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1Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
2INFN, Sezione di Parma, Parma, Italy

3Theoretische Polymerphysik, Albert-Ludwig-Universität, Freiburg, Germany
4Center for Complexity Science, University of Warwick, Warwick, United Kingdom

5Dipartimento di Fisica, Università di Pisa, Pisa, Italy
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We consider a class of random, weighted networks, obtained through a redefinition of patterns in an Hopfield-
like model, and, by performing percolation processes, we get information about topology and resilience properties
of the networks themselves. Given the weighted nature of the graphs, different kinds of bond percolation can
be studied: stochastic (deleting links randomly) and deterministic (deleting links based on rank weights), each
mimicking a different physical process. The evolution of the network is accordingly different, as evidenced by
the behavior of the largest component size and of the distribution of cluster sizes. In particular, we can derive
that weak ties are crucial in order to maintain the graph connected and that, when they are the most prone to
failure, the giant component typically shrinks without abruptly breaking apart; these results have been recently
evidenced in several kinds of social networks.
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I. INTRODUCTION

Network theory is a fundamental tool for the modern
understanding of complex systems: By a simple graph rep-
resentation, where the elementary units of a system become
nodes and their mutual interactions become links, many
properties about the structure and dynamics of the system
itself can be inferred [1].

Recently, the characterization of network dynamics has
become a central issue: Networks are intrinsically dynamic and
continuously accommodate novel members, lose their original
elements, and build, erase, and rearrange their links [2]. The
structural reorganization of networks may arise due, e.g., to a
change in the resources providing the energy to maintain their
links, or to a large stress [3,4]. In this context percolation [5,6]
constitutes a very interesting process able to mimic a failure
of or a damage to links and nodes. Moreover, percolation
represents one of the simplest example of dynamical process
on a graph, exhibiting a phase transition [7], and, indeed, it has
been mapped into several other critical phenomena; as well,
applications in epidemiology, traffic models, and the analysis
of technological networks resilience have been rigorously
studied [8–11].

Here we apply percolation processes as a means in order to
probe the topology and the resilience of a network itself. We
especially focus on a class of stochastic, weighted networks
G recently introduced in Refs. [12,13]. Such networks are
generated by assigning to each node a set of attributes and
by linking two nodes whenever the pertaining attributes are
similar enough: the larger the similarity, the stronger the link.
As shown in Refs. [12,13], the resulting class of (weighted)
networks G exhibits interesting properties such as imitative
interactions (by construction), degree-degree correlation, high
transitivity (i.e., a large clustering coefficient), and a properly
tunable topology through a parameter θ , which controls the
distribution of attributes. Therefore, such networks constitute
an efficient tool to describe several different systems that

belong to disparate contexts, ranging from biological net-
works [14,15], to technological structures [16], and to social
organizations [17–19].

Now, since the graphs under investigation are weighted, we
can perform different kinds of percolation processes: random
(where links are deleted in a purely random fashion) and
deterministic (where links are deleted in rank order from the
weakest to strongest, or vice versa). We especially focus on
graphs G obtained for θ = 0 and 0.25, corresponding (in the
limit of large size) to fully connected weighted networks and
accounting for an “unbiased” and “biased” pattern distribution,
respectively. First, we consider the relative size of the largest
connected component S as a function of the fraction f of links
left: Numerical data suggest that a “giant component” emerges
when the fraction f approaches a “critical” value fc, which is
found to scale with the system size according to V −ν , where
ν depends on the kind of dilution. The latter also controls
the sharpness of the percolation, as well as the distribution
of cluster sizes, showing that, for biased pattern distributions,
weak ties play a crucial role as they can be used to build
up a spanning tree; conversely, strongest links are typically
redundant, and as a result, if weak ties are the most prone to
failure, the system will exhibit a poor resilience.

The paper is organized as follows: In Sec. II we describe
the correlated random networks we are focusing on, as well
as the percolation processes we perform. Then in Sec. III we
present the basic probability relations concerning the coupling
distribution, from which we can infer qualitative information
on the properties of the percolation transition; these properties
are confirmed by the results of the numerical analysis that is
reported in the following sections. In particular, the behavior
of the giant component is studied in Sec. IV, the distribution
of cluster sizes is described in Sec. V, and the behavior of
the clustering coefficient is examined in Sec. VI. An overall
discussion about the results and the perspectives of our work is
contained in Sec. VII. In Appendix A we show that the class of
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graphs that we consider displays dissortative mixing in a wide
region of the parameter set, while in Appendix B we present
some analytic results that are valid for the random percolation
process on G.

II. THE MODEL

We first introduce the class of networks on which we focus
our analysis, and later we describe the percolative processes
we will perform on such networks.

