or XY ) spin models than to classical, Ising-
like ones, their behavior turns out to be rather intricate.
Thus, theoretical and/or numerical investigation of frustrated
classical spin systems may, by virtue of their simplified
character, help unravel some basic features which are common
to frustrated magnets in general.

In this paper we investigate two-dimensional spin-1/2 Ising
systems on a square lattice with first- and second-neighbor
couplings, both antiferromagnetic, in the presence of a uniform
magnetic field. The Hamiltonian is given by

H = J1

∑

NN

σi σj + J2

∑

NNN

σi σj − H
∑

i

σi, (1)

where J1, J2 > 0, NN and NNN stand, respectively, for next-
neighbor and next-nearest-neighbor pairs, and σi = ±1. Here,
all fields, coupling strengths and temperatures are given in
units of J1, unless otherwise stated. We have kept J2 = 1 in
all calculations reported in this work, except at the end of
Sec. III A, where J2 = 2 and 0.75 were briefly considered
(both for H = 0).

In line with the initial considerations given above, this
may be considered a classical approximation for the J1–J2

(Heisenberg) model [1,2]. Nevertheless, as shown in the
following, the model described by Eq. (1) exhibits intricate
features of its own, several of which are not fully understood
so far. Depending on the relative strength of the associated
parameters, such setup of competing interactions can generate
various types of ordered phases at low temperature; more
often than not, the transitions between these and the high-
temperature (paramagnetic) state do not belong to the standard
Ising universality class [3,4].

The problem studied here has been analyzed by several
numerical techniques in the past; Refs. [3,4] provide excellent
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summaries of earlier work, as well as illustrations of the use of
up-to-date Monte Carlo (MC) simulation techniques for this
case.

We use transfer-matrix (TM) methods [5], in conjunction
with finite-size scaling [6] and conformal invariance [7]
concepts, to determine the location of the phase bound-
aries of systems described by Eq. (1), and the universality
classes of the associated phase transitions. TM methods,
especially in the strip geometry used in this work, are
to some extent complementary to MC simulations, in that
they provide straightforward procedures for evaluation of the
conformal anomaly, or central charge [8], as well as the
decay-of-correlations exponent η (via the amplitude-exponent
relationship [9]). Both quantities play an important role in the
identification of the universality classes pertaining to phase
transitions in two-dimensional systems, and neither is directly
accessible via MC methods (although direct estimates of η can
be produced by following the decay of spin-spin correlations
with distance in an MC context, no simple relationship applies,
such as the one given by conformal invariance on strips [9]). On
the other hand, similarly to MC techniques, TM calculations
also provide estimates of critical temperatures, specific heats,
magnetizations, and susceptibilities.

In Sec. II we recall the calculational methods used, as well
as the finite-size scaling concepts and techniques employed in
the analysis of our results. Our numerical results for H = 0 are
given in Sec. III A, and those for H �= 0 in Sec. III B. Finally,
in Sec. IV, concluding remarks are made.

II. CALCULATIONAL METHOD
AND FINITE-SIZE SCALING

We set up the TM on strips of width N sites, with periodic
boundary conditions across. The coordinate axes coincide
with the directions of the first-neighbor bonds. We used 4 �
N � 22. For comparison, earlier TM studies of this problem
[10,11] could only reach N = 12. For the case J2 = 1/4 in
zero external field, results for N � 18 are available [12].

With λ1, λ2 being the two largest eigenvalues (in absolute
value) of the TM, the dimensionless free energy per site is
given by fN (T ) = N−1 ln λ1, while κN (T ) = ln | λ1/λ2 | is the
inverse correlation length on a strip of width N sites [5].
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It must be stressed that we do not make any assumptions
about symmetry properties of the TMs eigenvectors. Starting
from the full set of 2N basis vectors, the eigenvector |v1〉,
corresponding to λ1, is isolated by the power method, while
|v2〉 is again extracted via the power method, combined with
repeated Gram-Schmidt orthogonalization to | v1〉. This way
we make sure that the most strongly diverging correlation
length is evaluated, that is, the one which truly corresponds
to the order parameter for the transition under scrutiny. This
is especially relevant in the present case, where critical lines
corresponding to order parameters of differing symmetries can
become very close (see Sec. III B below).

