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Multiterm solution of a generalized Boltzmann kinetic equation for electron and positron transport
in structured and soft condensed matter
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In this paper, we generalize the semiclassical Boltzmann kinetic equation for dilute gases to consider
highly nonequilibrium electrons and positrons in soft condensed matter, accounting rigorously for all types of
interactions, including positronium formation, and allowing for both coherent and incoherent scattering processes.
The limitations inherent in the seminal paper of Cohen and Lekner [M. H. Cohen and J. Lekner, Phys. Rev. 158,
305 (1967); Y. Sakai, J. Phys. D 40, R441 (2007)] are avoided by solving the kinetic equation using a “multiterm”
spherical harmonic representation of the velocity distribution function, as well as formulating a necessarily
nonperturbative treatment of nonconservative collisional processes such as positronium formation. Numerical
calculations of transport properties are carried out for a Percus-Yevick model of a hard-sphere system, and for
positrons in liquid argon. New phenomena are predicted, including structure-induced negative conductivity and
anisotropic diffusion.
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I. INTRODUCTION

New frontiers in science and technology have generated
a fresh wave of interest in understanding the fundamental
physics of electron and positron transport processes in various
structured and soft condensed materials. For electrons, these
applications range from liquid-based particle detecting time
projection chambers [1] to organic materials and solar cells
[2] and to understanding radiation damage in biological
matter [3,4]. For positron-based systems, the emission of
back-to-back gamma rays resulting from annihilation of a
positron and an electron is an established investigative tool
in a number of fields of science and technology, ranging
from fundamental atomic and molecular physics, particle and
astrophysics, to diagnostics in biological and material sciences,
e.g., positron emission tomography (PET) [5] and positron
annihilation lifetimes spectroscopy (PALS) [6], respectively.
The understanding and optimization of these technologies
requires a fundamental understanding of the underpinning
physical processes involved, including accurate knowledge
of the input electron and positron scattering cross sections,
material structure, and transport theories.

While much is accurately known for electron interac-
tion processes (see, e.g., reviews [7–9]), information of
equivalent accuracy for positrons has only recently become
available through advances in beam scattering techniques
using improved positron trapping systems (e.g., Penning-
Malmberg-Surko traps) to produce high resolution positron
beams [10,11]. The availability of new accurate complete
sets of positron interaction cross sections has facilitated new
theoretical investigations of positron transport. The effect of
positronium (Ps) formation on transport processes is of special
interest, with striking new phenomena such as Ps-induced
negative differential conductivity in gases [12,13] and liquids
[14] being reported. Electron and positron transport in dense
gaseous and liquid systems has long been studied through
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kinetic theory, by solving the classical Boltzmann equation as
modified by Cohen and Lekner [15,16], to take into account
the effects of coherent scattering from background material
and associated multiple scattering effects. For a review of
the status of electron transport in liquid and dense gaseous
systems, the reader is referred to the recent review of Sakai [16]
and other prominent authors in the field [17,18]. However,
Cohen and Lekner’s kinetic equation is derived and utilized
explicitly within the context of the “two-term” representation
of the electron velocity distribution function, in which the
spherical harmonic representation in velocity space is limited
to two terms and is thus limited to situations of quasi-isotropy.
Such situations are generally the exception rather than the
rule in gaseous electronics [19], and there is every reason to
believe that this is also the case for electrons and positrons
in condensed matter. In addition, the two-term formulation
suppresses angular effects arising from the static structure
function S(K ) used to include the effects of material structure
in the transport theory. In numerical solutions of the Boltzmann
equation, spherical harmonic expansions must be truncated to
finite size by imposing some upper limit lmax on the summation,
but this must be regarded as a free parameter, to be incremented
until the desired accuracy is achieved. In gaseous electronics,
it is not unusual to find that “multiterm” representations
with lmax � 5 are required to achieve the desired result. For
electrons or positrons in condensed matter, S(K ) introduces
a further angular dependence, the full effects of which are
impossible to ascertain within the narrow confines of the
Cohen-Lekner quasi-isotropy formalism. For that reason, it
has been necessary to reformulate a more general Boltzmann
equation for light particles in structured matter [14].

In this paper, we further develop the recent multiterm
formalism for electrons and positrons in structured matter
[14]. This is followed by numerical investigations, first
for a benchmark model system, and then for liquid argon
using a comprehensive set of positron impact cross sections
[12]. We are particularly interested in the effects of the
material structure, and find interesting phenomena, includ-
ing structure-induced negative differential conductivity and
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structure-induced anisotropic diffusion. Another theoretical
study of positrons in liquid Ar [20] confined their attention
to thermalization times, using a two-term solution of the
spatially homogeneous Boltzmann equation. Transport coef-
ficients such as drift velocity and diffusion coefficients were
not considered by [20] and, furthermore, Ps formation was
treated as a weak perturbation, something which appears of
questionable validity given the very large Ps formation cross
section [12]. In this paper, we calculate a full set of measurable
transport coefficients, and treat positronium formation in a
rigorous, nonperturbative way.