A. Network generation

Recently, a new approach to generate correlated random
networks has been introduced [12,13]; the approach is based
on a simple shift [−1, + 1] → [0, + 1] in the definition of
patterns in an Hopfield-like model, and it allows us to generate
a broad variety of different topologies ranging from fully
connected to small world to extremely diluted.

More precisely, we consider a set of V nodes, each endowed
with a set of L attributes encoded by a binary string ξ ; the
ensemble of strings is extracted according to the probabilities
P (ξμ = 0) = (1 − a)/2 and P (ξμ = 1) = (1 + a)/2, where
the fixed parameter a belongs to the interval [−1,1]. Then the
coupling between two generic nodes i and j is given by the
rule

Jij =
L∑

μ=1

ξ
μ

i ξ
μ

j . (1)

Therefore, the wider the overlap between nonnull entries, the
larger the weight associated to the link, with Jij ∈ [0,L]; the
extreme case Jij = 0 means that there exists no link between
nodes i and j . The values taken by the strings components
admit the following interpretation: ξ

μ

i = 1 means that agent
i is endowed with the particular feature μ, this feature can
represent a biological trait or an individual attitude according
to the considered system (the absence of this particular feature
corresponds to ξ

μ

i = 0). Then Eq. (1) states that agents show
homophily. For example, in social networks, people interact
with others of similar age, income, race, etc.

As shown in Refs. [12,13], the way a node is connected to
the network is sensitively affected by the number ρ of nonnull
entries present in the pertaining string, that is, for the ith node,
ρi = ∑

μ ξ
μ

i (notice that since ρ is Poissonian, its average is
given by ρ̄ = L(1 + a)/2). In fact, one finds that the average
probability P̄link(ρi ; a) that i is connected to another generic
node reads as

P̄link(ρi ; a) = 1 −
(

1 − a

2

)ρi

.

Moreover, by averaging over all possible string arrangements,
one finds for the average link probability p between two
generic nodes

p = 1 −
[

1 −
(

1 + a

2

)2]L

.

The class of networks that are generated in this way exhibit
different levels of correlation. For instance, it is easy to see
[12,13] that two neighbors of a given node are more likely to be
connected than they would be if the graph was purely random

generated; this kind of transitivity also affects the weights
associated with the links [12,13]. Such networks also display
a dissortative behavior. Indeed, the nodes having strings with
small ρ typically possess a small coordination number, and
they are more likely to be linked with nodes with large ρ. The
mathematical aspects of the degree correlations are elaborated
in Appendix A.

Finally, we introduce the parameter α = L/V , which turns
out to crucially control not only the topology but also the
thermodynamic of the system [12,13]. Here we assume α to
be constant and finite, which means that, as the volume of the
system grows, the length of the string increases proportionally;
this corresponds the the so-called high-storage regime in
neural networks [20]. Interestingly, as V → ∞ there exists
a vanishingly small range of values for a giving rise to
a nontrivial graph; such a range can be recognized by the
following scaling:

a = −1 + γ

V θ
, (2)

where θ � 0 and γ is a finite parameter. As explained in
Ref. [13], θ controls the connectivity regime of the network,
ranging from fully connected (FC; 0 � θ < 1/2) to extremely
diluted (1/2 < θ < 1) to completely disconnected (θ > 1),
while γ allows a fine tuning. In particular, here we focus on
θ < 1/2 and γ < 2, corresponding to a FC regime: In this
case topological disorder is lost, while disorder on couplings
is still present; however, notice that for θ = 0 and γ = 2, the
coupling distribution gets peaked at J = L, and disorder on
couplings is relaxed as well.

In the following, we will refer to the weighted random
graph, generated as explained above, as G(α,θ,γ,L), hence
highlighting the dependence on the set of parameters that
control its size and its topology. We also anticipate that we
will focus only on the cases θ = 0 and 0.25 corresponding
to weighted, complete graphs. Of course, for these cases
there is no topological correlation among links (the clustering
coefficient is equal to 1 and assortativity is neutral), though
correlation among link couplings is retained.

B. Percolation processes

Given an arbitrary graph, bond percolation consists in
deleting the existing links with some probability 1 − f

or, in other terms, in occupying links with probability f ;
nodes connected together form clusters. When f exceeds
a given system-dependent threshold (or critical) value fc, a
macroscopic cluster, i.e., a cluster occupying a finite fraction
of all available sites, also called a giant component, is formed.
For various network architectures and space dimensionalities
this transition is typically continuous, or second order, as the
system properties change continuously at the critical point
[5,21]. For instance, on random networks à la Erdös-Rényi
(ER) [22], one starts from a set of V nodes and adds links
such that the probability f that two nodes are joined by a
link is the same for all pairs of nodes. When f < 1/V , the
largest component remains minuscule, its number of vertices
scaling as log V ; in contrast, if f > 1/V , there is a component
of size linear in V . Thus, the fraction of vertices in the
largest component undergoes a continuous phase transition
at f = 1/V .
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As explained before, in the graph under study quenched
weights are assigned to the edges, and this allows us to think
of different kinds of processes, each corresponding to different
physical situations: The deletion of a link may mimic the
failure of the link itself due to overload [4] or, rather, to
error or attack that may affect randomly any link [23]. In
the former case links with higher weight are the first to be
deleted, while in the latter case deletion occurs randomly. In
other kinds of situations we can think that nodes transfer a
signal to neighbors, and the passage of information is effective
only when the tie strength is larger than some noise level [24].
Therefore, as the level of noise grows, more and more links
starting from the weakest ones get ineffective. To summarize,
we deal with the following processes:

(1) Random percolation (RP): Starting from the original
graph G(α,θ,γ,L) we consider each link, and we remove it
with probability 1 − f , independently of the couple of adjacent
nodes, in such a way that f is the fraction of links left; as f

is tuned from 0 to 1 we range from a completely disconnected
graph to the original graph.

(2) Deterministic-Weak percolation (WP): Starting from
G(α,θ,γ,L), we remove all links with weight smaller than
a given threshold ι; that is to say, as ι is tuned from 0 to L, we
remove links in rank order from the weakest to strongest ties.

(3) Deterministic-Strong percolation (SP): Starting from
G(α,θ,γ,L), we remove all links with weight larger than
a given threshold ι; analogously to the previous case, this
corresponds to remove links in rank order from the strongest
to the weakest ties.

In order to evaluate the impact of removing ties, we
measure the relative size of the largest connected component
S, providing the fraction of nodes that can all reach each
other through connected paths, as a function of the fraction
f of links left f . We also measure the average squared
size S̄ = ∑V

s=1 nss
2/V , where ns is the number of clusters

containing s nodes. According to percolation theory, if the
(infinite) network collapses because of a phase transition at
fc, then S̄ diverges as f approaches f −

c [5,25].

III. COUPLING DISTRIBUTION

The coupling distribution Pcoupl(J ; a,L) plays an important
role as for deterministic processes, so that it is worth recalling
some previous results [12] and deepening its dependence on
the system parameters.

The probability for two strings ξi and ξj (with ρi and ρj

nonnull entries) to be connected by a link with weight J is just
the probability that the strings display J effective matchings;
this has been found to be [12]

Pmatch(J ; ρi,ρj ,L) =
(
L

J

)(
L−J

ρi−J

)(
L−ρi

ρj −J

)
(

L

ρi

)(
L

ρj

) , (3)

from which we can write that, in the average, the coupling
distribution reads off as

Pcoupl(J ; a,L) =
L∑

ρi=0

L∑
ρj =0

Pmatch(J ; ρi,ρj ,L)

×P1(ρi ; a,L)P1(ρj ; a,L), (4)

being P1(ρ; a,L) = (
L

ρ

)
[(1 + a)/2]ρ[(1 − a)/2]L−ρ the prob-

ability that a given string displays ρ nonnull entries. Therefore,
we get

Pcoupl(J ; a,L) =
(

L

J

)
(ã + 1)−2L

L∑
ρi=0

L∑
ρj =0

(
L − J

ρi − J

)

×
(

L − ρi

ρ2 − J

)
ãρi+ρj , (5)

where we called ã = (1 + a)/(1 − a). Since we are focusing
on the case L = αV , with a string bias a given by Eq. (2), it
is convenient to rewrite the coupling distribution as a function
of the effective parameters, namely,

Pcoupl(J ; α,θ,γ,L)

=
(

L

J

)[
1 − γ

2(L/α)θ

]2L L∑
ρi=0

L∑
ρj =0

(
L − J

ρi − J

)(
L − ρi

ρj − J

)

×
[

γ

2(L/α)θ − γ

]ρi+ρj

. (6)

The previous expression shows that for systems large enough,
and α and L fixed, the distribution gets peaked at smaller J

as θ is increased (when θ > 0.5 only couplings with value
0 or 1 display nonvanishing probability), and the same holds
for fluctuations. Moreover, a link is absent with probability
Pcoupl(0; α,θ,γ,L) = [1 − γ 2/4(α/L)2θ ]L, which decays to
zero for θ < 0.5.

In particular, in the following analysis we assume γ = 1,
α = 0.1, and θ = 0 or 0.25; for θ = 0 we can write explicitly

Pcoupl(J ; 0.1,0,1,L)

= L!

