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Quantum Smoluchowski equation for a spin bath
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We derive the quantum mechanical description of overdamped Brownian motion of a particle in a spin bath
of two-level atoms. The resulting Smoluchowski equation is used to calculate the rate of escape of the particle
from a metastable state. At 0 K the decay rate is finite. We show that while quantization enhances the decay rate,
higher temperatures induce thermal saturation, resulting in effective a reduction of the system-bath coupling. The
role of coherence is examined.
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I. INTRODUCTION

The system-reservoir model [1–8] forms the standard
microscopic basis for quantum theory of Brownian motion.
The reservoir consists of a large number of degrees of freedom
coupled to the system. In the overwhelming majority of
the situations dealing with problems of laser and optical
physics [3,4], condensed-matter physics [5–7], and chemical
physics [7,8], these degrees of freedom correspond to those of
harmonic oscillators, and the reservoir is bosonic in nature. If,
on the other hand, the bosonic heat bath is replaced by a spin
bath of, say, two-level atoms, the stochastic dynamics [9–18]
of the system is governed by quantum noise and dissipation
due to spin degrees of freedom. Two pertinent points are to
be noted here. First, a spin-1/2 particle or a two-level atom
amenable to theoretical description in terms of Pauli operators
has no classical analog, and the spin bath is characterized
by an average excitation number in the form of Fermi-
Dirac statistics. Second, the governing fluctuation-dissipation
relation for the spin bath does not reduce to its classical limit
as a harmonic bath at high temperatures. However, for weak
coupling a harmonic bath with infinite degrees of freedom
constitutes almost a universal description of a real physical
environment [5], and in fact its behavior merges to that of a
spin bath at 0 K. Thermal properties of the two baths begin to
differ at finite temperatures. One of the earliest examples of a
spin bath was considered by Sargent, Scully, and Lamb [3] for
describing the dynamics of a cavity mode damped by an atomic
beam reservoir consisting of two-level atoms. A two-level
reservoir was investigated by Shao and Hänggi [11] in a spin-
spin bath model analogous to a spin-boson model. It was shown
that although the two models at zero temperature do not differ
significantly, an increase of temperature favors coherence in
a spin bath. The differential behavior between a two-level
reservoir and a harmonic bath has also been analyzed by
Caldeira et al. [12] within the framework of Feynman-Vernon
theory. They showed that the effective spectral density contains
a temperature-dependent hyperbolic tangent factor which
decreases with temperature, implying that at higher temper-
atures the effective system-bath coupling is reduced assisting
emergence of coherent behavior in the dynamics. The path
integral approaches to quantum stochastic processes based on
system-spin reservoir models have also received attention in
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the context of dynamical localization [13] of a particle at low
temperature, optical conductivity, and direct current resistivity
for charge carriers [14] in an external force field. A spin bath
has also been useful for the description [15–17] of interacting
nanomagnets, a spin interacting with independent spin modes
or nuclear spins through hyperfine interaction [15], and ions
in liquid 3He [17]. Very recently we proposed [19] a scheme
for quantum Brownian motion of a particle in the presence
of a spin bath of two-level atoms. This is based on the spin
coherent state representation of the noise operators [20] and
a canonical thermal distribution of the associated c numbers,
which lead to a generalized quantum Langevin equation. The
focus of the present analysis is the extension of the theory
under overdamped conditions in configuration space of the
quantum mechanical mean position of the particle. Our aim
is to develop a quantum Smoluchowski equation for quantum
noise due to spin degrees of freedom and to calculate the escape
rate of the particle from a metastable state as an application. We
show that the dynamics, characterized by a particle-spin bath
interaction, gives rise to a temperature-dependent hyperbolic
tangent factor in the effective spectral density. This factor is
substantially reduced at higher temperatures due to thermal
saturation. The escape rate is finite at 0 K.

