
PHYSICAL REVIEW E 84, 031119 (2011)

Noisy classical field theories with two coupled fields: Dependence of escape rates
on relative field stiffness
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Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields
depend on the interval length on which the fields are defined, the potential in which the fields deterministically
evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical
applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not
heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on
the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies,
we also observe a critical slowing down of the string method algorithm as criticality is approached.
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I. INTRODUCTION

In a previous paper [1] (hereafter GS), the authors in-
troduced and solved a system of two coupled nonlinear
stochastic partial differential equations. Such equations are
useful for modeling noise-induced activation processes of
spatially varying systems with multiple basins of attraction.
Examples of such processes include micromagnetic domain re-
versal [2,3], pattern nucleation [4–6], transitions in hydrogen-
bonded ferroelectrics [7], dislocation motion across Peierls
barriers [8], and structural transitions in monovalent metallic
nanowires [9,10]. It is the last problem in particular that the
model introduced in GS was constructed to analyze.

The GS model provided a mathematical realization of a
stochastic Ginzburg-Landau field theory consisting of two
coupled classical fields, denoted φ1(z) and φ2(z), defined on a
linear domain of finite extent L. Stochastic partial differential
equations of this type are constructed to model noise-driven
transitions between locally stable states. In the especially
important case of weak noise, where the transition rate is of
the Arrhenius form �0e

−�E/ε , with prefactor �0 and activation
barrier �E independent of the noise ε, the transition path
occurs near [i.e., within a length scale of order O(ε1/2)]
the saddle (or col) of least action connecting the two stable
states.

The two-field model displayed several interesting features,
including a type of “phase transition” in activation behavior
as L varied. The transition was driven by a change in the
saddle state, from a uniform configuration at small L to a
spatially varying one (“instanton”) at larger L. This transition
had been noticed and analyzed for the case of a single field
[11,12], but had not been seen in the rarely studied case of a
system with two coupled fields. Perhaps more remarkably, the
system admitted an exact solution for the instanton state; such
exact solutions are rare in the case of nonlinear field theories
with a single field, much less a nontrivial system of coupled
fields.
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The introduction of two fields was required to study
transitions among different quantized conductance states in
nonaxisymmetric nanowires. The axisymmetric case had
previously been treated theoretically in Refs. [9,13]. However,
detailed studies using linear stability analysis by Urban et al.
[14] indicated that roughly one-fourth of all such transitions
involved either nonaxisymmetric initial or final states or else
a least-action transition passing through a nonaxisymmetric
saddle. To describe such transitions, one field [φ1(z)] describes
radial variations along the wire length and the other [φ2(z)]
describes deviations from axisymmetry.

One restriction of the analysis in GS was that the respective
bending coefficients κ1 and κ2 of the two fields were taken
to be equal. However, this is generally not the case in real
nanowires [14]. Therefore, in order to apply the model to
actual transitions, as well as to provide a complete picture of
the activation behavior in such systems, we need to consider the
case where κ1 �= κ2. In such cases, analytical solutions cannot
be found and we need to rely on numerical methods. The study
of this more general problem is the subject of this paper.

II. THE MODEL

Consider two coupled classical fields φ1(z) and φ2(z) on
the interval [−L/2,L/2], subject to the energy functional

H =
∫ L/2

−L/2

{
1

2
κ1[φ′

1(z)]2 + 1

2
κ2[φ′

2(z)]2 + U (φ1,φ2)

}
dz,

(1)

where

U (φ1,φ2) = −μ1

2
φ2

1 + 1

4
φ4

1 − μ2

2
φ2

2 + 1

4
φ4

2 + 1

2
φ2

1φ
2
2 . (2)

The bending coefficients κ1 and κ2 can be related to the
wire surface tension [9,13]. The arbitrary positive constants
μ1 and μ2 are chosen such that μ1 �= μ2, breaking rotational
symmetry. (The case μ1 = μ2 has been investigated analyti-
cally by Tarlie et al. [15] in the context of phase slippage in
conventional superconductors.)
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If the system is subject to additive spatiotemporal white
noise, then its time evolution is governed by the pair of
stochastic partial differential equations:

φ̇1 = κ1φ
′′
1 + μ1φ1 − φ3

1 − φ1φ
2
2 +

√
2ε ξ1(z,t),

(3)
φ̇2 = κ2φ

′′
2 + μ2φ2 − φ3

2 − φ2
1φ2 +

√
2ε ξ2(z,t),

where ξ1,2 are the spatiotemporal noise terms satisfying
〈ξi(z1,t1)ξj (z2,t2)〉 = δ(z1 − z2)δ(t1 − t2)δij ,i,j = 1,2. If the
noise is due to thermal fluctuations, then by the fluctuation-
dissipation theorem ε = kBT .

The activation energy �E and prefactor �0 in the Arrhenius
rate formula depend not only on the details of the potential
[Eq. (2)] but also on the interval length L on which the fields
are defined and on the choice of boundary conditions at the
endpoints z = −L/2 and z = L/2. It was shown in Ref. [16]
that Neumann boundary conditions are appropriate for the
nanowire problem, and we will employ them here.

In the usual case of a single field, the bending coefficient
κ plays a role in determining the intrinsic length scale (and
therefore the transition length at which the saddle state
changes) on which field variations occur, but, once it is
absorbed into a dimensionless length scale by rescaling along
with the parameters determining the potentials, it plays no
further role. Now, however, there are two bending coefficients,
and varying their relative magnitudes can in principle lead to
new phenomena. The aim of this paper is to study the effects
of these variations.

The metastable and saddle states are time-independent
solutions of the zero-noise equations:

κ1φ
′′
1 =−μ1φ1 + φ3

1 + φ1φ
2
2 , κ2φ

′′
2 =−μ2φ2 + φ3

2 + φ2φ
2
1 .

(4)

Without loss of generality, we choose μ1 > μ2.
Then there are two metastable states: φ1,s = ±√

μ1, φ2,s =
0; two spatially uniform saddle states: φ1,u = 0, φ2,u = ±√

μ2;
and spatially nonuniform saddle states, or instantons. When
κ1 = κ2 (= 1), analytical solutions for the instanton saddle
states can be found:

φinst
1,m(z) = ±√

m
√

(2μ1 − μ2) − m(μ1 − μ2)

× sn(
√

μ1 − μ2 z|m), (5)

φinst
2,m(z) = ±

√
μ2 − m(μ1 − μ2)dn(

√
μ1 − μ2 z|m), (6)

where sn(.|m) and dn(.|m) are the Jacobi elliptic functions
with parameter m, whose periods are 4K(m) and 2K(m),
respectively, with K(m) being the complete elliptic integral
of the first kind [17]. The parameter m ∈ [0,1] is related to
interval length L through the Neumann boundary conditions,
with m → 0+ corresponding to L → L+

c , where Lc is the crit-
ical length, and m → 1 corresponding to L → ∞ [1,11,12].
When κ1 = κ2 = 1,

L = 2K(m)√
μ1 − μ2

. (7)

We found in GS that varying L triggers a transition between
the uniform and instanton saddle states; the critical length Lc

is determined by

Lc = 2K(0)√
μ1 − μ2

= π√
μ1 − μ2

. (8)

This results in a transition in the activation behavior, including
anomalous behavior at the critical length. Such a transition may
have already been seen experimentally [10], in a crossover
from ohmic to nonohmic conductance as the voltage across
gold quantum point contacts increases [18]. We will show
below that the same effect occurs when the ratio κ1/κ2 is varied.

As noted above, the transition rate in the low-noise (ε → 0)
limit is given by the Kramers formula:

� ∼ �0 exp(−�E/ε). (9)

Here, �E is the activation barrier, that is, the difference in
energy between the saddle and the starting metastable states,
while �0 is the rate prefactor:

�0 = 1

π

√∣∣∣∣ det 
s

det 
u

∣∣∣∣|λu,1|. (10)

In the above equation, 
s is the linearized dynamical operator
describing perturbations about the metastable state; similarly,

u describes perturbations about the saddle. λu,1 is the single
negative eigenvalue of 
u, corresponding to the direction
along which the most probable transition path approaches the
saddle state. The behavior of �0 becomes anomalous at the
critical point Lc, where fluctuations around the most probable
path become large.