J !
2−2L

L∑
ρi=0

L∑
ρj =0

1

(ρi − J )!(ρj − J )!(L − ρi − ρj + J )!
,

(7)

and similarly for the latter. In Fig. 1 we show a comparison of
the two cases where numerical data are fitted with curves given
by Eq. (6). Data corroborate that, even at relatively small sizes,
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FIG. 1. (Color online) Coupling distributions Pcoupl(J ; α,θ,γ,L)
from different values of L (depicted in different colors, as shown by
the legend) and for γ = 1, α = 0.1, θ = 0 (left panel), or θ = 0.25
(right panel). Curves represent Eq. (6).
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FIG. 2. (Color online) Log-log scale plot of the average coupling
J̄ (α,θ,γ,L) (main figure) and its fluctuations 	J (α,θ,γ,L) (inset),
for θ = 0 (©) and θ = 0.25 (�), as shown in the legend. Symbols
represent numerical data, while curves represent analytical estimates
from Eqs. (8) and (9), respectively.

the analytical formula above provides a good approximation
and that the distribution gets broader for larger L and smaller θ .
More precisely, we calculate the average coupling J̄ (α,θ,γ,L)
and its fluctuations 	J [(α,θ,γ,L)] as

J̄ (α,θ,γ,L) =
L∑

J=0

JPcoupl(J ; α,θ,γ,L) = γ 2

4

L

(L/α)2θ
, (8)

	J (α,θ,γ,L) =
L∑

J=0

(J − J̄ )2Pcoupl(J ; α,θ,γ,L), (9)

where for the closed-form expression in Eq. (8) we used
Eq. (6). Relevant results are shown in Fig. 2, where, again,
the comparison between analytical estimates and numerical
data is successful.

Interestingly, from the width of the distribution one can
infer information about the sharpness of the deterministic
percolation: A broader distribution is expected to give rise
to a less sharp transition. Moreover, we notice that the case
γ = 1 and θ = 0 corresponds to a = 0; namely, it corresponds
to an unbiased distribution for strings, and this yields a
rather symmetric coupling distribution: As a consequence, SP
and WP are expected to behave similarly. Conversely, when
the coupling distribution is not symmetric, as for θ = 0.25,
different behaviors emerge. All these points are deepened in
the next section.

Finally, we notice that for θ = 0.25 relatively small sizes
give rise to nonfully connected structures; that is, the coupling
probability is nonnull for J = 0. As we derived from Eq. (6),
the probability that a link is absent decreases slowly with
the size, and such a finite-size effect gets negligible only for
V ∼ 105. Indeed, we find that finite-size effects enhance the
skewness positivity of the distribution.

IV. PERCOLATION TRANSITIONS

In the following analysis we generate the graph
G(α,θ,γ,L), and, while performing a dilution process (either

FIG. 3. (Color online) Main figure: Relative size of the largest
connected component S vs the fraction of links left f for a system
of size V = 5700 and θ = 0. Fluctuations on these data, obtained by
averaging over several realizations of the structure, are approximately
4%. Inset: fc vs system size; symbols represent numerical data, while
curves represent the best fit given by a power law with exponents
νRP ≈ 1 and νWP ≈ νSP ≈ 0.5. Different percolation processes are
compared as shown by the legend.

deterministic or random), we measure the number of clusters
and their size; such results are then averaged over 102 realiza-
tions of G(α,θ,γ,L) in order to account for the stochasticity
of the graph itself. As explained in the previous section, in
the thermodynamic limit both θ = 0 and 0.25 give rise to
fully connected structures, so that, for large enough sizes, the
random percolation process recovers the well-known results
holding for ER graphs [26].

In order to evaluate the impact of removing ties, we measure
the relative size of the largest connected component S as a
function of the fraction of links left f . Results obtained for
θ = 0 and 0.25 are shown in Figs. 3 and 4, respectively.

Let us comment on the results of Fig. 3. First, we notice
that when weak links are deleted first the graph starts to be
disconnected (S < 1) at a value of f that is rather large; that is,
weak ties are crucial to maintain the overall connection of the
graph, and, in this sense, they work as bridges. Moreover, the
WP transition is smoother than the one obtained from a random
deletion of edges. This suggests that the deletion of weak ties
yields the disconnection, from the giant component, of single
nodes (indeed, those displaying small ρ) or of small clusters.
Otherwise stated, as f is increased from 0 to 1, we first connect
nodes displaying large overlap, hence forming a strong main
component, while nodes with small ρ are likely to remain
isolated or to form small clusters, which are successively
annexed to the giant component: The process is therefore
quite gentle. On the other hand, when links are introduced
randomly, clusters grow up in a more uniform way, so that
links merging disjoint components can give rise to a faster
increase in the size of the giant component. As for the SP
process, when θ = 0 and γ = 1, strings are homogeneously
distributed (a = 0), so that, as mentioned above, no qualitative
differences are expected between SP and WP; in particular,
in this peculiar case (a = 0) strong links also turn out to be
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FIG. 4. (Color online) Main figure: Relative size of the largest
connected component S vs the fraction of links left f for a system of
size V = 5700 and θ = 0.25. Fluctuations on these data, obtained by
averaging over several realizations of the structure, are approximately
4%. Different percolation processes are compared (the legend is the
same as in Fig. 3). The inset on the right highlights the case of SP,
where a jump in S occurs around f ∼ 0.1; notice that this jump results
from the fact that f cannot be continuously tuned (see also Fig. 1).
Inset on the left: fc vs system size; symbols represent numerical data,
while curves represent the best fit given by a power law with, in
particular, νRP ≈ 1.

crucial in maintaining the graph connected: Being f̃ the largest
fraction of links for which S < 1, we get f̃RP < f̃SP < f̃WP.

