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Anomalous negative differential thermal resistance in a momentum-conserving lattice
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A two-segment Fermi-Pasta-Ulam lattice has been investigated by using nonequilibrium molecular dynamics.
Here we present an anomalous negative differential thermal resistance (NDTR) that has not been reported in
Frenkel-Kontorova and φ4 lattices up to the present. The NDTR disappears in the low-temperature region. The
region of NDTR shifts from the large to the small temperature difference region as the system size increases.
The anomalous dependence of NDTR on the temperature can be explained as the negative effect induced by
the nonlinear coupling. The explanation can also cover the phenomenon of NDTR in momentum-nonconserved
lattices.
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I. INTRODUCTION

Negative differential thermal resistance (NDTR), which
may imply an intrinsic physical mechanism for some thermal
devices, has attracted a lot of attention in recent years. NDTR is
first found in asymmetric Frenkel-Kontorova (FK) lattices [1],
and then in pure anharmonic systems [2]. Analytical and
numerical studies have been carried to reveal the original
property of NDTR [1–7]. Up to now NDTR has been found in
many low-dimensional systems, such as the anharmonic lattice
with gradient mass [8], two-segment FK lattices with weak
links [1,5], the pure φ4 and FK lattice [2,6], the double-stranded
systems [9], and so on. It has been reported that NDTR depends
on the nonlinear external potential, the finite size, and the
temperature of the system.

The main explanations about the phenomenon of NDTR
include several points: (1) the mismatch of the phonon spectra
of the two particles [1,8]; (2) the competition between the
temperature difference, which acts as an external field, and
the temperature-dependent thermal boundary conductance
[2]; (3) the effective phonon-band shifts [7]; (4) a ballistic
transport that induce the competition between the molecular
occupation factor and the temperature difference [5]; and
(5) the phonon-lattice scattering that becomes so significant
that NDTR occurs [2,6]. All these explanations suggest a
common view that the NDTR cannot occur when the system
size increases, or in the system without nonlinear external
potential, or in the system as the temperature is increasing.
In other words, NDTR only appears at low temperature in
a small system with nonlinear external potential. For the
sake of comparison, here we call this kind of NDTR the
normal NDTR. According to the normal NDTR, it is proposed
that the momentum-conserved system without nonlinear ex-
ternal potential, such as a Fermi-Pasta-Ulam (FPU) lattice,
behaves with no NDTR phenomenon. Since nanomaterials
such as carbon nanotubes are a momentum-conserved sys-
tem [10,11], this view about no NDTR in the momentum-
conserved system once placed the studies of the NDTR in
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carbon nanotubes in a difficult position. Actually, it is not
the case.

In this paper, a two-segment FPU lattice with a weak
link is studied by molecular dynamics simulations. We will
present that the NDTR can also occur in a momentum-
conserved system. It is surprising that NDTR in the FPU
lattice shows an anomalous dependence on the temperature
and the system size, which is different from the NDTR found in
the system with nonlinear external potential. Here we introduce
a competition between the linearity and the nonlinearity to
interpret the origin of NDTR. Our explanation can cover some
of the phenomena of NDTR that have been reported in FK
models.

II. MOMENTUM-CONSERVING AND
MOMENTUM-NONCONSERVING LATTICES

Momentum-conserving lattice [12]. A chain of N coupled
atoms, in which only nearest-neighbor interactions will be
considered for simplicity. The first class of models we
wish to consider are defined by a Hamiltonian of the form
(pl = mlxl)

κ =
NM∑
l=1

[
p2

l

2ml

+ V (xl+1 − xl)

]
. (1)

Boundary conditions need also to be specified by defining
x0 and xN+1. Typical choices are periodic, fixed, or free
boundaries. As only internal forces, which depend on relative
positions, are present, the total momentum is conserved and
thus a zero mode exists. The important examples are the
well-known Lennard-Jones potential and Fermi-Pasta-Ulam
(FPU) potential.