II. THEORY

A. The kinetic equation and its multiterm solution in the
hydrodynamic regime

The governing equation, describing a swarm of free light
charged particles moving through materials (condensed or gas
phase) driven out of equilibrium through the application of an
electric field E, is the Boltzmann equation for the phase space
distribution function f (r,c,t) [15,16]:

∂f

∂t
+ c · ∇f + q E

m
· ∂f

∂c
= −J (f ). (1)

Here r and c denote, respectively, the position and velocity
coordinates in phase space, while q and m are the charge
and mass of the particle, respectively. In general, the rate of
change of f due to interactions with the background material
is described by the collision operator,

J (f ) = Jcoherent + Jincoherent = Jelast + Jinel + JPs + · · · , (2)

which accounts for all possible scattering processes, coherent
and incoherent, through appropriate interaction cross sections
and the structure function of the medium. The form of this
collision operator varies depending on the material under
investigation, and the details of the collision operators for
coherent and incoherent scattering processes are left to
Sec. II B.

To solve the Boltzmann Eq. (1) in the hydrodynamic
regime, we make a series of representations of the various
dependencies in f (r,c,t). The angular dependence of the
phase-space distribution function in velocity space can be
represented in terms of an expansion in spherical harmonics:

f (r,c,t) =
∞∑
l=0

l∑
m=−l

f (l)
m (r,c,t)Y [l]

m (ĉ), (3)

where Y [l]
m (ĉ) are spherical harmonics and ĉ denotes the angles

of c. While it is traditional (in the two-term approximation)
to set the upper bound of the l summation to 1 and set m = 0
(i.e., a Legendre polynomial expansion), we do not make such
a restrictive assumption in this theory.

Various numerical techniques are applicable to represent
the speed and energy space [21,22]. In this paper, we employ
an expansion in terms of generalized Sonine (generalized
Laguerre) Rνl(αc) polynomials [23],

f (l)
m (r,c,t) = w(α,c)

∞∑
ν=0

Fα(νlm; r,t)Rνl(αc), (4)

which are orthonormal with respect to a Maxwellian weight
function w(α,c) = ( α2

2π
)3/2 exp{−α2c2

2 }, where α2 = m
kTb

. In the
modern approach, one sets Tb to be the charged-particle
temperature or an arbitrary basis temperature [24]. These
are traditionally referred to as the “two-temperature theory”
[24,25]. Combining (3) and (4) yields

f (r,c,t) = w(α,c)
∞∑

ν=0

∞∑
l=0

l∑
m=−l

Fα(νlm; r,t)φ[νl]
m (αc), (5)

where φ[νl]
m (αc) = Rνl(αc)Y [l]

m (ĉ) are Burnett functions [25,26]
which satisfy the following orthonormality relation:∫

w(α,c)φ(ν ′l′)
m′ (αc)φ[νl]

m (αc)dc = δν ′νδl′lδm′m. (6)

In what follows, for brevity where appropriate, we will refer
to equations in [25] with a prefix I.

Substituting (5) into (1), and utilizing the orthonormality
of the basis functions, we obtain the following infinite set of
partial differential equations for the moments Fα(νlm; r,t):

∂Fα(νlm)

∂t
+

∞∑
ν ′=0

∞∑
l′=0

l′∑
m′=−l′

×
[
〈νlm||c · ∇ + q E

m
· ∂

∂c
||ν ′l′m′〉

]
Fα(νlm)

=
∞∑

ν ′=0

∞∑
l′=0

l′∑
m′=−l′

〈νlm||J ||ν ′l′m′〉Fα(νlm), (7)

where 〈νlm||c · ∇ + q E
m

· ∂
∂c ||ν ′l′m′〉 and 〈νlm||J ||ν ′l′m′〉 are

matrix elements, with the latter collision operator defined
according to

〈νlm||J ||ν ′l′m′〉 = 1

n0

∫
dc φ(νl)

m (αc)J
[
w(α,c)φ[ν ′l′]

m′ (αc)
]
.

(8)

For coherent scattering from structured material, the expres-
sions are detailed in Sec. II B, while for dilute gaseous systems,
all matrix elements are given explicitly in [24–28].

In the hydrodynamic regime, the space-time dependence
of f is projected out through a density gradient expansion
[29,30],

f (r,c,t) =
∞∑

k=0

f (k)(c) � (−∇)kn(r,t), (9)

where f (k)(c,t) are tensors of rank k, and � denotes a k-fold
scalar product. This expansion facilitates direct extraction of
traditional transport coefficients in the hydrodynamic regime,
as defined in Sec. II C. Using spherical tensors, the expansion
(9) takes the form [21]

Fα(νlm; r,t) =
2∑

s=0

s∑
λ=0

F (νlm|sλ)G(sλ)
m n(r,t), (10)

where G(sλ)
m is the irreducible gradient tensor operator

[21]. By substituting (10) into (7), and equating coeffi-
cients of G(sλ)

m n(r,t), we obtain the following hierarchy of
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kinetic equations:
∞∑

ν ′=0

∞∑
l′=0

[
noJ

l
νν ′ (α)δll′ − Raδνν ′δll′ + i

qE

m
α(l′m10|lm)〈νl||K [1]||ν ′l′〉 − n0J

0
0ν ′ (α)Fα(νl0|00)(1 − δs0δλ0)δl′0δm0

]

×Fα(ν ′l′m|sλ) = X̄(νlm|sλ; α), (ν,l) = 0,1,2, . . . ,∞, |m| � min{l,λ}, s + λ = even, (11)

where Ra is the net loss rate of charged particles and is defined
in (34) below. The right-hand-side vectors for the required
members of the hierarchy are given by (I.16), (I.18), and
(I.20). The lowest member of the hierarchy is an eigenvalue
equation, and its solution is discussed in Sec. II D. The reduced
matrix elements of the velocity derivative, 〈νl||K [1]||ν ′l′〉, are
given by (I.12a). The reduced matrix elements of the collision
operator have the form 〈νlm||J ||ν ′l′m′〉 = J l

νν ′ (α)δll′δmm′ due
to the scalar nature of the operator, and the evaluation of the
elements is detailed in the following section.