Here we assume that the transition is always of second
order, which is implicit in the statements made in the preceding
paragraph. By now this seems out of doubt, at least for J2 � 1
which is the parameter range of interest here [3,4]. For fixed
J2 and H , say, we locate the approximate (N -dependent)
critical temperature T ∗

N by solving the basic equation of the
phenomenological renormalization group (PRG) [5]:

NκN (T ) = N ′κN ′ (T ). (2)

Depending on the shape of the critical curve, it may be more
convenient to keep T fixed and vary H , in which case the
critical behavior is expressed in terms of |H − Hc|, and Eq. (2)
gives H ∗

N . The strip widths N and N ′ are to be taken as
close as possible for improved convergence of results against
increasing N . In order to obey ground-state symmetries, here
we used only even N , N ′, so N ′ = N − 2. For H = 0 and
J2 < 1/2, in which case the ordered phase is Néel-like [4],
one can use both odd and even N ; indeed, good results are
found from PRG with N ′ = N − 1 in that region [12]. For
J2 > 1/2, we found that: (i) the latter procedure does not give
physically meaningful solutions for Eq. (2); and (ii) although
PRG with both N and N ′ odd gives the same limiting Tc with
N → ∞ as when both strip widths are even (albeit with much
slower convergence), estimates of quantities other than the
critical temperature are unreliable.

Estimates of the thermal exponent yT = 1/ν are given
by [5]

yT = 1 + ln(κ ′
N/κ ′

N ′ )

ln(N/N ′)
, (3)

where κ ′
N , κ ′

N ′ are temperature derivatives of the inverse
correlation lengths, taken at T ∗

N . Finite-N estimates of the
exponent η are given by the conformal invariance relation [9]:

ηN = π−1 NκN (T ∗
N ). (4)

The convergence of finite-N approximants given by Eqs. (2),
(3), and (4) toward their N → ∞ values has been extensively
discussed [13–17]. For (unfrustrated) Ising-like systems on
strips with periodic boundary conditions across, the rate of
convergence goes like

XN − X∞ = a N−ω, (5)

with ω ≈ 3 for X = T ∗, and ω ≈ 2 for X = yT (for some
simple cases, this can be shown analytically [13,16,17]). By
taking sets of three successive finite-N estimates, one can use
ω as an adjustable parameter in Eq. (5), and produce a new,
shorter, sequence which can then be iterated again, and so

on. Such iterated three-point fit technique can produce very
accurate final estimates of critical quantities [14,18,19].

Once Tc is found, as described above, to good accuracy
(or if its exact value is known, for example via duality
arguments [18]), sequences of assorted quantities can be
evaluated at the extrapolated critical point, for increasing
N . From these, one can usually extract estimates of critical
exponents which converge faster and more smoothly than if
the calculations were done at the respective pseudocritical
temperatures T ∗

N [13,20]. One is interested in (per site) specific
heats, susceptibilities, and magnetizations, which behave as [6]

CN (Tc) = C0 + aCNα/ν,

χN (Tc) = aχNγ/ν, (6)

mN (Tc) = amN−β/ν.

Both CN and χN are found from suitable second derivatives
of the free energy [18]. The exponent ratio α/ν can then
be extracted from three-point fits of sequences of CN , as
explained in connection with Eq. (5). For γ /ν, one initially
obtains a sequence of exponent estimates via two-point fits of
susceptibility data, and then proceeds to extrapolating such a
sequence via three-point fits [18].

The spontaneous magnetization mN is difficult to calculate
in a finite-size scaling context, because it is identically zero for
a finite system. For quantum chains at T = 0 this problem can
be overcome [21], by exploiting the fact that there the largest
eigenvalue of the TM gives the internal energy: in a first-order
degenerate perturbation scheme, appropriate consideration
of nondiagonal matrix elements enables one to extract the
magnetization in the zero-field limit. For classical spins on
strips, the corresponding eigenvalue of the TM gives the free
energy instead, and the perturbation-theory procedure used for
quantum systems [21] cannot be translated to our case.

In this work we estimated the finite-size magnetization
exponent β/ν by calculating the average squared magneti-
zation per column at Tc, 〈M2〉. Considering, for example, a
ferromagnet, denoting by σ ≡ {σ1 · · · σN } the 2N column basis
states, and with ψ̃(σ ), ψ(σ ) being, respectively, the dominant
left and right eigenvectors of the TM, one has [5]

〈M2〉 =
∑

σ ψ̃(σ )
(∑N

i=1 σi

)2
ψ(σ )

∑
σ ψ̃(σ ) ψ(σ )

. (7)

At the critical point, one should have

1

N
〈M2〉1/2 ∼ N−β/ν. (8)

For a square-lattice antiferromagnet with only first-neighbor
interactions, σi in Eq. (7) must be replaced by (−1)i σi , so the
staggered character of the order parameter is properly taken
into account. The corresponding adaptation for the system
of interest here is discussed in Sec. III below. We tested
this procedure, with the appropriate (uniform or staggered)
version of the magnetization, on the following square-lattice
Ising systems: (i) ferromagnet with nearest-neighbor cou-
plings only; (ii) ferromagnet with first- and second-neighbor
interactions, J2 = 1; and (iii) antiferromagnet with first- and
second-neighbor interactions, J2 = 1/4 (for which the ordered
state is Néel-like [12]). In all three cases, Tc is known either
exactly or to a very good approximation, and the transition
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is in the Ising universality class [12], so β/ν = 1/8. In order
to gauge the likely systematic errors for our intended final
application (see Sec. III), we considered 4 � N � 22, and
only even N . All resulting sequences gave estimates of β/ν

monotonically growing with N , pointing to extrapolated values
between 0.1240 and 0.1247, so the systematic error is less than
1% for this range of N .