Momentum-nonconserving lattice [12]. At the simplest
level of modelization, this can be described by adding an
external, on-site potential to Eq. (1). For instance, neglecting
the transverse motion leads to one-dimensional models of the
form

κ =
NM∑
l=1

[
p2

l

2ml

+ U (xl) + V (xl+1 − xl)

]
. (2)
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The substrate potential U (xl) breaks the invariance xl →
xl + const. of Eq. (2) and the total momentum is no longer
a constant of the motion. An important example is the well-
known Frenkel-Kontorova (FK) potential.

III. MODELS AND METHODS

The nonlinear lattices that we use in this paper consist of
two segments, a left segment (L) and a right segment (R). Each
segment is a FPU lattice. Segments L and R are coupled via a
spring of constant kint. The total Hamiltonian of the model is

H = HL + HR + Hint, (3)

and the Hamiltonian of each segment can be written as

HM =
NM∑
i=1

[
p2

M,i

2mM

+ kM

2
(xM,i+1 − xM,i)

2

+ βM

4
(xM,i+1 − xM,i)

4

]
, (4)

where xM,i and pM,i denote the displacement from the
equilibrium position and the conjugate momentum of the ith
particle in segment M , where M stands for L or R. The
parameters kM and βM are the harmonic and anharmonic
spring constant of the FPU lattice, respectively. We couple
the last particle of segments L and R via a harmonic spring.
Thus, Hint = kint

2 (xL,N − xR,N )2. For the sake of simplicity, we
set the mass of particle m = 1 and the Boltzmann constant
kB = 1.

In our simulations we use fixed boundary conditions and
the chain is connected to two heat baths at temperatures TL

and TR . It is reported that the Nosé-Hoover thermostat may
induce an inauthentic NDTR in the system without nonlinear
external potential [6,13]. To avoid the adverse effect of the
Nosé-Hoover thermostat we use the Langevin heat baths and
integrate the equations of motion by using the Verlet frog-
jumping algorithm [14,15]. The local temperature is defined as
Ti = 〈p2

i 〉. The local heat flux is defined as ji = kM〈pi(xi −
xi−1)〉 + βM〈pi(xi − xi−1)3〉, and the total heat flux is J =
Nj . The simulations are performed long enough to allow the
system to reach a steady state in which the local heat flux
is constant along the chain. For the sake of comparison, we
define a heat current ratio, JR = J/Jmax, in which Jmax is
the maximum heat current under a fixed temperature TR of
the right heat bath. The transport coefficient is an important
quantity for characterizing the transport mode of a thermal
transport process [16,17]. The thermal conductance evaluated
as σ = Nj/�T represents an effective transport coefficient
that includes both boundary and bulk resistances [12]. Here
we fix the temperature of the hot heat baths and change the
temperature of the cold heat baths. The temperature difference
increases with the decrease of the temperature of cold heat
baths.

IV. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of NDTR in the
two-segment FPU lattice. In the lattices with nonlinear external
potential, which are also called momentum-nonconserved
systems, many studies have shown that the NDTR disappears

)
(

FIG. 1. (Color online) Heat current as a function of the temper-
ature difference for various fixed high temperatures TL = 0.05, 0.1,
0.35, 0.60, 1.0. The linear and nonlinear couplings are respectively
k = 1.0 and β = 0.5, the weak-link coupling kint = 0.01, and the
system size is 64.

with the increasing temperature of the systems [2,5–7].
However, here it is presented that the NDTR occurs with the
increasing temperature of the hot heat baths. Interestingly, the
results for momentum-conserved systems are contrary to those
for momentum-nonconserved systems.

This anomalous NDTR can be understood from the compe-
tition between linear and nonlinear interactions. First we would
like to discuss the role of linear and nonlinear interaction on
the thermal conductivity. It is well known that positive effects
of the linear interaction on the thermal conductivity of the
system have been confirmed by many studies, which include
not only numerical but also analytical results [4,12,18]. This
can be described as a function K˜λα , where K and λ are
respectively thermal conductivity and the linear coupling, with
the exponent α > 0. Correspondingly, it is also shown that the
nonlinear external potential has a negative influence on the
thermal conductivity [4,12,18]. The relationship is written as
K˜V β , in which V is the strength of the nonlinear coupling or
the external potential, with the exponent β < 0. The NDTR
depends exactly on the competition between these negative
and the positive effects. When the negative effects surpass
the positive ones, the NDTR occurs. Otherwise, the NDTR
disappears.