The outline of the paper is as follows: In Sec. II we give
an outline of the approach to quantum stochastic dynamics
of a particle in a spin bath developed recently by us [19].
The main result of this treatment is a c-number description
of the spin bath degrees of freedom responsible for noise and
dissipative terms of the Langevin equation for the particle.
In Sec. III, we derive the quantum Smoluchowski equation
for the overdamped dynamics in a spin bath. A systematic
scheme for quantum corrections due to nonlinearity of the
system potential is given in Sec. IV, where the parameters
a = 1.0 and b = 0.15 are taken for calculation. The theory
is applied to derive the rate of decay out of a metastable well.
The paper is concluded in Sec. V.

II. QUANTUM STOCHASTIC DYNAMICS IN A SPIN BATH

We begin with a system-reservoir model described by the
following Hamiltonian:

Ĥ = p̂2

2
+ V (q̂) + h̄

∑
k

ωkσ̂
†
k σ̂k

+ h̄
∑

k

gkq̂

(
σ̂
†
k + σ̂k + gk

ωk

q̂

)
. (2.1)
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Here a particle of unit mass is coupled to a set of spin-1/2
particles (two-level atoms) with characteristic frequencies ωk .
q̂ and p̂ are coordinate and momentum operators of the
particle. The two-level bath atoms are described by a set
of Pauli operators {σ̂k,σ̂

†
k and σ̂zk}. σ̂

†
k (σ̂k) is the creation

(annihilation) operator for the kth two-level atom coupled
linearly to the particle through the coupling constant gk . The
potential V (q̂) is due to the external force field acting on
the particle. q̂ and p̂ follow the usual commutation relation
[q̂,p̂] = ih̄. The kth spin- 1

2 particle or two-level atom obeys

the anticommutation rule {σ̂k,σ̂
†
k } = 1, the associated algebra

σ̂ 2
k = σ̂

†2
k = 0, and the commutation relations are [σ̂ †

k ,n̂k] =
−σ̂

†
k , [σ̂k,n̂k] = σ̂k , and [σ̂ †

k ,σ̂k] = σ̂zk , where n̂k = σ̂
†
k σ̂k is

the number operator for the kth spin bath. These relations
also imply σ̂zk = 2n̂k − 1. The presence of the counterterm

h̄
∑

k

g2
k

ωk
q̂2 in the Hamiltonian ensures that the particle feels

the potential V (q̂) which remains unaffected by the interaction
during its dynamical evolution. Thus the model is basically a
spin bath analog of the Zwanzig version of a system-harmonic
bath model. Eliminating the bath degrees of freedom as carried
out in Ref. [19], we obtain the operator Langevin equation for
the particle

¨̂q +
∫ t

0
dt ′ ˙̂q(t ′)κ(t − t ′) + V ′(q̂) = f̂ (t), (2.2)

where the memory kernel and the noise operator are given by

κ(t − t ′) = 2h̄
∑

k

g2
k

ωk

cos ωk(t − t ′) (2.3)

and

f̂ (t) = −h̄
∑

k

gk[Ŝk(0)e−iωkt + Ŝ
†
k(0)eiωkt ], (2.4)

respectively. Ŝ†
k(0) and Ŝk(0) are shifted bath operators and are

defined by

Ŝ
†
k(0) = σ̂

†
k (0) + gk

ωk

q̂(0)

and

Ŝk(0) = σ̂k(0) + gk

ωk

q̂(0). (2.5)

On the basis of the quantum mechanical average 〈· · ·〉 taken
with the initial product separable quantum states of the particle
and the spins at t = 0, |φ〉|ξ1〉|ξ2〉 · · · |ξN 〉, where |φ〉 denotes
an arbitrary initial state of the particle and |ξk〉 corresponds
to the initial coherent state [21] of the kth spin-1/2 particle,
Eq. (2.2) can be cast into the form of a generalized quantum
Langevin equation as follows:

q̈ +
∫ t

0
q̇(t ′)κ(t − t ′)dt ′ + V ′(q) = η(t) + Q(q,〈δq̂n〉).

(2.6)

Here the quantum mechanical mean value of the position
operator is 〈q̂(t)〉 = q(t). We further assume q(0) = 0, without
any loss of generality. Q represents the quantum correction due
to the system potential as given by

Q(q,〈δq̂n〉) = V ′(q) − 〈V ′(q̂)〉, (2.7)

which, by expressing q̂(t) = q(t) + δq̂(t) in V (q̂) and using a
Taylor expansion around q for sufficiently smooth potential,
may be rewritten as

Q(q,〈δq̂n〉) = −
∑
n�2

1

n!
V (n+1)(q)〈δq̂n〉. (2.8)

V m is the mth derivative of the potential V (q) with respect
to q. We will return to its calculation in the latter part of this
section.