B. Collision operators for structured matter and matrix
elements in a multiterm representation

The collision operator in (1) describes the rate of change
of f due to interactions with the background material. For
structured media, the collision operator must account for
the various scattering processes available, including coherent
elastic scattering, incoherent inelastic scattering, Ps formation,
etc., as shown in (2). In what follows, we isolate the coherent
and incoherent effects and detail collision operators and
associated matrix elements for each interaction process type.

1. Coherent elastic scattering in a structured media

The most general view of charged-particle interactions
with the medium is the scattering of a wave representing the
charged particle by the medium as a whole. At its simplest
level, using a physical optics analogy, one can visualize
this as the interference of waves diffracted from each of
the constituent molecules in the materials over the domain
corresponding to the range of the pair correlation function. The
interference effects arising from coherent scattering processes
can significantly affect the charged-particle transport within
the media. These effects become important when the de
Broglie wavelength of the charged particle is comparable with
the average intermolecular spacing ∼ n

−1/3
0 . For interparticle

spacings much greater than the de Broglie wavelength of
the charged particle (the dilute gas-phase limit), the wave
properties are suppressed and the single particle scattering
regime then follows—pursuing the optics analogy, the geo-
metric optics picture holds in this limit. This provides us with
a benchmark for the coherent collision operator (and matrix
elements) in this dilute gas-phase limit for which the collision
operators are well known.

The matrix elements of the collision operator (omitting the
space-time dependence for clarity) are related to the time rate
of change of a Burnett function φ(νl)

m (αc) due to collisions via[
∂φ(νl)

m (αc)

∂t

]
coll

=
∫

dc φ(νl)
m (αc)J [f (c)]

= n0

∑
ν ′l′m′

〈νlm||J ||ν ′l′m′〉F (ν ′l′m′). (12)

From the definition of the double differential cross section
d2σ/d k̂

′
dω′, one can build up an expression for the rate of the

Burnett function φ(νl)
m (αc) due to collisions:[

∂φ(νl)
m (αc)

∂t

]
coll

= n0

∫
dc cf (c)

∫ ∞

0
dω′

×
∫

k̂
′ d k̂

′[
φ(νl)

m (αc) − φ(νl)
m (αc′)

] d2σ

d k̂
′
dω′

,

where ω′ and k′, respectively, denote the angular frequency and
wave number of the charged-particle wave after the interaction
with the material. The double differential cross section can
be expressed in term of the single particle differential cross
section σlab(|�k|,k̂′

) and the dynamic structure S(�k,�ω)
[31],

d2σ

d k̂
′
dω′

= n0σlab(|�k|,k̂′
)S(�k,�ω), (13)

where �k = k − k′ is the change in the wave vector ( p =
mc = h̄k) and �ω = ω − ω′ is the change in energy (ε =
h̄ω = h̄2k2/2m for free particles) due to the interaction with
the medium. Undashed and dashed quantities refer to their
properties before and after interactions, respectively. In what
follows, we have set h̄ = 1 for convenience. All expressions
are evaluated in the laboratory frame. This contrasts with the
single molecule scattering case, where collisions are carried
out in the center of mass frame; for interactions with many
particles simultaneously, this is not possible. The dynamic
structure factor must satisfy the first three sum rules,∫ ∞

−∞
dQ S(K ,Q) = S(K ), (14)

∫ ∞

−∞
dQ QS(K ,Q) = K2

2m0
, (15)

∫ ∞

−∞
dQ Q2S(K ,Q) ≈ 2kT0

K2

2m0
, (16)

where T0 is the temperature of the medium and m0 is the
mass of the constituent atoms and molecules. These sum rules
require the independence of K and Q. The dynamic structure
factor is the space and time Fourier transform of the Van Hove
time-dependent, generalized, pair-distribution function, while
the static structure factor S(K ) is the Fourier transform of the
radial pair-distribution function [31]. Pursuing the physical
optics analogy with a multislit experiment again, the overall
pattern derives from a superposition of the interference patterns
of the combined slits (scattering centers) with the diffraction
pattern of each slit (single particle scattering). The former
is governed by the static structure factor, while the latter is
governed by the scattering cross section. Furthermore, the
diffraction patterns are Doppler shifted depending on the
relative velocity of the atom or molecules and the charged
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particles, and this manifests itself in the appearance of the
medium temperature in the sum rules.

From the definition of (13), one can construct the following
expression for the rate of change of φ[νl]

m (αc) due to interactions
with the medium per unit volume:[

∂φ(νl)
m (αc)

∂t

]
coll

= n0

∫
dc cf (c)

∫ ∞

−∞
d(�ω)

×
∫

k̂
dk′

[
φ(νl)

m (αc)−φ(νl)
m (αc′)

]
× σlab(|�k|,k̂′

)S(�k,�ω). (17)

To zero order in �ω/ 1
2mc2, the above expression is nonzero

for all l � 1, and this level of approximation is sufficient.
For l = 0, however, the expression is identically zero and a
first-order correction is required. Given the dependence of �k
and �ω, we cannot implement the sum rules to evaluate the
expressions involving S(�k,�ω). To enforce independence,
we expand about zero energy exchange, with an associated
momentum exchange �k0, where k is merely rotated through
a scattering angle χ during an interaction without a change in
its magnitude, and hence