For the FPU lattices, Fig. 2 shows that the heat current de-
creases with the nonlinear coupling constant, which implies a
nonlinear inhibition on the thermal conductivity. In the absence
of nonlinear coupling, i.e., in the case of a harmonic lattice, as
shown in Fig. 2, when the nonlinear coupling β equals zero, the
heat current increases linearly with the temperature difference
and no NDTR occurs. When β increases to a value larger than
0.3, due to the enhancement of the nonlinear effect the NDTR
appears at the region of the large temperature difference.

In order to give more details for this explanation, we plot
Fig. 3 to show the dependence of the linear and nonlinear
forces on the displacement. As mentioned above, in FPU
lattices the NDTR disappears for low temperature and occurs
for high temperature. For the system with low temperature,
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FIG. 2. (Color online) Heat current as a function of tempera-
ture difference for various nonlinear couplings. The temperature
TL = 0.35, and the remaining parameters are the same as those for
Fig. 1.

the particles oscillate near the equilibrium position and the
displacement between two nearest-neighbor particles is small,
i.e., �xi˜0. As shown in Fig. 3(a), when �xi˜0, the force from
linear coupling (−k�xi) is larger than that from nonlinear
coupling (−β�x3

i ). Therefore, the linear coupling determines
the thermal transport and no NDTR occurs. As the temperature
of the system increases, |�xi | goes to a value larger than
|�xC | and the force from −β�x3

i is larger than −k�xi .
The nonlinear coupling as the negative effect determines the
thermal transport and then NDTR occurs. However, in the
FK lattices an opposite temperature dependence of NDTR
is observed. The Hamiltonian of the FK model is HFK =∑N

i=1{ p2
i

2m
+ k0

2 (xM,i+1 − xM,i)2 + V
2π

[1 − cos( 2π
a

xi)]}, where
xi and pi denote the displacement from equilibrium position
and the conjugate momentum of the ith particle. The parame-
ters k0 and V are the harmonic spring constant and the strength
of the external potential, respectively. Here we can also give

FIG. 3. (Color online) Force depends on the displacement of the
particle. (a) Linear and nonlinear coupling force in FPU model. (b)
Linear coupling and nonlinear on-site force in FK model.

FIG. 4. (Color online) Heat current as a function of temperature
difference for different weak-link couplings kint. Here the remaining
parameters are k = 1.0, β = 0.5, TL = 0.35, and N = 64.

an explanation from the relationship between the force and the
displacement. As shown in Fig. 3(b), for the system with low
temperature, the force from linear coupling (−k0�xi , k0 =
0.8) is smaller than that from nonlinear coupling (−V sin xi ,
V = 0.6) and the nonlinear coupling determines the thermal
transport and then NDTR occurs. On the contrary, for the FK
lattices with high temperature, the superior linear coupling
induces the disappearance of the NDTR. If one sets k0 = 3.0,
the linear force is always larger than the nonlinear force,
then the NDTR disappears, which has been confirmed in
Refs. [2,6].

Figure 4 shows how the coupling constant kint affects the
temperature dependence of the heat flux J/Jmax. The region
of NDTR diminishes for increasing kint until it vanishes at
a critical coupling constant. The weak link kint is a linear
coupling, as also depicted in Fig. 3(a); when kint is small, the
nonlinear effect can easily get above the linear one at �xi˜0 in
the interface of the two FPU lattices and then NDTR occurs.
However, the NDTR vanishes for strong linear link kint .

In addition, the system-size dependence of NDTR in FPU
lattices is also different from that found in FK and φ4 lattices. In
FK and φ4 lattices [2,6], with the increasing of the system size,
the NDTR region shifts from the small to the large temperature
difference region and vanishes in the end. On the contrary, as
shown in Fig. 5, in FPU lattices the NDTR disappears for the
small system. When the system size increases, the region of
NDTR (the regime with a frame) shifts from the large to the
small temperature difference region.