The quantum mechanical mean value of the Langevin force
operator f̂ (t) is now given by

〈f̂ (t)〉 = η(t), (2.9)

where η(t) is a c-number noise defined as [since 〈q̂(0)〉 =
q(0) = 0]

η(t) = −h̄
∑

k

gk{〈σ̂k(0)〉e−iωkt + 〈σ̂ †
k (0)〉eiωkt }

= −h̄
∑

k

gk{ξk(0)e−iωkt + ξ ∗
k (0)eiωkt }, (2.10)

where ξk(0) and ξ ∗
k (0) are the associated complex c numbers.

η(t) must satisfy the noise characteristics of the spin bath at
equilibrium:

〈η(t)〉s = 0, (2.11)

〈η(t)η(t ′)〉s = h̄2
∑

k

g2
k cos ωk(t − t ′) tanh

(
h̄ωk

2KT

)
. (2.12)

To ensure that the c-number noise η(t) is zero centered
[Eq. (2.11)] and satisfies the fluctuation-dissipation relation
[Eq. (2.12)] it is necessary that ξk(0) and ξ ∗

k (0) are distributed
according to a thermal canonical distribution of Gaussian form
as follows:

P [ξk(0),ξ ∗
k (0)] = N exp

{
− |ξk(0)|2

2 tanh
(

h̄ωk

2KT

)
}

, (2.13)

where N is the normalization constant. This is essentially
the spin bath counterpart of the Wigner thermal canonical
distribution [22] for a harmonic bath proposed recently by
us [19]. The width of the distribution is given by tanh h̄ωk

2KT
,

which is related to the average thermal excitation number
n̄F (ωk) of the bath as tanh h̄ωk

2KT
= 1 − 2n̄F (ωk), with n̄F (ωk)

being the Fermi-Dirac distribution function. The statistical
average 〈· · ·〉s over the quantum mechanical mean value of
a bath operator 〈Âk〉 which is a function of ξk(0) and ξ ∗

k (0) can
be defined as

〈〈Âk〉〉s =
∫

〈Âk〉P [ξk(0),ξ ∗
k (0)]dξk(0)dξ ∗

k (0). (2.14)

We now return to the quantum operator equation (2.2) and
put q̂(t) = q(t) + δq̂(t) and ˙̂q(t) = q̇(t) + δ ˙̂q(t), where q(t) =
〈q̂(t)〉 and q̇(t) = 〈 ˙̂q(t)〉 and by construction [δq̂,δp̂] = ih̄ and
〈δq̂〉 = 〈δ ˙̂q〉 = 0. Making use of Eq. (2.6) in the resulting
equation we obtain

δ ¨̂q +
∫ ∞

0
dt ′κ(t − t ′)δ ˙̂q(t ′) + V ′′(q)δq̂

+
∑
n�2

1

n!
V (n+1)(q)[δq̂n(t) − 〈δq̂n(t)〉] = δη̂(t), (2.15)
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where δη̂(t) = f̂ (t) − η(t). Equation (2.15) forms the basis
of the calculation of quantum mechanical correction due
to nonlinearity of the system potential. It is apparent that
this equation precludes the possibility of an exact solution.
However, depending on the nonlinearity of the potential, the
memory kernel, systematic approximations may be made. The
following section is devoted to overdamped dynamics in the
Markovian limit.

Summarizing the discussion, we note that the particle
moving under an external potential field V (q) is driven
by a noise η(t) due to the spin bath and a force due to
quantum dispersion Q(q,〈δq̂n〉). The quantum nature of the
dynamics is manifested through the fluctuation dissipation
relation for the spin bath and the quantum dissipation term.
Equations (2.6) and (2.15) are key equations that govern the
stochastic dynamics of the particle.