Another quantity of interest to be calculated at Tc is the
conformal anomaly c, given by the N−2 finite-size correction
of the critical free energy per site [8]. For the present case of
strips with periodic boundary conditions across, one has

fN (Tc) = f0 + π c

6N2
+ O(N−4). (9)

While models with c < 1 are associated with universality
classes with fixed values of the critical exponents, those with
c � 1 can have continuously varying exponents [22,23]. As
shown below, there are strong indications that the model
studied here belongs to the latter category (for H = 0, this
has already been pointed out in Ref. [24]).

Additionally, one can both double check the robustness of
extrapolations of Tc and yT from Eqs. (2) and (3), as well
as investigate the other quantities of interest, by scanning the
neighborhood of the critical point with the help of finite-size
scaling ideas [6]. Taking, for instance, ηN (T ) ≡ π−1 NκN (T ),
and allowing for corrections to scaling, we write [25,26]

ηN (T ) = f (u) + N−ωg(u), u ≡ N1/ν(T − Tc). (10)

where ω > 0 is the exponent associated with the leading
irrelevant operator [see Eq. (5)]. Close enough to Tc the scaling
functions in Eq. (10) should be amenable to Taylor expansions.
One has

ηN (T ) = η +
jm∑

j=1

aj uj + N−ω

km∑

k=0

bku
k, (11)

where η is to be compared with the N → ∞ extrapolated value
of the ηN of Eq. (4).

One looks for values of Tc, ν, ω and the {aj ,bk} which op-
timize data collapse upon plotting ηN (T ) − N−ωg(u) against
u. In practice, good fits are generally found with jm, km not
exceeding 2 or 3 [25,26].

Considering now the finite-size susceptibility χN (T ), finite-
size scaling [6] suggests a form

χN (T ) = Nγ/ν fχ (u), (12)

where γ is the susceptibility exponent. Following Refs. [25,
26], we write (again, allowing for corrections to scaling)

ln χN (T ) = γ

ν
ln N +

jm∑

j=1

a
χ

j uj + N−ω

km∑

k=0

b
χ

k uk. (13)

In order to reduce the number of fitting parameters, it is usual
to keep 1/ν and Tc fixed at their central estimates obtained,
for example, via Eqs. (10) and (11), allowing γ /ν to vary.

Expressions similar to Eq. (13) can be written for magneti-
zations and specific heats, yielding estimates of the exponents
β/ν and α/ν.

In the present context, one should interpret the exponent ω

in Eqs. (5), (10), and (13) as an effective one, representing

all orders of corrections to scaling (which may also turn
out to have rather different amplitudes for different quanti-
ties). Thus, in practice a somewhat broad range of results
(say, 1 � ω � 3) can be accepted when considering data
collapse optimization for distinct quantities related to the same
problem.

III. NUMERICAL RESULTS

A. H = 0

In zero external field, for J2 < 1/2 the ground-state
ordering is of the Néel type, with the two sublattices aligned
antiparallel to each other; the transition is second order, in
the Ising universality class [12]. At J2 = 1/2 the ground state
is macroscopically degenerate, and the critical temperature
is zero [4]. For J2 > 1/2 the lowest energy corresponds to
collinear order, with alternating rows (or columns) of parallel
spins. For J2 � 1/2 the transition is first order, and evidence
has been found that it remains so, at least up to J2 ≈ 0.9 [4,24].
As J2 increases further, the second-order character returns.
The bulk of extant evidence [3,24,27–29] indicates that the
transition is second order for J2 = 1. Finally, for J2 � 1
one has a picture of two weakly coupled antiferromagnetic
lattices, thus in this limit Tc/J2 approaches the Ising value
2/ ln(1 + √

2).
For J2 = 1, recent estimates of the critical temperature

are Tc = 2.0823(17) [27]; 2.0838(5) [28]; 2.0820(4) [3]; and
2.0839(12) [29]. By solving Eq. (2), we found a well-behaved
sequence of T ∗

N values, extrapolating to Tc = 2.08195(5) via
three-point fits, with ω ≈ 3. The sequences for yT and η from
Eqs. (3) and (4) extrapolate, respectively, to yT = 1.188(2)
and η = 0.2341(1), again via three-point fits.