III. CALCULATION OF THE MINIMUM ENERGY PATH

Computation of exit behavior requires knowledge of the
transition path(s), in particular behavior near the local mini-
mum and the saddle. In our model, both are found as solutions
of two coupled nonlinear differential equations [1]. A powerful
numerical technique constructed explicitly for this type of
problem is the “string method” of E, Ren, and Vanden-Eijnden
[19,20]. The algorithm proceeds by evolving smooth curves, or
strings, under the zero-noise dynamics. These strings connect
the beginning and final locally stable states, and in between the
two ends each string contains a series of intermediate states
called “images.” The method is constructed so that the string
evolves towards the most probable transition path. The evolu-
tion proceeds until the condition for equilibrium is reached:

[δH]⊥ = 0, (11)

where H is given by Eq. (1) and [δH]⊥ is its component
perpendicular to the string.

Once equilibrium is reached, the string images correspond
to the configurations sampled by the system at different stages
of the activation process. The image with the highest energy
is the one nearest the saddle state. In order to get an accurate
result, the distribution of images needs to be sufficiently fine-
grained. In our computation, we used 61 images (including the
two ends of the string); because of the symmetry of our energy
functional, the image in the middle corresponds to the saddle.

When such symmetry is absent and the location of the
saddle needs to be determined with high precision, one can
use an alternative method to the brute force one of simply
increasing the number of images along the string. This alter-
native requires first finding a rough approximation of the most
probable transition path, again using the string method but with
a small number of images, and then switching to a “climbing
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FIG. 1. (Color) The saddle states φsaddle
i=1,2 passed by the system at different relative field stiffnesses (=κ1). The evolution of the saddle

is described as the continuous transition of colors. κ1 was increased from 1.95 to 2.20 with an increment of 0.01. The arrows indicate the
suppression of the instanton at L > Lc(1) = π√

μ1−μ2
as κ1 increases. Here μ1 = 3, μ2 = 2, and L = 4.51.

image” algorithm in which one picks up an image that is
believed to be close to the saddle and then drives it toward
the saddle. The climbing force is obtained from inverting the
energy gradient along the direction of the unstable eigenvector
of the saddle state. Details can be found in Refs. [19,20].

We have found an analog to critical slowing down in the
current context: near criticality, convergence of the string
method becomes increasingly slow. Expanding the energy
functional around the saddle reveals that the lowest stable
eigenvalue vanishes to the second order, leading to a rapid
increase in relaxation time. This phenomenon will be further
investigated in the following sections.

IV. RESULTS

We now turn to the case κ1 �= κ2. To begin, we fix κ2 = 1
and vary κ1. We consider the cases in which κ1 is both less than
and greater than 1. Because the critical length now depends on
κ1, we denote it Lc(κ1).

As noted earlier [cf. Eq. (8)], Lc(1) = π√
μ1−μ2

: below
Lc(1), the saddle is spatially uniform, and above Lc(1) it is
spatially varying [1]. The situation becomes more complicated
when κ1 �= 1. Figure 1 summarizes our results when μ1 = 3,
μ2 = 2, and L > Lc(1) = π . In this and Fig. 2, the saddle state

(whether uniform or instanton) is denoted φsaddle
i (z),i = 1,2.

We find that, as κ1 increases, the spatial variation of the
instanton becomes increasingly suppressed until the instanton
finally collapses to the uniform state. Conversely, when L <

Lc(1), the instanton state is retrieved for κ1 < 1 (cf. Fig. 2).
This effect can be understood as follows. In the limit of

low noise, the transition occurs over the saddle state of least
energy. An increase in κ1 raises the bending energy of any
nonuniform configuration, and therefore that of the instanton,
while leaving the energy of the uniform saddle unchanged.
When the energies of these two states cross, the activation
process switches from one saddle state to the other. This is seen
explicitly in Fig. 3, in which we plot the energy of the saddle
state against κ1 for both L = 0.25 and 4.51. In these figures,
the curve to the left of the dashed line is the instanton branch,
which increases monotonically until it reaches a constant
value: the energy of the uniform saddle state.