Let us now consider results for θ = 0.25 shown in Fig. 4.
As for the RP, slight quantitative changes in S(f ) with respect
to the previous case are due to finite-size effects, while
deterministic processes (DPs) are also affected by the positive
skewness of the coupling distribution. More precisely, strings
now display only rare nonnull entries so that small components
(typically made up of very close or even identical strings)
can arise during a WP (this explains the sharper transition);
also, strong ties are rather unlikely, and their deletion does not
modify the connection of the giant component so that we can
derive that they are redundant; that is, they typically do not
participate to the spanning tree. For the sizes considered here
we now have f̃SP < f̃RP < f̃WP.

As anticipated, the occurrence of a percolation transition is
envisaged by a singularity in the average squared size S̄ at fc,
due to a network collapse as f approaches fc. We get consistent
estimates for fc by evaluating the value of f corresponding
to a maximum in the derivative of S and to the singularity
in S̄. Results for θ = 0 and 0.25 are shown in the insets of
Figs. 3 and 4, respectively; the sets of values for fc have also
been fitted with power-law functions. Of course, for the RP
the expected exponent ν = −1 is recovered [5], while for WP
and SP when θ = 0 we find comparable exponents ≈ 0.5;
for θ = 0.25 finite-size effects prevent to get sound estimates
for ν, although a different behavior of SP with respect to the
other cases is apparent. In any case, the RP corresponds to
smaller values of fc, meaning that a smaller fraction of links is
necessary to carry a giant component; that is, a smaller degree
of redundancy is retained.

Finally, some analytical insights for the case of arbitrary θ

and random dilution are presented in the Appendix B, where
we show consistency with known results about noncorrelated
networks.

V. CLUSTER DISTRIBUTIONS

While previous results offer a global description of the net-
work dynamics, in this section we focus on the evolution of the
internal organization of clusters by measuring the distribution
N (ρ,s), representing the number of nodes corresponding to
a string with ρ nonnull entries and belonging to a cluster of
size s.

In Fig. 5 we show three sets of snapshots of N (ρ,s)
for the case θ = 0; each row represents a different dilution
process (from top to bottom: RP, WP, SP), while each column
represents a different regime (from left to right: f < fc, f ≈
fc, f > fc). While for the random dilution intermediate- and
high-dilution regimes (panels b and c) are characterized by the
existence of several clusters of different sizes, for deterministic
dilution (panel e, f and h, i) a node basically either belongs to
the largest component or is isolated. Moreover, in the former
case due to the homogeneity underlying the process, curves
are all peaked at around ρ̄; namely, the set of attributes
characterizing a given node does not affect the cluster size
the node belongs to. Conversely, for WP (SP), larger (smaller)
values of s yield distributions N (ρ,s) peaked at larger values
for ρ. In particular, when weak ties are the most prone to
failure, nodes displaying strings with large ρ are the most
likely to belong to the giant component.

Analogous results for the case θ = 0.25 are depicted in
Fig. 6. Now, in the intermediate regime, also for the WP a few
small clusters emerge, while the abrupt jump in S(f ) evidenced
for the SP is recovered here by the fact that s assumes only
two values: either 1 or V .

We conclude this section with a remark. By focusing only on
the topology of the graphs G(α,θ,γ,L)f,P , for a fixed param-
eter set and fixed f , we can compare the level of organization
of the graph resulting from a different percolative process P .
This can be attained by means of entropy measures [27], which,
given a particular ensemble, provide the normalized logarithm
of the number of networks in that ensemble, hence estimating
how effective the features characterizing the ensemble are.
Here we can fix the parameter set (a,θ,γ,L) and f (this
somehow fixes the “energy” of the system) and measure the
entropy within a configuration approach, namely, working out
the degree sequences; this approach is also related to a hidden
variable model [13,27], consistently with the assignation of
attributes. For instance, for θ = 0, when the dilution is low
(most links still present) the entropy of the ensemble WP is
expected to be larger due to the presence of a few isolated
nodes that yield a larger number of configurations; vice versa,
when the dilution is increased the entropy of the ensemble
RP is expected to prevail. Further analysis on this point may
lead to speculate that a failure of a limited number of nodes
is likely to involve only weak ties, while when the failure is
wider it is more likely to involve any generic node. Similar
reasoning can be extended in order to account also from an
energy contribution due to the coupling.
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FIG. 5. (Color online) Number of nodes N (ρ,s) corresponding to a string with ρ nonnull entries and belonging to a cluster of size s, plotted
as a function of ρ, while different values of s and shown in different colors. The system considered has size V = 17 500, θ = 0, α = 0.1, and
γ = 1. The nine panels are arranged in such a way that each row represents a different dilution process (from top to bottom: RP, WP, SP), while
each column represents a different regime (from left to right: f < fc, f ≈ fc, f > fc).