Evaluating ηN (T ) in the region around Tc, and employing
Eqs. (10) and (11), gave Tc = 2.08197(5); yT = 1.182(3), and
η = 0.2342(1), with ω ≈ 1.9. We used jm = 2, km = 1 in
Eq. (11). Thus there is a satisfactory degree of consistency
between the two methods of evaluation of critical quantities.

Our numerical value for ν = y−1
T = 0.844(4) [from av-

eraging over the two results above] is to be compared
to ν = 0.8292(24) [27]; 0.8481(2) [28]; 0.847(4) [3]; and
0.847(1) [29]. The value η = 0.20(1) was found by direct
MC evaluation of critical correlation functions on N × N

geometries [24].
By evaluating quantities at the extrapolated Tc, we found

η = 0.23415(5); as expected, this is even more accurate than
extrapolating the sequence of finite-N values estimated at the
respective fixed points T ∗

N .
For calculation of the zero-field susceptibility, the specific

properties of the collinear order parameter were taken into
account as follows. For a fixed coordinate direction, say x,
along which the TM proceeds, the critical wave vector is
degenerate, being either (π/a) x̂ or (π/a) ŷ, with a being the
lattice parameter. One thus has to take both (equally probable
and mutually exclusive) possibilities into account and average
the partial contributions given by each. As might be expected,
we found both contributions to be of similar amplitudes (within
≈10% of each other for fixed N ); separate fits of each to
power-law forms gave apparent exponents differing by less
than 1%. The latter discrepancy can be ascribed to residual
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lattice effects, and is expected to vanish for larger N , out of
reach of our TM implementations at present.

Our final result was γ /ν = 1.772(1). Estimating γ /ν

via Eq. (13) gave γ /ν = 1.775(1), slightly higher than the
previous estimate but within three (rather narrow) error bars.
Since the uncertainties quoted refer exclusively to the fitting
procedures, that is, no account is taken of likely systematic
errors, one might err on the side of caution and allow for
somewhat large uncertainties. Averaging over the two values
found, we quote γ /ν = 1.773(4). This way our results might
be considered marginally compatible with γ /ν = 1.750(12),
quoted in Ref. [3], although it seems much harder to stretch our
error bars to include the value 7/4, which would be consistent
with a weak-universality picture of γ /ν, β/ν, (2 − α)/ν
sticking to the respective Ising values [30]. Reference [27]
quotes the range 1.71–1.79 for γ /ν, based on three different
fitting methods.

For the calculation of β/ν, we used as column magnetiza-
tion in Eq. (7) the following quantity:

〈M2〉 = 1
2

[〈
M2

u

〉 + 〈
M2

st

〉]
, (14)

where Mu, Mst are, respectively, uniform and staggered column
magnetization. This choice reflects the collinear nature of the
ground state, with its orientational degeneracy, and closely
corresponds to the order parameter used in the MC simula-
tions of Ref. [3]. See the arguments invoked above for the
susceptibility calculation. Similarly to the test cases described
in Sec. II, we found exponent estimates monotonically growing
with N ; the extrapolated result is β/ν = 0.121(2), where an
ad hoc doubling of the uncertainty found from fits has been
incorporated, in order to allow for the small bias shown in tests.

We also evaluated critical specific heats. Finite-size
specific-heat sequences can prove unwieldy to extrapolate,
even when the exponent α is positive, as in the case of
the two-dimensional three-state Potts ferromagnet [18]. Here,
three-point fits of N , N − 2, N − 4 data gave α/ν increasing
from ≈0.31 (N = 10) to ≈0.33 (N = 20), albeit with small
oscillations; a quadratic fit of such values against 1/N then
gave α/ν = 0.351(12).

The above results are to be compared to β/ν = 0.122(4),
α/ν = 0.357(8), both from Ref. [3], and α/ν = 0.412(5) [27].
Recalling the Rushbrooke scaling relation α + 2β + γ = 2,
our estimates give α/ν + 2β/ν + γ /ν = 2.366(13), while
2/ν = 2.370(10). Similarly, one has (2 − α)/ν = 2.020(18).
Given the rather large uncertainties found in the analysis
of specific heat behavior, we do not believe that any actual
breakdown of hyperscaling is present.

We calculated free energies at Tc, and fitted them to a
quadratic form in 1/N2, thus extracting estimates of the con-
formal anomaly [8]. From fits of data in the range [Nmin,22],
with 4 � Nmin � 14, we found estimates of c decreasing
monotonically from 1.074(1) for Nmin = 4 to 1.056(1) for
Nmin = 14. Uncertainties quoted relate exclusively to the
fitting procedure. This range of estimates compares favorably
with the corresponding result from Ref. [24], c = 1.0613(6).
It must be kept in mind that what one is seeing most likely
amounts to strong crossover effects distorting a picture where
c = 1 [24].