�k = k − k′ = �k0 + (k − k′)k̂
′
. (18)

We note that the following approximations exist in the limit of
small �ω/ 1

2mc2:

σlab(|�k|,k̂′
) ≈ σ (c,χ ) − c

4

(
�ω

1
2mc2

)
∂

∂c
σ (c,χ ), (19)

S(�k,�ω) ≈ S(�k0,�ω) + mc

2

(
�ω

1
2mc2

)
k̂′

·
[

∂

∂ K
S(K ,�ω)

]
K=�k0

, (20)

where (19) follows from [31].
We consider initially the case for l = 0,[

∂φ
(ν0)
0 (αc)

∂t

]
coll

= n0
1√
4π

∫
dc c f (c)

∫
�̂

k
′
d�̂k

′

× [Rν0(αc) − Rν0(αc′)]σlab(|�k|,k̂′
)S(�k,�ω).

Using expansions (19) and (20) along with a Taylor series
expansion of Rν0(αc′), enforcing the sum rules (14)–(16), it
follows that to first order in �ω/ 1

2mc2, this expression reduces
to [

∂φ
(ν0)
0 (αc)

∂t

]
coll

= n0
1√
4π

∫
dc c f (c)

m

m0c2

×
{
c4σm(c)R′

ν0(αc) − kT0

m

∂

∂c
[c3σmR′

ν0(αc)]

}
.

This expression can be shown to be equivalent to the traditional
Davydov collision operator used to describe elastic collisions
in gaseous systems.

For l � 1, a zeroth order truncation in �ω/ 1
2mc2 in (17)

is sufficient. In this limit, we can perform the integration over
�ω, and it follows that[

∂φ(νl)
m (αc)

∂t

]
coll

= n0 2π

∫
dc c f (c)

∫ 1

−1
d(cos χ )Rνl(αc)

× [
Y [l]

m (ĉ) − Y [l]
m (ĉ′)

]
�(c,χ ), (21)

where

�(c,χ ) = σ (c,χ ) S

(
2mc

h̄
sin

χ

2

)
(22)

is an effective differential cross section for higher order
equations where l � 1. Note that, at this point, we have
assumed that the medium is isotropic and hence S(�k0) =
S(|�k0|) = S( 2mc

h̄
sin χ

2 ). If we represent �(c,χ ) through an
expansion in terms of Legendre polynomials,

�(c,χ ) =
∞∑

λ=0

2λ + 1

2
�λ(c)Pλ(cos χ ), (23)

then one can make connection with the previous calculations
of the collision matrix elements for dilute gaseous systems.
The effective partial cross sections �l(c) are defined by

�l(c) = 2π

∫ 1

−1
�(c,χ )Pl(cos χ )d(cos χ )

= 1

4π

∑
λ′λ′′

(2λ′ + 1)(2λ′′ + 1)

2l + 1
(λ′0λ′′0|l0)2σλ′(c)sλ′′(c),

where

σl(c) = 2π

∫ 1

−1
σ (c,χ )Pl(cos χ )d(cos χ ) (24)

and

sl(c) = 1

2

∫ 1

−1
S

[
2mc

h̄
sin

(
χ

2

)]
Pl(cos χ )d(cos χ ). (25)

This relationship is valid for anisotropic scattering processes.
For dilute gases, S(�K) = 1, and it follows that sl(c) = δl0

and the expressions reduce to the dilute gaseous form in the
equivalent mass ratio limit [24]. We should highlight that
for isotropic scattering, in the two-term approximation, the
structure-modified momentum transfer cross section �m =
�0 − �1 only samples s0 − s1 or the (1 − cos χ ) moment of
the static structure factor S [17]. In this multiterm theory, we
are able to sample higher order moments of S.

Finally, to evaluate the collision matrix elements, we
expand the velocity distribution function using (5), and using
the orthonormality relations, it then follows that

〈νlm||J ||ν ′l′m′〉 = V l
νν ′δll′δmm′ , (26)

where

V 0
νν ′ = m

m0

∫ ∞

0
w(α,c)Rν ′0(αc)

{
[σ0(c) − σl(c)]

(
c2R′

ν0(αc)

− kT0

m
[3R′

ν0(αc) + cR′′
ν0(αc)]

)

− [σ ′
0(c) − σ ′

l (c)]cR′
ν0(αc)

}
c2dc, (27)
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V l
νν ′ =

∫ ∞

0
w(α,c)Rν ′l(αc)[�0(c) − �l(c)]Rνl(αc)c3dc,

(28)

in which the dashes refer to speed derivatives and V l
νν ′ are

interaction integrals [24,25] generalized to account for the
effects of coherent scattering from structured media. One can
establish the connection with the matrix elements in the dilute
gas case limit [24,25].

2. Incoherent scattering and particle loss processes

For inelastic processes, energy is transferred on a localized
site during scattering. Scattering is hence incoherent and
interference effects cannot manifest themselves. We use the
semiclassical extension of the Boltzmann collision operator
[32] to represent such processes. Processes such as attachment,
annihilation, and Ps formation from a kinetic theory viewpoint
are simple particle loss processes, and hence the collision
operators representing such processes are just the direct
scattering part of the original Boltzmann collision operator
[33]. Consequently, the structure of the material does not
play a role in these interaction processes. Expressions for the
collision matrix elements for the incoherent inelastic scattering
and loss processes (e.g., attachment, Ps formation) are detailed
in [24,25].