We next investigated the question of whether the transition
from uniform saddle to instanton (or vice versa) as κ1 varies
occurs as a continuous crossover or as an abrupt phase
transition. If the latter, then we also need to determine the
order of the transition.

In Ref. [1], the uniform → instanton saddle transition was
induced by changing L at fixed κ1. There, we concluded
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FIG. 2. (Color) The saddle states φsaddle
i=1,2 passed by the system at different relative field stiffnesses (=κ1). The evolution of the saddle is

described as the continuous transition of colors. κ1 was decreased from 1.0 to 0.5 with a decrement of −0.01. The arrows indicate the retrieval
of the instanton at L < Lc(1) = π√

μ1−μ2
as κ1 decreases. Here μ1 = 3, μ2 = 2, and L = 0.25.
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FIG. 3. (Color online) Energy of the saddle state as a function of κ1, where �E = Esaddle − Emetastable. The dashed lines indicate that
κ1c ≈ 0.63 for L = 2.50 and κ1c ≈ 2.06 for L = 4.51, where energies of the instanton and uniform saddles cross. The region κ1 < κ1c(L)
corresponds to the instanton saddle, and κ1 > κ1c(L) to the uniform saddle. Here μ1 = 3 and μ2 = 2.

that the transition was reminiscent of a second-order phase
transition, in the asymptotic ε → 0 limit. This follows from the
continuity of the activation energy at all values of L, including
Lc(1). (For examples of potentials where the activation energy
jumps at a precise value of L, corresponding to a first-order
transition, see Ref. [21].) In fact, it can be shown analytically
that the first derivative of the activation energy curve with
respect to L is also continuous everywhere, but the second
derivative is discontinuous at Lc(1).

Similarly, Fig. 3 suggests that there is indeed a continuous
phase transition, in that the activation energy changes continu-
ously as one passes through the transition, as κ1 varies for fixed
L. This continuity leads to a divergence in the transition rate
prefactor, shown in Fig. 4 (similar to that induced by changing
L at fixed κ1 in Ref. [1]). The values of κ1c (L = 4.51) where
the prefactor diverges and that where the energies of the respec-
tive saddles cross agree to within a numerical error of 10−2.

What causes this divergence? Away from criticality, the
spectrum of the linearized dynamical operator 
u about the
saddle consists of a single negative eigenvalue, whose corre-
sponding eigenvector determines the unstable direction, with
all other eigenvalues positive. As criticality is approached, the
smallest positive eigenvalue, denoted λu,2, approaches zero.
This signals the mathematical divergence on the “normal”
length scale of O(ε1/2) of fluctuations about the saddle, and by
Eq. (10) is seen to lead to divergence of the prefactor. (For a
discussion of how to interpret this “divergence,” see Ref. [22].)
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FIG. 4. (Color online) Behavior of the prefactor �0 as calculated
numerically using Eq. (10) when μ1 = 3, μ2 = 2, and L = 4.51.

The eigenvalue spectrum about the uniform saddle can be
analytically calculated [1]. The eigenvalue λu,2 is found to be

λu,2 = κ1π
2

L2
− (μ1 − μ2). (12)

At fixed L, this switches from negative (unstable) to positive
(stable) as κ1 increases, as shown in Fig. 5. This change of
sign corresponds to a transition from an instanton saddle to a
uniform one as κ1 varies. Using this approach, the curve Lc

versus κ1c can be derived analytically as the locus of points
where λu,2 = 0 and thus the full phase diagram determined as
represented by the solid curve in Fig. 6.

We have also studied the behavior of the transition rate
prefactor in a wide range of values of L numerically, all
of which lead to the same conclusion as described above.
Figure 7 shows the divergence of �0 at different Lc’s and their
corresponding κ1c’s.