We also considered J2 = 2, for which case we obtained,
from extrapolating sequences generated via Eqs. (2), (3),
and (4), Tc/J2 = 2.2248(1), yT = 1.052(1), η = 0.2391(3).
Recent results are Tc/J2 = 2.226(5) [28] and 2.227(5) [29];
yT = 1.066(1) [29]. Evaluation of finite-size susceptibilities,
magnetizations, and specific heats at Tc gave γ /ν = 1.756(2);
β/ν = 0.120(2); α/ν � 0.1 (estimates for the latter quantity
were plagued by the same sort of irregularities reported
for J2 = 1 above). Overall, these values are consistent with
a picture of continuously varying exponents, approaching
the Ising ones as J2 increases [3,24]. Conformal-anomaly
estimates are very close to c = 1.010; again, this is consistent
with the trend toward c = 1, followed by fitted results upon
increasing J2, found in Ref. [24].

Finally, we made J2 = 0.75, which is expected to corre-
spond to a first-order transition [24], thus in principle the
ideas behind Eq. (2) do not apply. Indeed, instead of varying
monotonically with increasing N , the solutions of Eq. (2)
initially went up, to Tc ≈ 1.432 at N = 12, and then became
approximately constant for larger N ; the η estimate from
Eq. (4) also initially increased, up to ≈ 0.243 at N = 14
and 16, then started decreasing for larger N . This indicates
a correlation length which at the very least grows slower than
N , and possibly saturates at scales which are out of reach of our
TM calculations, that is, a weakly first-order transition [4,24].
Notwithstanding the lack of conceptual justification for using
Eq. (2), it should be noted that Tc ≈ 1.43 is in rather good
agreement with MC estimates (see Fig. 3 of Ref. [4]).

B. H �= 0

For J2 = 1, the ground state is still collinear for H < 4,
whereas for 4 < H < 8 it becomes a row-shifted (2 × 2) state
[3]. The latter consists of alternating ferro- and antiferromag-
netically ordered rows (or columns), with the ferromagnetic
ones parallel to the field. The added degree of freedom (relative
to a 2 × 2 state) is that the antiferromagnetic chains can slide
freely relative to each other, at zero energy cost. At H = 4 and
8, Tc = 0 because of macroscopic ground-state degeneracy.
The maximum critical temperature for the transition between
row-shifted (2 × 2) order and the paramagnetic phase has been
estimated as ≈0.73, at H ≈ 6 [3].

In order to make contact with previous results, we initially
considered two points on the collinear-paramagnetic transition
line, respectively at H = 2.5 and 3.3 [3].

For H = 2.5, from extrapolating sequences generated
via Eqs. (2), (3), and (4), we found Tc = 1.6846(1), η =
0.2335(1). A noticeable trend reversal was observed for yT ;
after decreasing from 1.08 to 1.072 between N = 8 and
12, it starts increasing smoothly, reaching 1.075 at N =
22. Extrapolating N � 12 data, we found yT = 1.090(4).
Evaluating susceptibilities at the extrapolated Tc resulted in
γ /ν = 1.779(4), and analysis of magnetizations gave β/ν =
0.122(1). Reference [3] gives Tc = 1.6852(3); yT = 1.056(8);
γ /ν = 1.750(14), β/ν = 0.118(3). Finally, the conformal
anomaly was estimated as c = 1.066(1).

Following the same procedure as above, we obtained for
H = 3.3: Tc = 1.3331(5); yT = 0.940(3) (this time with no
trend reversal upon increasing N ); η = 0.2338(3). Finite-
size susceptibility scaling at Tc gave γ /ν = 1.781(5), and
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magnetizations, β/ν = 0.135(2). The evolution of β/ν along
the collinear-paramagnetic phase boundary is analyzed toward
the end of this section. Reference [3] quotes Tc = 1.3335(6);
yT = 0.907(7); γ /ν = 1.751(14), β/ν = 0.130(5). Our esti-
mate for the conformal anomaly is c = 1.042(1).

The above results show very good numerical agreement
with existing ones as regards critical temperatures; also, a
picture of continuously varying exponents such as ν and γ

is confirmed, both directly and from the conformal anomaly
results, which are very close to unity. Our values for γ /ν

and η do seem consistent with a weak-universality scenario
along the collinear-paramagnetic phase boundary; however,
they indicate small but consistent deviations from the Ising-like
picture of γ /ν = 7/4, η = 1/4.

In order to investigate the latter point in detail, we proceeded
to evaluating η and c along the full extent of the phase
boundary.