C. Transport coefficients and properties

Experimental investigations of transport behavior are gen-
erally made by sampling charged-particle currents or densities,
n(r,t) = ∫

f (r,c,t)dc. The connection between experiment
and theory is made through the equation of continuity

∂n(r,t)
∂t

+ ∇ · �(r,t) = S(r,t), (29)

where �(r,t) = n〈c〉 is the charged-particle flux and S(r,t)
represents the production rate per unit volume, per unit
time, arising from nonconservative collisional processes, such
as Ps formation or annihilation for positron systems, or
ionization and attachment processes for electrons. Assuming
the functional relationship (9), the flux �(r,t) and source term
S(r,t) in (29) are expanded as follows:

�(r,t) = WF n(r,t) − DF · ∇n(r,t) + · · · (30)

S(r,t) = S(0) − S(1) � ∇n(r,t) + S(2) � ∇∇n(r,t) + · · · ,
(31)

where WF is the flux drift velocity and DF is the flux diffusion
tensor. Expansion (30) is a generalization of the traditional
Fick’s law to higher order. Substitution of expansions (30)
and (31) into the continuity Eq. (29) yields the generalized
diffusion equation

∂n

∂t
+ W · ∇n − D : ∇∇n + · · · = −Ran , (32)

where Ra = −S(0) is the loss rate, and we define the bulk
transport coefficients as

W = WF + S(1); D = DF + S(2). (33)

Swarm experiments are generally analyzed on the basis of the
diffusion equation and hence it is the bulk coefficients, not
the flux, that are generally determined in swarm experiments.
We note, however, that it is often the flux coefficients that are
required in fluid models of these systems [34]. The transport
coefficients of interest in the present study are related to the
calculated moments via

Ra = n0

∞∑
ν ′=0

J 0
0ν ′ (α)Fα(ν ′00|00), (34)

W = i

α
Fα(010|00) − in0

∞∑
ν ′=1

J 0
0ν ′ (α)Fα(ν ′00|11), (35)

DL = − 1

α
Fα(010|11) − n0

∞∑
ν ′=1

J 0
0ν ′ (α)

× [Fα(ν ′00|20) −
√

2Fα(ν ′00|22)], (36)

DT = − 1

α
Fα(011|11) − n0

∞∑
ν ′=1

J 0
0ν ′ (α)

×
[
Fα(ν ′00|20) + 1√

2
Fα(ν ′00|22)

]
. (37)

We reemphasize here that there are two distinct “sets” of
cross sections: bulk and flux [34–36]. The drift velocity
and diffusion coefficients defined above are bulk coefficients.
The components involving summations constitute the explicit
nonconservative components of the transport coefficients,
while the remainder constitute the flux contribution. Using
expansion (9), we can represent the spatial dependence of the
average energy in a density gradient expansion,

ε(r,t) = ε + γ · ∇n

n
+ · · · , (38)

where ε and γ are the spatially homogeneous mean energy
and gradient energy parameter [37], respectively, and are
calculated from the moments according to

ε = 3

2
kTb

[
1 −

√
2

3
Fα(100|00)

]
, (39)

γ = 3

2
kTb

{√
2

3
Im[Fα(100|11)]

}
, (40)

where Im{·} denotes the imaginary part of the moment.
The expansion (38) serves to facilitate our discussions of
phenomena related to the spatial variation of the average
energy through the swarm, including anisotropic diffusion and
the explicit effects of Ps formation.

D. Numerical solution of the hierarchy

The solution of (11) for the transport properties above
requires the solution of five members of the hierarchy
determined by (s,λ,m) = (0,0,0),(1,1,0),(1,1,1),(2,0,0),(2,2,0).
The order of solution of members (defined by the m index)
within a given level of the hierarchy [defined by (s, λ)] is
arbitrary. The spatially homogeneous member of the hierarchy
(s,λ,m) = (0,0,0) is an eigenvalue problem and, together with
(34), constitute a system of coupled nonlinear equations, which
are solved iteratively for the moments Fα(νlm|00) and the
loss rate Ra . The remaining members of the hierarchy can be
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solved via direct numerical inversion. The coefficient matrix
exhibits a tridiagonal block structure, with off-diagonal blocks
sparse. We employ a sparse matrix routine to exploit this
property. The numerical solution of (11) requires truncation of
the ν and l summations to manageably finite values νmax and
lmax, respectively. These values are incremented independently
until a specified accuracy criteria is satisfied on the transport
properties. The required values of lmax and νmax represent,
respectively, the deviation of the velocity distribution from
spherical symmetry and the deviation of the speed distribution
from a Maxwellian distribution at Tb. For details, the reader is
referred to [25].

III. RESULTS AND DISCUSSION

A. Benchmark model

1. The model: Free electrons in a dense gas of hard spheres

To elucidate the essential physics of the transport of light
particles in a dense structured media, we implement the
simplest model of such a system. The structure of the system
is described by the Percus-Yevick structure function (with
the Verlet-Weis correction) [38] representing a systems of
hard-spherical particles. The key parameter is the volume
fraction � describing the ratio of the volume of spheres to the
total volume, and is a measure of the packing of the spherical
particles. The physical dimensions of the constituent particles
are such that they have a cross-sectional area of 6 Å2. We
consider a charged-particle–neutral-particle interaction cross
section that is governed by an isotropic constant cross section
of the same amplitude. We assume the temperature of the
material is 0 K, the mass of the constituent neutral particles is
4 amu, and the charged particles are electrons. All quantities
are analytic so that this model can provide a benchmark for
further modeling in this field.