III. OVERDAMPED DYNAMICS IN THE MARKOVIAN
LIMIT: THE SMOLUCHOWSKI EQUATION

To proceed further we begin by considering the Markovian
limit of the memory kernel [Eq. (2.3)] and the correlation
function of the c-number noise η(t) described by Eq. (2.12).
To this end we assume [2,3] the continuum limit of the sum∑

k

2h̄g2
k

ωk
by introducing a density of modes ρ(ω) so that we

may write 2h̄g2(ω)ρ(ω)
ω

as a Lorentzian function centered around
a linearized static frequency ω0 of the system, in the form

1
2π

γ0

1+(ω−ω0)2τ 2
c

(see Ref. [23]). γ0 is the dissipation constant
and τc is the correlation time of the noise. In the limit τc → 0,
κ(t − t ′) reduces to the form

κ(t − t ′) = γ0

2π

∫ +∞

−∞
dω cos ω(t − t ′) = γ0δ(t − t ′). (3.1)

Proceeding in the same way we derive the Markovian limit of
the correlation function 〈η(t)η(t ′)〉s as follows: We first rewrite
Eq. (2.12) in the form

〈η(t)η(t ′)〉s =
∑

k

2h̄g2
k

ωk

(
h̄ωk

2
tanh

h̄ωk

2KT

)
cos ωk(t − t ′).

(3.2)

Again replacing 2h̄g2
k

ωk
in the continuum limit in Eq. (3.2) as

before we have

〈η(t)η(t ′)〉s =
∫ +∞

−∞
dω

1

2π

(
γ0

1 + (ω − ω0)2τ 2
c

)

×
(

h̄ω

2
tanh

h̄ω

2KT

)
cos ω(t − t ′). (3.3)

For vanishing τc, the distribution function around ω0 becomes
broad so that one may take the slowly varying quantity
h̄ω
2 tanh h̄ω

2KT
out of the integration over the frequency centered

at ω0 with a value h̄ω0
2 tanh h̄ω0

2KT
, and we are led to the following

expression for the correlation function:

〈η(t)η(t ′)〉s = γ0
h̄ω0

2
tanh

h̄ω0

2KT
δ(t − t ′). (3.4)

Based on these considerations we are in a position to provide
a probabilistic description of the stochastic dynamics in the
over-damped limit. In this limit we neglect the inertial term in

Eq. (2.6) and make use of expression (3.1) to obtain (see the
Appendix):

γ0q̇ + V ′
quan(q,〈δq̂n〉) = η(t), (3.5)

where

V ′
quan(q,〈δq̂n〉) = V ′(q) − Q(q,〈δq̂n〉). (3.6)

Since the system is thermodynamically closed the density
is conserved, i.e.,

∫
ρ(q,t)dq = 1, which ensures that any

change in density with time is balanced by the divergence
of a current:

∂ρ

∂t
+ ∂(q̇ρ)

∂q
= 0. (3.7)

Following Zwanzig [21] and using van Kampen’s lemma [1]
〈ρ(q,t)〉s = P (q,t), where P (q,t) is the probability density
function, one arrives at the following equation:

∂P

∂t
= ∂

∂q

(
V ′

quan

γ0

)
P + 1

γ 2
0

∫ t

0
dt ′〈η(t)η(t ′)〉se−[φ(t)−φ(t ′)]

× ∂2P (q,t ′)
∂q2

, (3.8)

where φ(t) = − ∫ t

0
∂V ′
∂q

1
γ0

dt ′.
The use of correlation function (3.3) in Eq. (3.8) yields the

Smoluchowski equation

∂P

∂t
= ∂

∂q

(
V ′

quan

γ0

)
P + Df

∂2P

∂q2
. (3.9)

Here the diffusion coefficient of the particle in a spin bath (in
the Markovian limit) is given by

Df = h̄ω0

2γ0
tanh

(
h̄ω0

2KT

)
. (3.10)

Equation (3.9) is the classical-looking Smoluchowski
equation which describes the overdamped quantum dynamics
of the particle in terms of a probability density function
P (q,t), with q being the quantum mechanical mean value
of the position of the particle. Two important changes are
apparent. First, the potential Vquan(q, 〈δq̂n〉) includes the
quantum corrections, in principle, to all orders. Second,
tanh( h̄ω0

2KT
) makes an imprint of the Fermi-Dirac character of the

spin bath through the expression for the diffusion coefficient
[Eq. (3.10)]. We close this section with a note that Smolu-
chowski equation (3.9) allows an equilibrium solution under
a zero current condition as ∼exp(−Vquan(q,〈δq̂n〉)

D
), where D =

h̄ω0
2 tanh ( h̄ω0

2KT
). This is independent of the dissipation constant

γ0 and ensures thermodynamic consistency of the present
scheme.