We first extrapolated, to N → ∞, the (T ,H ) values
obtained for sequences of solutions of Eq. (2), with increasing
N and either H fixed, or (typically for lower temperatures)
T fixed. This was done both for the collinear-paramagnetic
critical line and for that separating the row-shifted (2 × 2) and
paramagnetic phases. In the former case, we fitted finite-N
data with N = 14–20 to the single-power form Eq. (5), finding
good convergence with 3 � ω � 4 everywhere on the phase
boundary. For the latter, we had extremely slow convergence of
our PRG calculations, which limited us in practice to N � 16.
Probably (at least partially) as a consequence of this, the
single-power form produced rather low adjusted values of ω,
in the neighborhood of 0.5, which is usually interpreted as
indicating strong corrections to scaling. We thus resorted to
ad hoc parabolic fits in N−2, adjusting N = 10–16 data to this
latter form.

The behavior in the low-temperature region near H = 4,
where the two distinct phase boundaries become close to each
other, is of special interest since it has been suggested that an
XY -like region might be present there [3,31].

In Fig. 1 we show our results for the low-temperature part
of the phase diagram, near H = 4. Although numerical con-
vergence difficulties prevented us from reaching T < 0.2 for
the largest strip widths, we managed to evince clearly defined
trends followed along both critical lines, on their approach to
T = 0. Below T = 0.4, both the collinear-paramagnetic and
row-shifted (2 × 2)-paramagnetic boundaries are, to a very
good approximation, straight, and pointing towards (T ,H ) =
(0,4) with respective slopes 0.267(1) and 2.713(5). Concurring
with Ref. [3], it appears very unlikely that an XY -like region,
or a bicritical point at T > 0, is present. Instead, all indications
from our results are consistent with both critical lines joining
at a single bicritical point at T = 0. Additionally, we found
the maximum of the reentrance on the collinear-paramagnetic
phase boundary to be H = 4.121(2) at T = 0.5. At T = 0.7
we estimate H = 4.060(6). These are in rather good agreement
with the respective values H = 4.07(2) and 4.052(7), quoted
in Ref. [3].

Near H = 0, the phase boundary has the expected parabolic
shape [32,33]

Tc(H ) = Tc(0) − a H 2 (H → 0), (15)

FIG. 1. (Color online) Phase diagram near H = 4 showing phase
boundaries: collinear paramagnetic, with reentrant behavior, and
row-shifted [R-s] (2 × 2) paramagnetic. The points are the results of
extrapolating sequences of solutions of Eq. (2), obtained with fixed T

and variable H (see text). Uncertainties are smaller than symbol sizes.
Each of the dashed lines at T < 0.2 is the continuation of the best
fitting straight line joining points at 0.2 � T � 0.4, on the respective
phase boundary.

where we found a = 0.0595(3) by fitting data corresponding
to 0 � H � 0.4.

As noted previously in Ref. [11] and above, we generally
found finite-size effects to be much larger for the high-field
(4 � H � 8) part of the phase diagram. This is illustrated in
Fig. 2, where finite-N curves with the solutions of Eq. (2) for
N = 10 and 16 are displayed jointly with our final extrapo-
lation (as described above). At variance with Ref. [3], where
Tc = 0.7293(7) is reported at H = 6, our extrapolated value
is Tc(H = 6) = 0.589(4). Although alternative procedures to
our ad hoc parabolic extrapolations against N−2 can certainly

FIG. 2. (Color online) Phase diagram for high fields 4 � H � 8
showing row-shifted [R-s] (2 × 2)-paramagnetic phase boundary:
finite-N solutions of Eq. (2) for N = 10 and 16, and results of
extrapolation of N = 10–16 curves (see text). Uncertainties in the
latter are smaller than symbol sizes. Each of the dashed lines at
T < 0.2 is the continuation of the best fitting straight line joining
points at 0.2 � T � 0.4, on the respective section of the extrapolated
phase boundary.
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FIG. 3. (Color online) (a) Decay-of-correlations exponent η and
(b) conformal anomaly c, calculated along the extrapolated collinear-
paramagnetic phase boundary. In (a) the dashed line gives estimates of
η from strips of width N = 10 sites, while points are extrapolations
from sets of finite-N estimates, N = 14–20. In (b) values of c are
estimated from quadratic fits of free-energy data against N−2 for
N = 14–20. Uncertainties are smaller than symbol sizes.

be devised, it must be noted that for this same field intensity
the solution of Eq. (2) is T ∗

N = 0.706 already for N = 10, and
decreases systematically with increasing N .

At (T ,H ) = (0,8), the initial slope S = (dHc/dT )T =0 of
the critical curve gives an estimate of the reduced critical
chemical potential μ/kBTc for the hard-square lattice gas with
first- and second-neighbor exclusion, via μ/kBTc = −2S [11].
Our result for the chemical potential is 5.42, to be compared
with 4.70 [11] and 4.91 [34]. This may indicate that our
extrapolation procedures slightly underestimate the extent of
the row-shifted (2 × 2) phase.