The static structure functions for the Percus-Yevick model
corresponding to various volume fractions are displayed
in Fig. 1. The structure-modified momentum transfer cross
sections associated with the various volume fractions, as
displayed in Fig. 2, decrease with increasing volume fraction.
In Fig. 3, we display the low-order modified partial cross-
section combinations (l � 4) appearing in the multiterm theory
for a fixed volume fraction. Physically, one expects that as the
energy increases, and hence de Broglie wavelength decreases,
the effects of coherent scattering are reduced and the structure-
modified cross sections approach the dilute gas-phase cross
sections. This is reflected in Figs. 2 and 3.

2. Spatially homogeneous transport properties

In Fig. 4, we display the variation of the mean energy of
the swarm as a function of the applied reduced electric field
E/n0, where n0 is the number density of the scatterers (1
townsend = 1 Td = 1021 V m2). The results are compared for
various volume fractions � and in the limit of the dilute gas
phase � ≈ 0. In the dilute gas case, the mean energy exhibits
the expected linear dependence upon the field. In the low-field
regime, the mean energy increases with increasing volume
fraction. The reduction in the structure-modified momentum
transfer cross section with increasing volume fraction for low
energies reduces the randomizing nature of collisions and

FIG. 1. (Color online) The variation of the static structure factor
with momentum exchange Q for the modified Percus-Yevick model
at various volume fractions.

allows the electric field to efficiently pump energy into the
swarm. The coalescence of the various profiles at high fields
and hence energies is a reflection of the decrease in the de
Broglie wavelength and the consequent suppression of the
coherent scattering effects.

In Fig. 5, the impact of volume fraction on the field
dependence of the drift velocity is displayed. At low fields,
the impact of the reduction in the randomizing nature of the
interactions with � is evidenced by the increased directed
motion and hence drift velocity. Importantly, we notice, for
volume fractions above a critical value, the existence of
negative differential conductivity (NDC), i.e., the reduction in
the drift velocity with increasing fields. This form of negative
differential conductivity arises purely as a consequence of
the coherent scattering from a structured material, and is
referred to as structure-induced NDC [14]. This phenomenon
has also been observed in other electron calculations [17]. In
contrast to other forms of NDC for electron transport in dilute

FIG. 2. (Color online) The energy variation of the structure-
modified momentum transfer cross section for the modified Percus-
Yevick model for various volume fractions.
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FIG. 3. (Color online) The energy variation of low-order,
structure-modified, partial cross-section combinations for the modi-
fied Percus-Yevick model with a volume fraction � = 0.4.

gases [39–41], this form does not require inelastic scattering
processes or nonconservative processes such as annihilation
and attachment [12,13]. In [14], the following condition for
the existence of structure-induced NDC was presented:

d ln(s0 − s1)

d ln ε
> 1 . (41)

In Fig. 2, we have included the criteria lines for emphasis and
we observe that the condition is consistent with the results in
Fig. 5. For volume fractions above 0.2, this criterion is met for
a range of fields where mean energy falls in this window.

3. Spatially inhomogeneous transport properties

The phenomenon of anisotropic diffusion is well known
for charged particles of all masses in dilute gaseous systems.
For the light particles and the hard-sphere model under

FIG. 4. (Color online) Variation of the mean energy with reduced
electric field for various volume fractions � for a dense gas of hard
spheres.

FIG. 5. (Color online) Variation of the drift velocity with reduced
electric field for various volume fractions � for a dense gas of hard
spheres.

consideration here, the ratio of the longitudinal to transverse
diffusion coefficients is approximately 0.5 [42], and this
benchmark is met in Fig. 6 for the � = 0 case. This figure
also highlights the impact of coherent scattering effects on
the nature of diffusion. For low fields, we observe that
diffusion is enhanced by nearly two orders of magnitude
with increasing �. This is due to the implicit enhanced
thermal effects and the explicit effects of a reduction in
the momentum transfer cross section. Interestingly, the ratio
remains at 0.5 in this field range. In the energy regime, the
effective momentum transfer cross section is approximately
constant with the energy for all volume fractions, and it
follows that the DL/DT ratio is fixed at approximately 0.5.
For the volume fractions displayed, all diffusion coefficients
have a window of field strengths where they are decreasing
with increasing field. This is a reflection of the regime
where the momentum transfer collision frequency increases
rapidly with energy. The decrease is particularly significant
for the longitudinal component where it can fall by as much
as an order of magnitude. There are two explicit effects
which contribute to this: (i) the thermal effects, which are
essentially manifest in the transverse diffusion coefficient,
and (ii) the differential velocity effect [37]. The differential
velocity effect is a combination of a collision frequency,
which varies with energy, and an average energy, which varies
through the swarm as detailed by the parameter γ [37].
The variation of γ with the field is displayed in Fig. 7.
Although the gradient energy parameter γ falls slightly with
the field in this regime, this differential velocity effect is
enhanced by virtue of the rapidly increasing momentum
transfer collision frequency in this regime. The large reduction
in the longitudinal component with the field in this regime then
follows.

4. The accuracy of the two-term approximation

In the dilute gaseous case for the hard-sphere model, the
two-term approximation is generally accurate to within 0.5%
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FIG. 6. (Color online) Variation of the charged-particle diffusion
coefficients with reduced electric field for various volume fractions
� for a dense gas of hard spheres (solid line is n0DT ; dashed line
is n0DL).

or better for all transport coefficients. In Fig. 8, we present
the accuracy of the two-term approximation for the various
transport coefficients as a function of the applied field. As
detailed in Sec. II, by including more terms in the expansion
(3), we sample more moments of the static structure factor
sl and hence include more information about the material
properties. The importance of sampling higher order moments,
even for this simple model, is highlighted in Fig. 8.