VI. CLUSTERING AND CORRELATIONS

In this section we want to focus the attention on the
properties of clustering and of correlation among links as we
dilute them.

Before proceeding it is worth recalling that the clustering
coefficient C provides a measure of the transitivity of the graph,
and it can be calculated as the average over nodes i of the local
clustering coefficient Ci , defined as the actual number of links
between the vertices within the neighborhood of i, divided by
the maximum number of links that can exist between them,
that is,

C = 1

V

V∑
i=1

Ci = 1

V

V∑
i=1

2Ei

zi(zi − 1)
, (10)

where Ei is the number of links among nodes that are
connected to i (node i is not included), zi is the number of
neighbors (also called degree) of i, and one conventionally
sets Ci = 0 for zi = 0,1. A graph is often referred to as
small-world, if its diameter is small (scaling as log V , which

is is verified by G), and its average clustering coefficient
is significantly higher than the one relevant to a random
graph constructed on the same vertex set, meaning C = f .
As evidenced in Refs. [12,13], the graph under study can be
defined as small-world.

As shown in Fig. 7 (upper panel), when θ = 0, the clustering
coefficient relevant to the graph obtained with a random
dilution just corresponds, as expected, to the coefficient
pertaining to an analogous ER graph; conversely, the clustering
coefficients for deterministic dilution are larger and display a
less trivial profile. In fact, for the RP, starting from small f we
first build up a set of uncorrelated small components having
zero or very small coefficient, so that their contribution to C

is negligible; a significant and regular increase in C is only set
up from the percolation threshold (dashed line in the figures).

As for the WP, starting from small f we first connect nodes
having strings with large ρ, and these form a highly clustered
component which already contributes to C; as f is increased
the largest component gradually expands and C consistently
grows; when f � fc most nodes are connected and new links
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FIG. 6. (Color online) Number of nodes N (ρ,s) corresponding to a string with ρ nonnull entries and belonging to a cluster of size s, plotted
as a function of ρ, while different values of s and shown in different colors. The system considered has size V = 17 500, θ = 0.25, α = 0.1
and γ = 1. The arrangement of panels is the same as in the previous figure.

serve to connect low-degree nodes so that the rate of growth
of C is reduced; finally, when the network is connected (no
isolated nodes) all new links determine an improvement in
the clustering so that there is an acceleration in the growth
of C.

Similar arguments apply for the SP percolation: For small
f only very weak ties are introduced, and these, due to the
relatively homogeneity of the graph (a = 0), are sufficient
to build up a structures component that progressively grows
determining a larger and larger C.

In Fig. 8 we show results for the case θ = 0.25; due to
the finite-size effects affecting SP, we focus just on the cases
RP and WP. Of course, for the RP no qualitative changes are
evidenced with respect to the case θ = 0, while for the WP, as
f is increased, detached small clusters are now more likely to
occur due to the sparsity of nonnull entries in strings, and this
explains the fact that C is now qualitatively comparable with
the ER case.

Another interesting coefficient that we introduce, in order
to monitor the evolving topology as links are removed, is a
slightly modified version of the clustering coefficient, which
we denote as C̃ and define as the average of the local

dilution C̃i , given by the fraction of links within the subgraph
containing the node i and all its neighbors, that is,

C̃ = 1

V

V∑
i=1

C̃i = 1

V

V∑
i=1

2Ẽi

zi(zi + 1)
, (11)

where Ẽi is the number of links connecting any couple of
nodes belonging to the subgraph, including i itself, and one
conventionally sets C̃ = 0 for zi = 0. We remark that C̃i differs
from Ci by the fact that here we count all links within the
neighborhood of i, including those stemming from i, i.e., Ẽi =
Ei + zi , from which C̃i = Ci + ∑

i 2/(zi + 1). Hence, once f

fixed, by comparing C and C̃, one can derive information about
the arrangement of existing links, either highly clusterized,
so to form a small-sized connected component with nodes
having relatively large degree (comparable C and C̃) or highly
scattered, so to eventually form a large connected component
with nodes having relatively small degree (large C̃, small C).