IV. DECAY OF A METASTABLE STATE IN A SPIN BATH

Although Q(q, 〈δq̂n〉), in principle, includes quantum
corrections to all orders, the explicit calculation of this
quantity requires a suitable approximate scheme for an
arbitrary potential. To this end we return to quantum correction
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equation (2.15) which in the overdamped limit reduces to the
following form:

γ0δ ˙̂q + V ′′(q)δq̂ +
∑
n�2

1

n!
V (n+1)(q)(δq̂n − 〈δq̂n〉) = δη̂.

(4.1)

With the help of operator equation (4.1) we obtain the
equations for the quantum mechanical mean value of the
corrections 〈δq̂n〉 in successive orders (after multiplying the
operator equation with δq̂, δq̂2, . . . , and carrying out quantum
mechanical averages with the initial product separable quan-
tum state of the system and the coherent states of the noise
operators as |φ〉 {|ξi〉} as before):

d

dt
〈δq̂2〉 = − 1

γ0
[2V ′′(q)〈δq̂2〉 + V ′′′(q)〈δq̂3〉], (4.2)

d

dt
〈δq̂3〉 = − 1

γ0

[
3V ′′(q)〈δq̂3〉 + 3

2
V ′′′(q)〈δq̂4〉

− 3

2
V ′′′(q)〈δq̂2〉2

]
, (4.3)

and so on. For a minimum uncertainty state 〈δq̂2〉 ∼ O(h̄),
and therefore the higher-order terms of 〈δq̂n〉 for n � 3 can be
neglected to calculate the leading-order correction. Second, a
closer look into the correction equations (4.2) and (4.3) suggest
that the quantum corrections are suppressed in successive
orders by ∼O(1/γ0) by friction. Thus under overdamped
conditions the quantum correction diminishes by ∼O(h̄/γ0)
at each order. This is a corroboration of the traditional wisdom
that with enhancement of dissipation the system tends to lose
its quantum character.

To take into account the leading-order contribution 〈δq̂2〉
explicitly we may thus write

d〈δq̂2〉 = − 2

γ0
V ′′(q)〈δq̂2〉dt. (4.4)

The overdamped deterministic motion, on the other hand, gives

γ0dq = −V ′(q)dt, (4.5)

which when used in Eq. (4.4) yields after integration

〈δq̂2〉 = �[V ′(q)]2, (4.6)

where � is the quantum correction factor, given by � =
〈δq̂2〉m

[V ′(qm)]2 . qm is the quantum mechanical mean position at which

〈δq̂2〉 is a minimum (for example, 〈δq̂2〉m ∼ h̄
2ω0

). With this the
quantum correction up to a leading order is

Q = −�

2
V ′′′(q)[V ′(q)]2, (4.7)

and the modified potential is given by

V ′
quan(q) = V ′(q) + �

2
V ′′′(q)[V ′(q)]2. (4.8)

It is pertinent to note that the lowest-order quantum correction
does not involve any friction coefficient or temperature.
Second, the inversion symmetry of the classical potential, if
any, is retained.