V. COMPARISONS

Here we would like to compare our explanations about
NDTR with those that have been presented. As mentioned
above, the NDTR have been explained as the phonon-lattice
scattering, the crossover of the transport mode, the compe-
tition between the temperature difference and the boundary
conductance, the mismatch of phonon spectra, and so on. As
has been reported, the mismatch of phonon spectra and the
effective phonon-band shifts can give a good interpretation
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FIG. 5. (Color online) NDTR depends on the system size. Here
the remaining parameters are k = 1.0, β = 0.5, TL = 0.35, and
kint = 0.05.

for the NDTR in two-segment lattices, but fail to interpret
the NDTR in pure single lattices [2,6,7]. Moreover, the
competition between the temperature difference and the
temperature-dependent thermal boundary conductance can
only explain the small systems with strong boundary effect
[2,6], but will be invalid for large systems mentioned here.
Finally, the phonon-lattice scattering and the crossover of the
transport mode approach the main reason of NDTR at low
temperature [2,6], but not an appropriate origin of NDTR at
high temperature. Actually, all these explanations are based
upon a negative effect, which maybe imply a fundamental
physical mechanism of NDTR. And here this negative effect
comes from the nonlinearity that includes both the nonlinear
coupling and the nonlinear external potential.

A comparison of NDTR in the two cases is also presented
from three aspects:

(1) The temperature dependence of NDTR. As shown in
Fig. 2 (two-segment FK model) of Ref. [5], a temperature
dependence of NDTR is reported. When the temperature of
hot heat baths TR is small, there exists NDTR. As TR increases,
the NDTR disappears. However, here Fig. 1 presents that the
NDTR occurs with increasing temperature of the hot heat
baths.

(2) The system-size dependence of NDTR. In the previous
works (FK and 	4 model), as shown in Fig. 6 (deformable
FK model) of Ref. [6], Figs. 3 (FK model) and 6 (	4 model)
of Ref. [2], and Fig. 4 (two-segment FK model) of Ref. [7],
NDTR becomes weak and disappears with the increasing of
the system size. The most important property is that the NDTR
region shifts from the small to the large temperature difference
region and vanishes in the end. In our current works, on the

contrary, as shown in Fig. 5, in two-segment FPU lattices the
NDTR disappears for the small system. When the system size
increases, the region of NDTR (the regime with a frame) shifts
from the large to the small temperature difference region.

(3) The nonlinear potential. As shown in Eqs. (1) and (2),
the Hamiltonian of the momentum-conserving lattice is much
different from that of the momentum-nonconserving lattice.
Many reports have shown that the momentum-conserving
lattice has an anomalous thermal conductivity [19]. Then it
is natural to regard the NDTR of the momentum-conserving
lattice as an “anomalous” one. Additionally, the NDTR in this
paper shows very different or even opposite behavior from the
NDTR that has been reported in the previous papers; thus we
have to call it “anomalous NDTR.”

VI. CONCLUSIONS AND APPLICATIONS

In summary, we have reported an anomalous negative
differential thermal resistance in two-segment FPU chains
through molecular dynamics simulations. The NDTR occurs
in the system when the system size as well as the temperature
increases. This anomalous NDTR effect can be understood
from the negative effect induced by the nonlinear force, which
can give a more fundamental explanation about NDTR. Since
the FPU lattice is a momentum-conserved system, our results
provide a new view about the NDTR in the system without
external potential, which is regarded as a necessary condition
for NDTR up to the present. Furthermore, our results have
also suggested that the NDTR can be achieved in two-segment
nanoscale materials with a weak linear link, which may
be exciting information for fabricating a nanoscale thermal
device.

The experimental motivation of the model refers to the
carbon nanotubes and their extended models. The Lennard-
Jones potential or Brenner-Tersoff potential, which describes
the momentum-conserving lattice, is usually used to study
carbon nanotubes [10,11]. An advanced structure of the
nanotubes is more similar to our model. For example, one can
connect two carbon nanotubes with silicon nanotubes. Here
silicon nanotubes are weak connections and carbon nanotubes
are momentum-conserving lattices.
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