Figure 3 shows our results for η and c along the extrapolated
location of the collinear-paramagnetic border, parametrized
by T . These are obtained from Eqs. (4) and (9), respectively.
In Fig. 3(a), comparison between N = 10 estimates and the
final N → ∞ extrapolation illustrates that residual finite-
size effects contribute toward overestimating the exponent
η, for all 0 < T � 1.78 (the approximate point where all
finite-N curves cross). On the other hand, for higher T the
finite-size corrections change sign. The extrapolated η × T

curve is to a large extent horizontal, near both the low- and
high-temperature ends of the phase boundary. We estimate
η = 0.2476(3) for T � 0.5, and η = 0.2342(3) for T � 1.3.
In the intermediate region there is a crossover which becomes
rather sharp around T = 0.8, at the upper end of the reentrant
part of the phase diagram. The conformal-anomaly estimates in
Fig. 3(b) show the same behavior found for H = 0 in Sec. III A,
and in Ref. [24], in that they are always slightly above unity.
Similarly to the H = 0 case, we also found that, upon fitting
free-energy data in the range [Nmin,20], the estimates of c

always decrease upon increasing Nmin. Thus, an interpretation
of the present results as consistent with c = 1, albeit affected
by strong crossover effects, seems credible.

We evaluated critical magnetizations, as given by Eq. (14),
along the collinear-paramagnetic phase boundary. Our calcu-
lations did not converge for T < 0.75, which approximately
coincides with the reentrant region. Thus, for the part of the

FIG. 4. (Color online) Finite-size magnetization exponent β/ν

along collinear-paramagnetic (PM) phase boundary. The range of
fields 0 � H � 4.027 on the horizontal axis corresponds, respec-
tively, to 2.0820 � T � 0.75 (see text). Each point is the result of
fitting finite-size data in the range 12 � N � 20 to a single-power
law 〈M2〉1/2 ∼ N 1−β/ν . See Eqs. (8) and (14).

critical boundary where we managed to produce estimates of
β/ν, there is a one-to-one correspondence between field and
temperature. Our results are shown in Fig. 4, parametrized by
H . This way, it is easier to follow the evolution of quantities
for low fields than if we used T for the horizontal axis,
because of the parabolic shape assumed by the critical curve
in that region. One sees that the quality of fits generally
deteriorates as H increases; the shallow dip around H ≈ 1.5 is
possibly related to slight inaccuracies in the determination of
the extrapolated critical line in that region. A more persistent
trend is that toward increasing values for larger H . We interpret
this as signaling the onset of the physical effects which give
rise to reentrant behavior for even larger fields. Indeed, a
plausible explanation for the reentrance is, to quote Ref. [3],
‘the appearance of (2 × 2) “clusters” that help to sustain the
[collinear] order at low temperatures even when the external
field is slightly bigger than 4.’ This sort of cluster is not taken
into account in our column-magnetization calculations [see
Eq. (14)]. We also know that the general effect of neglecting
relevant contributions to the magnetization is to increase the
apparent value of β/ν; for instance, if Mu is discarded in
Eq. (14), the estimate of β/ν at T = 2.0820, H = 0 goes
from 0.120(2) to 0.135(2). According to this interpretation
for H � 2.5 or thereabouts, (2 × 2) configurations which are
locally energetically favorable start contributing to ordering
in the N → ∞ limit, but are not captured in the scheme of
Eq. (14). With decreasing T and increasing H the effect of such
configurations becomes more relevant, providing a mechanism
through which the apparent exponent increases, although the
real one we conjecture possibly increases a little but stays
slightly below 1/8. This would be in line with the behavior of
η, depicted in Fig. 3(a).

Calculation of the thermal exponent yT via Eq. (3) in
the reentrant region gave negative values, an artifact already
noticed in Refs. [10,11]. However, evaluation of critical
finite-size susceptibilities at T = 0.35 gives γ /ν in the range
1.71–1.80, depending on the details of corrections to scaling
assumed for data fitting. Although lacking in accuracy, this
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FIG. 5. (Color online) Decay-of-correlations exponent η evalu-
ated via Eq. (4) along approximate row-shifted (2 × 2)-paramagnetic
transition lines, obtained by solving Eq. (2) for N as indicated for
high fields 4 � H � 8.

range of values is broadly consistent both with the correspond-
ing η estimate and with the hypothesis that critical behavior
obeys weak universality all along the collinear-paramagnetic
critical line.