Therefore the dynamical or equilibrium properties can be
correctly calculated without any nonphysical bias or contribu-
tion using this potential. A quantity of special interest here is
the escape rate of the overdamped particle from a metastable
well when the particle is subjected to quantum fluctuation due
to the spin bath. The time evolution of the particle is governed
by the Smoluchowski equation (3.9) when the potential is given
by (4.8). Under the condition that the mean escape time from
the metastable well is much larger compared to the time scale
of the overdamped quantum dynamics of the mean position
of the particle and that the strength of the c-number noise is
smaller than the barrier height, one may derive the rate of
escape k using the flux-overpopulation method [7] by solving
Smoluchowski equation (3.9) in the usual way to obtain

k = h̄ω0 tanh h̄ω0
2KT

2γ0

1∫ A

q0
eVquan(q)/Ddq

∫ q2

q1
e−Vquan(q)/Ddq

, (4.9)

where γ0D = Df , and the limits of integration correspond
to the points referred to by the typical Kramers potential
V (q) = 1

2aq2 − 1
3bq3 as shown in Fig. 1. The integrals in

the denominator signify the contribution from the flux around
the barrier top at qb(

∫ A

q0
eVquan(q)/Ddq) and another from the

population at the left well located at q0(
∫ q2

q1
e−Vquan(q)/Ddq),

with linearization of the potential Vquan(q) around qb and q0.
Upon integration the expression for the escape rate reduces to
the following form:

k = ωbω0

2πγ0
exp(−E0/D) exp

[
− �

2D
(φb − φ0)

]
, (4.10)

where ω0 and ωb are the harmonic frequencies associated with
the left well and the inverted well, respectively, and E0 is the
usual barrier height for the classical potential. The quantum
contribution is manifested in the second exponential term
where φb and φ0 are given by

φb =
∫ qb

0
V ′′′(q)[V ′(q)]2dq (4.11)

and

φ0 =
∫ q0

0
V ′′′(q)[V ′(q)]2dq. (4.12)

FIG. 1. A schematic plot of the cubic potential V (q) = 1
2 aq2 −

1
3 bq3, used for calculation of the decay of the metastable state.
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For the given prototypical potential depicted in Fig. 1, φb

and φ0 reduce to −2b
∫ a/b

0 [V ′(q)]2dq and 0, respectively.
The expression for the rate constant therefore assumes the
following form:

k = ωbω0

2πγ0
exp(−E0/D) exp

{
�b

D

∫ a/b

0
dq[V ′(q)]2

}
.

(4.13)

At zero temperature (0 K) tanh h̄ω0
2KT

→ 1 and therefore we
have D(= h̄ω0

2 tanh h̄ω0
2KT

) → h̄ω0
2 . The dissipative spin dynamics

of two-level atoms agrees well with the results obtained from
the spin-boson model. This has been stressed earlier by Shao
and Hänggi [11] in the context of the decoherent dynamics of
a two-level system coupled to a spin bath, and by others [12].
Thus the rate constant assumes a finite form at 0 K. At low
but finite temperatures, i.e., when h̄ω0

KT
∼ 1, the temperature-

dependent factor begins to differ from unity. To gain further
insight into this regime, the correlation function of c-number
noise [Eq. (2.12)] may be rewritten as

〈η(t)η(t ′)〉s = CT (t − t ′)

=
∑

k

h̄g2
k

ωk

(
h̄ωk tanh

h̄ωk

2KT

)
cos ωk(t − t ′).

(4.14)

One may express the spectral density as

JT (ω) =
∫ ∞

0
CT (t) cos ωtdt. (4.15)

Making use of the correlation function Eq. (4.14) in Eq. (4.15)
we obtain

JT (ω) = π
∑

k

h̄g2
k

ωk

{
h̄ωk

2
tanh

h̄ωk

2KT

}
δ(ω − ωk). (4.16)

The expression for spectral density of similar form was
derived earlier for the influence functional for a two-level bath
via the second-order perturbation theory by Caldeira et al. [12].
The key point is the appearance of the quantity inside the braces
in Eq. (4.16). We first express this quantity (say, for the kth
mode) as

h̄ω

2
tanh

h̄ω

2KT
= h̄ω

2
− h̄ω

e
h̄ω
KT + 1

(4.17)