As shown in Fig. 7, again for θ = 0 qualitative differences
emerge between deterministic and random dilution. For
deterministic percolations C̃ follows a behavior similar to
C: This results from the fact that, basically, we have only
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C

CRP
CWP
CSP

C̃

C̃RP

C̃WP

C̃SP

FIG. 7. (Color online) Clustering coefficients C (top panel) and C̃

(bottom panel) as a function of f and for θ = 0, V = 5700; different
percolative processes are compared as explained by the legend. The
vertical dashed and dotted lines highlight the percolation threshold
for RP and WP, respectively.

one component, which keeps on growing as f is increased,
the remaining nodes being mainly isolated. Vice versa, for
random percolation we can distinguish three different regimes,
demarcated by two extremal points: In the first regime we
have the emergence of several small components (e.g., dimers,
trimers), each with small but nonnull contributions to C̃; in the
second regime such small components start to merge, and this
yields a reduction in C̃; finally, when the graph has reached
a connected status, increasing the number of links can just
produce an increase in C̃.

For θ = 0.25, also the WP transition display the same
multiregime behavior, which confirms the picture above.

C
C̃

CRP

CWP

C̃RP

C̃WP

FIG. 8. (Color online) Clustering coefficients C (top panel) and
C̃ (bottom panel) as a function of f and for θ = 0.25, V = 5700;
different percolative processes are compared as explained by the
legend. The vertical dashed and dotted lines highlight the percolation
threshold for RP and WP, respectively.

VII. CONCLUSIONS AND PERSPECTIVES

In this work we analyzed the evolution, under percolation
process, of a class of weighted graphs G introduced in
Refs. [12,13], whose topological properties arise from imi-
tative interaction among nodes and can be properly varied by
tuning the parameters (α, θ , γ , L). In particular, here we fixed
α = 0.1, γ = 1, and θ = 0 or 0.25, while the size (V = L/α

is the number of nodes) is varied; such a situation corresponds,
for large enough volumes, to fully connected graphs, still
retaining a nontrivial distribution Pcoupl(J ; α,θ,γ,L) for the
coupling strength J associated to any link. This allows
to perform and compare different percolation processes:
random (RP, where links are randomly extracted for deletion),
deterministic-weak (WP, where links are deleted starting from
the weakest ones), and deterministic-strong (SP, where links
are deleted starting from the strongest ones).

Our results highlight that weak ties are the most crucial in
order to ensure the overall connection of the system; that is,
the size of the largest component starts to be smaller than V

when only few (weak) links are deleted. When θ approaches
value 0.5 from below (and in the presence of finite-size effects,
which affect the skewness of the coupling distribution) one
can see that the spanning tree underlying G is mostly made
up of weak links, while strong linkes are unlikely and mainly
redundant. Hence the robustness of G sensitively depends on
which ties are the most prone to failure. The fact that weak
ties are fundamental to maintain the whole graph connected
is consistent with the so-called theory of weak ties [28,29],
according to which, in social systems, weak ties work as
bridges between different subcommunities.

Moreover, we showed that removing in rank order, from the
weakest to the strongest ties, shrinks the network, but does not
precipitously break it apart, in such a way that the percolation
is rather smooth. A similar phenomenon has been evidenced
in the context of social networks where, when all “declared
friendships” are considered, the graph is highly connected,
but when only “strong” links are retained, selecting, first,
“maintained” relationships and, second, “mutual” relation-
ships, nodes get gradually disconnected forming only small
subclusters [19]. Conversely, as we underlined, RP gives rise
to more structures subclusters while diluting.

A possible extension of this work could consider non-
complete graphs (θ > 0.5) with random deletion of nodes
so to evaluate whether also for such correlated networks,
degree-degree correlation yields qualitative changes in the
percolation behavior as expected from Ref. [30].

Analysis similar to those performed here can involve
different connecting rules [see Eq. (1) and Ref. [24]] in order to
figure out a possible relation between the kind of interaction
(e.g., imitative or anti-imitative) and the dynamic behavior.
Also, a possible mapping between the dilution obtained via
cutting a fraction 1 − f of links and via a progressive reduction
of the parameter a may be figured out.
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APPENDIX A: DEGREE-DEGREE CORRELATION

In this Appendix we aim to show that overpercolated
networks G display negative assortativity by calculating how
the average degree of nodes belonging to the neighborhood
of i depends on the degree of i itself. In fact, we can write
that in a graph G(α,θ,γ,L) the probability for a node i to have
neighbors that display on the average z neighbors is

Pdeg−deg(z; ρi,a,L)

= 1

N

L∑
ρj =1

Plink(ρi,ρj ,L)Pdeg(z; ρj ,a,V )P1(ρj ; a,L),

where N is the normalization factor, Plink(ρi,ρj ,L) = 1 −
Pmatch(0; ρi,ρj ,L) is the probability that there exists a link con-
necting i and j, and Pdeg(z; ρj ,a,V ) = (