B. Transport of spatially inhomogeneous positrons
in liquid argon

In this section, we extend results from our previous paper
[14] to now consider spatially inhomogeneous transport co-
efficients. We utilize these spatially inhomogeneous transport
coefficients to discuss the phenomenon of NDC arising from
the explicit influence of Ps formation [12–14]. Details of the

FIG. 7. (Color online) Variation of the charged-particle gradient
energy parameter γ with reduced electric field for various volume
fractions � for a dense gas of hard spheres.

FIG. 8. (Color online) Accuracy of the two-term approximation
for the various charged-particle transport properties for a dense gas
of hard spheres with volume fraction � = 0.4.

cross sections, structure factors, and the structure-modified
cross sections are given in [14].

In Fig. 9, we display the flux diffusion coefficients for
positrons in liquid argon. Much of the phenomenology
observed for the model dense gas system in Sec. III A 3
carries over to the liquid argon system. In the low-field regime,
where coherent scattering effects are important, we observe
distinctly different behaviors in the transport properties as
compared to the dilute gas-phase case. The thermal values
(i.e., low field) of the flux diffusion coefficients of positrons
in liquid argon are at least an order of magnitude greater for
a liquid than for a dilute gas. The origin of this behavior
was discussed in Sec. III A 3. In the high-field (high-energy)
limit, the positron de Broglie wavelengths decrease, coherent
scattering becomes less important, and the liquid-phase and
dilute gas-phase results converge as in the model case. The
region of rapid increase in both components of the diffusion
tensor reflects a rapidly falling effective cross section in this

FIG. 9. (Color online) The flux diffusion coefficients of positrons
in liquid and dilute gaseous Ar at 85 K as a function of E/n0.
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FIG. 10. (Color online) The positronium formation rate and
gradient energy parameter for positrons in liquid and dilute gaseous
Ar at 85 K as a function of E/n0.

energy regime. The anisotropic nature of diffusion for positron
in liquids, as reflected in the disparity between the longitudinal
and transverse diffusion coefficients, is significantly increased
over the dilute gas phase. From Fig. 9, we observe that the
difference can be up to almost two orders of magnitude for
liquids, in contrast to a factor of 2 to 3 for the dilute gas phase.
This is a manifestation of the enhanced spatial variation of
the average energy (γ ) (see Fig. 10) combined with a rapidly
varying effective collision frequency in this field domain.

The gradient energy parameter also presents a convenient
way to discuss the phenomenon of positronium (Ps)-induced
NDC that was originally observed and discussed for gases
[12,13] and, recently, in the context of liquids [14]. To
understand this phenomenon, we must first identify that the
bulk drift velocity is the time rate of change of the center of
mass of the swarm of positrons. It is composed of the flux
drift velocity (mean velocity of electrons) plus a contribution
brought about by the nonsymmetric loss of positrons to the
swarm to Ps formation (S(1)). Since on average the positrons
at the front of the swarm are more energetic than those at
the trailing edge, as reflected by the transport property γ (see
Fig. 10), there is a preferential loss of positrons to Ps formation
at the front of the swarm relative to the back. This results in
a shift in the center of mass of the swarm in the opposite
direction to the field force direction. Consequently, the bulk
drift velocity is less than the flux drift velocity. The strength

of the Ps formation processes in the field in the range 0.5–15
Td (see Fig. 10), combined with a sufficiently strong variation
in the average energy (i.e., the high γ shown in Fig. 10),
is such that NDC results in this field region (see Fig. 3 of
Ref. [14]). One of the key questions that remains is why NDC
terminates for higher fields given the monotonic increase in
the Ps formation rates with increasing field. The answer lies
in the falloff of γ with increasing field. At higher fields, there
is no longer sufficient nonsymmetric spatial variation in the
average energy through the swarm to generate the required
preferential loss of positrons from the front of the swarm for
the generation of NDC.

IV. CONCLUDING REMARKS

In this work, we have presented a systematic treatment
of nonequilibrium charged-particle transport in structure soft
condensed media, generalizing the Boltzmann kinetic equation
originally proposed by Cohen and Lekner [15]. We have
explicitly included the effects of coherent and incoherent scat-
tering as well as particle loss processes. Transport properties
are determined by a combination of the static structure factor
and the single particle scattering cross sections. We have pre-
sented details of a multiterm solution of the structure-modified
kinetic equation, which overcomes the accuracy limitations as-
sociated with a two-term approximation of Cohen and Lekner
[15] generally applied to electron and positron transport in
liquids and dense gases. In addition, we have formulated
and implemented a consistent nonperturbative treatment of
loss rates, avoiding the limitations of previous perturbative
schemes. The theory and associated codes have been applied
to a model Percus-Yevick system and then to positrons in
liquid argon. Phenomena have been found that arise explicitly
from the coherent nature of scattering and become manifest
particularly at low fields, including structure-induced negative
differential conductivity and structure-induced anisotropic
diffusion. In the limiting case of high fields (high energies
and smaller de Broglie wavelengths), the structure effects are
negligible and the traditional dilute gas-phase kinetic equation
and associated results are retained.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the
Australian Research Council and Queensland Smart Futures
fund.