= −h̄ω

2
〈σ̂z〉qs , (4.18)

where 〈σ̂z〉qs is a quantum statistical average 〈· · ·〉qs of Pauli
operator σ̂z and measures the population difference between
the two levels of a bath atom. We note that at high temperatures
e

h̄ω
KT + 1 → 2 and consequently the spectral density [or the

noise strength governed by Eq. (4.14)] or D is largely reduced.
In other words, because of thermal saturation of the two
levels of the atoms of the spin bath, the system-bath coupling
is suppressed as the right-hand side of Eq. (4.17) tends to
vanish at high temperatures and consequently the decay rate
is expected to be anomalous. In order to avoid this thermal
saturation it is necessary to work below a saturation temper-
ature Ts (Ts = h̄ω0/K) so that temperatures are in the range
0 � T < Ts . At low but finite temperatures, the right-hand

FIG. 2. (Color online) The variation of ln(k) vs inverse of scaled
temperature 1/T̄

(
1/T̄ = h̄ω0

KT

)
for quantum Smoluchowski rate con-

stant k well below the saturation temperature. (Scale arbitrary.)

side of expression (4.17) reduces to h̄ω
2 [1 − 2e−h̄ω/KT ]. This

implies relatively strong, effective system-bath coupling as the
temperature is lowered well below the saturation temperature
around which the rate is almost constant. This is shown in
Fig. 2. Furthermore, it follows that all the quantities appearing
in the square brackets inexpression (4.13) are positive and
therefore the quantum factor due to nonlinear correction of the
potential enhances the rate. This is also shown in Fig. 2 for
several values of �.

Summarizing the above discussions, we note that as the
number of bath degrees of freedom approaches infinity, the
effects of a spin bath are similar to those of a harmonic
bath at zero temperature. The effective spectral density which
contains a temperature-dependent factor plays a significant
role in the diffusion coefficient Df of the particle in a spin
bath or the rate coefficient k. As the temperature rises there is
an effective reduction of system-bath coupling due to thermal
saturation. Thus the finite-temperature behavior of the spin
bath is markedly different from that of the harmonic bath
treated earlier by Ankerhold et al. and others [24,25] in the
context of overdamped quantum dynamics. The origin of
this difference may be traced to two factors: First, while the
harmonic bath reaches the well-known classical macroscopic
limit, the spin bath, in a strict sense, does not. Second, the
possibilities of thermally induced excitation in a harmonic bath
are far wider as compared to that for a spin bath, ensuring easy
thermal saturation in the latter case. The present theoretical
analysis may be probed experimentally by observing the decay
of a suitable molecular system trapped in a sea of quantum dots
which have served as “artificial” two-level atoms in various
situations [26,27]. By suitably varying the system size one
may obtain a distribution of frequencies for the dots for studies
of quantum dissipation in a spin bath.

V. CONCLUSION

In this paper we have derived a quantum Smoluchowski
equation for a spin bath of two-level atoms. The quantum
nature of the dynamics manifests itself through the nonlinearity
of the system potential and the character of the bath. The
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restricted options for thermal excitation of the bath degrees
of freedom, since only one level of each atom can be excited,
makes the spin bath conspicuously different from the bosonic
one. We have shown that, in general, quantization has a
significant effect on the decay of the metastable state due
to quantum noise of the spin degrees of freedom. The rate
constant is finite at 0 K and exhibits the predominance of
coherent behavior at low but finite temperatures. At high
temperatures equalization of population of both the levels leads
to thermal saturation and suppression of system-bath coupling.
The method is independent of path integral approaches and is
classical in spirit from an application point of view. We hope
that the present analysis will also be useful for several related
issues in rate processes and transport in thermodynamically
open systems.
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APPENDIX: THE CONDITION FOR QUANTUM
OVERDAMPED MOTION IN A SPIN BATH—A

DIMENSIONAL AND SCALING ANALYSIS

Equation (2.6) is a Langevin equation for the quantum
mechanical mean position (q = 〈q̂〉) of the particle and is
classical looking in form. It involves quantum mechanical
dispersion around this mean and the c-number noise of the spin
bath. A closer scrutiny into the classically inspired treatment
followed here in deriving a quantum Smoluchowski equation
may be in order for identifying the appropriate parameter
regime for its validity. Specifically, we need to address the
following question: When is it valid to neglect the inertial
term in Eq. (2.6)? To answer the question we carry out a
dimensional and scaling analysis.