V

z

)
[P̄link(ρj ; a)]z[1 −

P̄link(ρj ; a)]V −z is the probability that node j has z neighbors.
Hence one finds that the average degree for i’s neighbors is

z̃(ρi ; a,L) =
V∑

z=0

Pdeg−deg(z; ρi,a,L)z

= 1

N

L∑
ρj =1

Plink(ρi,ρj ,L)P1(ρj ; a,L)z̄(ρj ; a,L,V ),

being z̄(ρj ; a,V ) = V {1 − [(1 − a)/2]ρj } the average degree
for node j . With some algebra one gets to

z̃(ρi ; a,L) = 1 −
(

1 − a

2

)L(
3 + a

2

)L

×
[
1−

(
2

3 + a

)ρi
][

1−
(

1 − a

2

)ρi
]−1

. (A1)

Now, noticing that 0 < (1 − a)/2 < 2/(3 + a) < 1, we can
deduce that z̃(ρi ; a,L,V ) is decreasing with ρi , namely, with
z̄(ρi ; a,L,V ), so that, as long as the mean-field approach de-
veloped here is valid [12,13], the graph displays dissortativity.

APPENDIX B: ANALYTICAL RESULTS ON RP

The percolation problem has been studied over different
kinds of structure, both analytically and numerically [31,32]; in
particular, within the so-called configuration model approach
[33,34], we can exploit the generating function formalism
to get some insights into the problem. First, being P̄degree(k)
the average degree distribution for the generic graph G (here
we drop the dependence on the parameter set to lighten the
notation), we define

G0(x) =
∞∑

k=0

P̄degree(k)xk, G1(x) =
∞∑

k=0

Q(k)xk, (B1)

where Q(k) = (k + 1)P̄degree(k + 1)/z̄. Now, assuming V

large and the clustering not significant, Q(k) is the so-called
excess degree [34], representing the degree distribution of
the vertex at the end of a randomly chosen edge; notice that
G′

0(1) = z̄ and G1(x) = G′
0(x)/z̄. Recalling that P̄degree(k) =

∑L
ρ=0

(
V

k

)
[1 − ( 1−a

2 )ρ]k( 1−a
2 )ρ(V −k)P1(ρ; a,L) (see

Refs. [12,13]), we can write

G0(x) =
L∑

ρ=0

P1(ρ; a,L)

[
x + (1 − x)

(
1 − a

2

)ρ]V

.

Moreover, for uniform link deletion probability, the mean
cluster is [35]

s̄ = 1 + f G′
0(1) + f 2G′

0(1)

1 − f G′
1(1)

, (B2)

which diverges when 1 − f G′
1(1) = 0; this point marks the

percolation threshold of the system: for f > fc = 1/G′
1(1)

a giant component of connected vertices is established.
Therefore, consistently with the Molloy-Reed criterion [36],
when G′

1(1) < 1 the graph consists of many small components,
while when G′

1(1) > 1 a giant component can emerge. Here
we find

G′
1(1) = G′′

0(1)

z̄
= z̄

[1 − h(a)]2
[1 − 2h(a) + g(a)], (B3)

where h(a) = [(3 − 2a − a2)/4]L = p and g(a) = [(1 −
a)(5 − a2)/8]L. Assuming a = −1 + γ (α/L)θ and posing
γ̃ = γ (α/L)θ /2, we can write

G′
1(1) = z̄

[1 − (1 − γ̃ 2)L]2
[1 − 2(1 − γ̃ 2)L

+ (1 − 2γ̃ 2 + γ̃ 3)L] →
L→∞

z̄, (B4)

in analogy with the percolation threshold expected for the ER
graph. In Fig. 9 we show G′

1(1) as a function of γ and a and
for a finite value of L.

α
γ

lo
g(

G
1
(1

))

FIG. 9. (Color online) Natural logarithm of G′
1(1) for L = 20,

θ = 0.5 and different values of γ and α as given by Eq. (B4).
Whenever G′(1) > 1 a giant component emerges.
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Finally, the formalism developed in the first part of this
appendix has also been used to find an expression for the
global clustering coefficient or transitivity of the configuration
model [37]:

c ≡ 3N

N3

= z̄

V

(
z̄2 − z̄

z̄2

)2

= 1

V z

[
G′

0(1)G′
1(1)

z

]2

, (B5)

where N
 is the number of triangles in the network and N3

is the number of connected triples of vertices [34]. Notice
that from Eq. (10), c is given by the coefficient expected

for the ER graph, namely, z̄/V , times an extra factor such
that when the degree distribution is highly skewed, given
that the factor z̄2/z̄2 can be rather large, c is not necessarily
negligible for the graph sizes relatively large. Interestingly, we
find

c = [1 − 2h(a) + g(a)2]2

[1 − h(a)]3
, (B6)

which, for a ∈ [−1,1] is always larger than p = 1 − h(a),
hence confirming the large degree of cliquishness of G.
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