Turning now to the high-field part of the phase diagram, we
illustrate in Fig. 5 our results for η along the approximate
critical lines, the latter obtained by solving Eq. (2) for
N = 10–16. The curve for N = 12 corresponds to that shown
in Fig. 2 of Ref. [11]. By comparing the evolution of η

along the approximate critical lines with the evolution of
the lines themselves against increasing N (shown in Fig. 2),
one anticipates that calculating η on the extrapolated phase
boundary will give results very close to zero or even slightly
negative. Indeed, this was what we found. It would appear that
this is at least partly because our extrapolation procedures
underestimate the extent of the row-shifted (2 × 2) phase.
Evaluation of c along the extrapolated critical line also gave
physically inconsistent results.

Even though we are not able to produce numerically
accurate estimates of η for the high-field part of the phase
diagram, the gist of the results shown in Fig. 5 is that this must
be below 0.01 and possibly even zero. We return to this point
in the next section.

IV. DISCUSSION AND CONCLUSIONS

For the model described by Eq. (1), with J2 = 1, we have
established a physical picture for the collinear-paramagnetic
phase boundary, which is consistent with continuously varying
exponents along the critical line. Together with various pieces
of numerical evidence collected at selected points, overall
support for this is given by the conformal anomaly results
depicted in Fig. 3(b).

There is also clear evidence that such continuously varying
exponents satisfy, at least approximately, a weak-universality
scenario [30]. However, as shown for the exponent η in
Fig. 3(a), our results indicate small but consistent deviations
from the corresponding Ising values.

Furthermore, such deviations are internally consistent, in
the sense that both η and β/ν take on values lower than the

Ising ones, while γ /ν is always found to be higher than the
Ising result. For β/ν the apparent reversal of this trend found
for H � 2.5 has been explained in Sec. III B, as a likely effect
of the same sort of locally stable (2 × 2) configurations which
at lower T and higher H become significant enough to induce
reentrant behavior.

Notwithstanding the compensation just referred to, our
estimates of (γ /ν) + η in general exceed 2, though never
by more than 2–3 times the respective (combined) error bar.
However, it must be recalled that here γ /ν is essentially one
order of magnitude larger than η, and both quantities have
similar relative uncertainties, thus the calculated combined
uncertainty is practically only that associated with γ /ν. In such
circumstances, the apparent violation of a fundamental scaling
relation reflects the fact that the relative uncertainty in γ /ν was
estimated as ≈2 parts in 103. Had this been doubled, all the
basic conclusions from this work would still stand, and the mis-
match would be essentially lost within the revised error bars.

Returning to η as displayed in Fig. 3(a), the small but
consistent shift between the high- and low-T approximately
constant values [ respectively, 0.2342(3) and 0.2476(3) ] in-
dicates a crossover between two distinct weak-universality
classes. Such small variations could probably be accounted
for in the context of compactified boson theory [23,35], in
which continuously varying critical indices are put in direct
correspondence with the (also continuously varying) radius R

associated with the underlying field theory.
In general, both for H = 0 and H �= 0 (the latter, along

the collinear-paramagnetic critical line) our results for the
location of critical points, and exponents such as yT , γ /ν, and
β/ν, are mostly compatible, within error bars, with estimates
available in the literature. On the other hand, for the row-shifted
(2 × 2)-paramagnetic phase boundary at high fields, we have
found a discrepancy of some 19% between our estimate and
that given in Ref. [3] for the highest transition temperature
at H = 6. Even allowing for the (rather plausible) likelihood
that our extrapolation procedures underestimate the extent of
the ordered phase, for PRG with the largest size available
(N = 16) one has Tc(H = 6) = 0.651, already 11% below
Tc(H = 6) = 0.7293(7) quoted in Ref. [3]. At this point, such
discrepancy remains unexplained.

We have not succeeded in gathering as much informa-
tion regarding critical properties of the row-shifted (2 × 2)-
paramagnetic boundary line, as we did for its collinear-
paramagnetic counterpart. However, the behavior of η il-
lustrated in Fig. 5 reminds one of the low-temperature
behavior of the two-dimensional XY model. Indeed, with
TKT being the upper limit of the Kosterliz-Thouless critical
phase, the exponent η of the XY model grows smoothly and
monotonically from η = 0 at T = 0 to 1/4 at TKT (with most of
the increase confined to higher T : at T = 0.5 TKT, η ≈ 0.05)
[36]. So the very low values of η found in the present case
may, or may not, indicate the presence of incipient XY -like
behavior along at least part of the high-field critical line.
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[8] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev.
Lett. 56, 742 (1986).

[9] J. L. Cardy, J. Phys. A 17, L385 (1984).
[10] K. Kaski, W. Kinzel, and J. D. Gunton, Phys. Rev. B 27, 6777

(1983).
[11] J. Amar, K. Kaski, and J. D. Gunton, Phys. Rev. B 29, 1462

(1984).
[12] M. P. Nightingale and H. W. J. Blöte, Physica A 251, 211 (1998).
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