We begin with Eq. (2.6) and use expression (3.1) to
obtain

q̈ = −γ0q̇ − V ′
quan(q,〈δq̂n〉) + η(t). (A1)

For convenience, we make the appearance of mass m explicit
(m was set unity) and the coordinate dimensionless as q̃ = q

Q ,
where Q is a measure of a definite length scale appropriate for
the problem. Equation (A1) then reads as

mQ
∂2q̃

∂t2
= −m�Q

∂q̃

∂t
− ∂

∂q̃
Ṽquan(q̃) + η(t), (A2)

where we have set m� = γ0 and the potential is scaled as
denoted by the tilde (∼). As a next step we introduce a
dimensionless time

τ ≡ t/T , (A3)

where T is the characteristic time scale to be chosen later. For
a “proper” choice of T the derivatives dq̃

dτ
and d2q̃

dτ 2 should be of

order unity, i.e., O(1). Expressing ˙̃q = 1
T

dq̃

dτ
and ¨̃q = 1

T 2
d2q̃

dτ 2

we write (A2) as

mQ

T 2

d2q̃

dτ 2
= −m�Q

T

dq̃

dτ
− ∂

∂q̃
Ṽquan(q̃)

+
√

m�

T

h̄ω0

2
tanh

h̄ω0

2KT
η̃. (A4)

In writing down the noise term of Eq. (A4) we have taken
care of the correlation function of η(t) which may be rewritten
[Eq. (3.4)] as

〈η(t)η(t ′)〉 = m�

T

h̄ω0

2
tanh

h̄ω0

2KT
δ(τ − τ ′), (A5)

where the δ function in (A5) is dimensionless. Equa-
tion (A4) is now a force balance equation. Recognizing that
(m�

T
h̄ω0

2 tanh h̄ω0
2KT

)
1
2 has the dimension of force, (A4) can be

nondimensionalized by dividing it with this quantity, so that
we obtain

mQ

T 2
(

m�
T

h̄ω0
2 tanh h̄ω0

2KT

) 1
2

d2q̃

dτ 2

= − (m�)
1
2 Q(

T h̄ω0
2 tanh h̄ω0

2KT

) 1
2

dq̃

dτ

−
(

m�

T

h̄ω0

2
tanh

h̄ω0

2KT

)− 1
2 ∂Ṽ

∂q̃
+ η̃. (A6)

We are interested in a dynamical regime when the left-hand
side of Eq. (A6) is negligible to all other terms. Then the
“proper” choice of the scale of T implies that all the terms
on the right-hand side are of O(1), where the left-hand side is
much less than unity. (Also note that 〈δq̂n〉 can be expressed
in terms of mean motion q as shown in Sec. IV, in the
potential term which does not involve the friction coefficient
or temperature explicitly.) We thus require

Q√
T

(
m�

h̄ω0
2 tanh h̄ω0

2KT

) 1
2

≈ O(1) (A7)

and

mQ

T 3/2
(
m�h̄ω0

2 tanh h̄ω0
2KT

) 1
2

� 1. (A8)

The first condition sets the time scale T or the natural choice
is

T = m�Q2(
h̄ω0

2

)
tanh h̄ω0

2KT

. (A9)

With (A9) the other condition becomes

h̄ω0
2 tanh h̄ω0

2KT

m�2Q2
� 1. (A10)

Reverting back to the original notations, i.e., making mass and
length scale unity (m = Q = 1 so that γ0 = �) the condition
(A10) reads as

h̄ω0

2γ 2
0

tanh
h̄ω0

2KT
� 1. (A11)
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(A11) is the condition for quantum overdamped motion. This
involves both the relevant frequency scales of the dissipative
dynamics ω0 and γ0. The condition says that the inertial term in
Eq. (2.6) is negligibly small in the Markovian limit (i.e., τc →
0), when ω0

γ 2
0

is small. The condition is also favored at low but
finite temperatures (below a saturated temperature) and even at

0 K when the factor is unity. Otherwise the contribution to the
damping will be vanishingly small. We mention in passing that
this scaling and dimensional analysis [28] may also be applied
to a quantum Smoluchowski equation for a harmonic bath for
identifying an appropriate parameter regime for dissipative
dynamics.
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