[1] B. Baibussinov, M. B. Ceolin, E. Calligarich, S. Centro,
K. Cieslik, C. Farnese, A. Fava, D. Gibin, A. Guglielmi,
G. Meng, F. Pietropaolo, C. Rubbia, F. Varanini, and S. Ventura,
J. Instrum. 5, P03005 (2010).

[2] N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv.
Mater. 21, 2741 (2009).

[3] Y. Zheng, J. R. Wagner, and L. Sanche, Phys. Rev. Lett. 96,
208101 (2006).

[4] H. Nikjoo, D. Emfietzoglou, R. Watanabe, and S. Uehara, Radiat.
Phys. Chem. 77, 1270 (2008).

[5] S. R. Cherry, J. A. Sorensen, and M. E. Phelps, Physics in
Nuclear Medicine (Saunders, Philadelphia, 2003), p. 544.

[6] H. P. D. W. Gidley and R. S. Vallery, Annu. Rev. Mater. Res. 36,
49 (2006).

[7] S. Buckman and C. Clark, Rev. Mod. Phys. 66, 539 (1994).
[8] M. J. Brunger and S. J. Buckman, Phys. Rep. 357, 215 (2002).
[9] H. Hotop, M. W. Ruf, M. Allan, and I. I. Fabrikant, Adv. At.

Mol. Phys. 49, 85 (2003).
[10] C. M. Surko, G. F. Gribakin, and S. J. Buckman, J. Phys. B 38,

R57 (2005).

031125-9

http://dx.doi.org/10.1088/1748-0221/5/03/P03005
http://dx.doi.org/10.1002/adma.200803541
http://dx.doi.org/10.1002/adma.200803541
http://dx.doi.org/10.1103/PhysRevLett.96.208101
http://dx.doi.org/10.1103/PhysRevLett.96.208101
http://dx.doi.org/10.1016/j.radphyschem.2008.05.043
http://dx.doi.org/10.1016/j.radphyschem.2008.05.043
http://dx.doi.org/10.1146/annurev.matsci.36.111904.135144
http://dx.doi.org/10.1146/annurev.matsci.36.111904.135144
http://dx.doi.org/10.1103/RevModPhys.66.539
http://dx.doi.org/10.1016/S0370-1573(01)00032-1
http://dx.doi.org/10.1088/0953-4075/38/6/R01
http://dx.doi.org/10.1088/0953-4075/38/6/R01


R. D. WHITE AND R. E. ROBSON PHYSICAL REVIEW E 84, 031125 (2011)

[11] J. P. Sullivan, C. Makochekanwa, A. Jones, P. Caradonna, and
S. J. Buckman, J. Phys. B 41, 081001 (2008).

[12] M. Suvakov, Z. L. Petrovic, J. P. Marler, S. J. Buckman, R. E.
Robson, and G. Malovic, New J. Phys. 10, 053034 (2008).

[13] A. Bankovic, Z. L. Petrovic, R. E. Robson, J. P. Marler, S. Dujko,
and G. Malovic, Nucl. Instrum. Methods Phys. Res. B 267, 350
(2009).

[14] R. D. White and R. E. Robson, Phys. Rev. Lett. 102, 230602
(2009).

[15] M. H. Cohen and J. Lekner, Phys. Rev. 158, 305 (1967).
[16] Y. Sakai, J. Phys. D 40, R441 (2007).
[17] V. M. Atrazhev and E. G. Dmitriev, J. Phys. C 18, 1205

(1985).
[18] A. F. Borghesani, IEEE Trans. Dielectr. Electr. Insul. 13, 492

(2006).
[19] R. D. White, R. E. Robson, B. Schmidt, and M. A. Morrison,

J. Phys. D 36, 3125 (2002).
[20] I. Pepe, D. A. L. Paul, J. Steyaert, F. Gimeno-Nogues, J. Deutsch,

and R. Prieels, J. Phys. B 28, 3643 (1995).
[21] R. E. Robson and K. F. Ness, Phys. Rev. A 33, 2068 (1986).
[22] E. A. Mason and E. W. McDaniel, Transport Properties of Ions

in Gases (Wiley, New York, 1988).
[23] S. Chapman and T. G. Cowling, The Mathematical Theory of

Non-Uniform Gases (Cambridge University Press, Cambridge,
1939).

[24] S. L. Lin, R. E. Robson, and E. A. Mason, J. Chem. Phys. 71,
3483 (1979).

[25] K. F. Ness and R. E. Robson, Phys. Rev. A 34, 2185 (1986).
[26] K. Kumar, Ann. Phys. 37, 113 (1966).
[27] K. Kumar, J. Math. Phys. 7, 671 (1966).
[28] K. Kumar, Aust. J. Phys. 20, 205 (1967).
[29] K. Kumar, H. R. Skullerud, and R. E. Robson, Aust. J. Phys. 33,

343 (1980).
[30] R. D. White, R. E. Robson, S. Dujko, P. Nicoletopoulos, and

B. Li, J. Phys. D 42, 194001 (2009).
[31] L. Van Hove, Phys. Rev. 95, 249 (1954).
[32] C. S. Wang-Chang, G. E. Uhlenbeck, and J. De Boer, in Studies in

Statistical Mechanics, edited by J. D. Boer and G. E. Uhlenbeck
(Wiley, New York, 1964), Vol. II, p. 241.

[33] L. Boltzmann, Wein. Ber. 66, 275 (1872).
[34] R. E. Robson, R. D. White, and Z. L. Petrović, Rev. Mod. Phys.
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