V. DISCUSSION

We have solved the general two-field model of Eqs. (1)
and (2) for its full parameter space. We have uncovered a new
mechanism for the transition in the switching rate, and shown
that it has features of a second-order phase transition.
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0.05
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0.10
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Uni

Ins

1

FIG. 5. (Color online) Smallest nonnegative eigenvalue λu,2

(solid line) of the saddle state for μ1 = 3, μ2 = 2, and L = 4.51. In
the legend box, “Ins” stands for “Instanton Saddle” and “Uni” stands
for “Uniform Saddle.” For κ1 < 2.06 this eigenvalue corresponds to
the instanton saddle, and for κ1 > 2.06 it corresponds to the uniform
saddle. The extended dashed line shows the continuation of this
eigenvalue for the uniform saddle in its unstable regime below κ1c.
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FIG. 6. (Color online) The phase diagram at μ1 = 3 and
μ2 = 2. The dots represent numerically determined values at which
the energies of the uniform and instanton saddles cross. The solid line
was computed analytically using Eq. (12), that is, by determining the
relation between κ1 and L along which the smallest nonnegative
eigenvalue of the uniform saddle is zero.

In the one-field case, the mechanism behind the transition
is not difficult to understand. At smaller L (recall that this
is a dimensionless length scale, in units of a reduced length
that includes the single bending coefficient κ), bending costs
(in conformity with the boundary condition) are prohibitive,
and the uniform saddle therefore has lower energy than the
instanton. At large length scales, the uniform saddle has a
prohibitive bulk energy (i.e., potential difference with the
stable state), whereas the instanton differs from one or the
other stable state only within the domain wall region, whose
length scale remains O(1). What is perhaps less intuitive is
that the transition in saddle states should be asymptotically (as
ε → 0) sharp.

Here, we have uncovered a second mechanism for the
transition to occur: as noted in Sec. IV, increase of κ1 when
L > Lc(1) suppresses spatial variation, causing the instanton
(again in a sharp transition) to collapse to the uniform saddle.
Conversely, the instanton state can be retrieved for L < Lc(1)
when κ1 decreases; of course, bending becomes increasingly
favorable energetically. The result is a phase diagram in
(L,κ1/κ2) space, as in Fig. 6, where a phase-separation line
denotes the boundary between the uniform and instanton
“phases.”

We close with some remarks about the string method as
applied to this problem.

A randomly placed string will relax toward the most
probable transition path along the stable direction of the
saddle. In Sec. IV, we defined the smallest positive eigenvalue
(corresponding to the stable direction) of the linearized
operator 
u. As a second-order phase transition is approached,

0.5 1.0 1.5 2.0 2.5
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FIG. 7. (Color) The divergence of �0 at L ranging from 2.6 to
5.0. μ1 = 3, μ2 = 2, and the values of κ1c (or the corresponding Lc)
correspond to the dots in Fig. 6. The peaks are of different heights
because the speeds of divergence are not necessarily the same for
every L.

λu,2 drops to 0+, so that the energy landscape curvature in
the stable direction becomes very small. When the string
arrives in its neighborhood, the restoring force exerted along
its normal direction correspondingly becomes small, leading
to slow convergence. If one sits right at the critical point, the
string will not arrive at the saddle.

The string method assumes that most of the probability flux
from the reactant to the product state is carried by one path (or
more generally a few paths) through the saddle state; in each
of which, the probability flux is tightly confined to a narrow
quasi-one-dimensional region in state space. However, near
criticality the path splays out in the direction normal to the
longitudinal transition path. In this case, one needs to consider
transition “tubes,” inside which most of the probability flux is
concentrated. The equilibrium condition (Sec. III) corresponds
to conditions away from criticality, where the transition tube
is thin.

The equation for the path of maximum flux is derived in
Ref. [23], in which it is noted that the reaction flux intensity
must be maximized along the thin transition tube (or the string,
when using the string method). An alternative derivation can
be found in Ref. [24].
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