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Periodic one-dimensional hopping model with transitions between nonadjacent states
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A one-dimensional hopping model is useful for describing the motion of microscopic particles in a thermal
noise environment. Recent experiments on the new generation of light-driven rotary molecular motors found that
a motor in state i can jump forward to state i + 1 or i + 2 or backward to state i − 1 or i − 2 directly. In this paper,
inspired by these experiments, such a modified periodic one-dimensional hopping model with arbitrary period
N is studied theoretically. The mean velocity, effective diffusion constant, and mean dwell time in one single
mechanochemical cycle are obtained. The corresponding results are illustrated and verified by being applied to
the synthetic rotary molecular motors.
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I. INTRODUCTION

Many physical [1,2] and biochemical processes, for exam-
ple, the motion of motor proteins kinesin, dynein, and myosin
[3–5], can be well described by periodic one-dimensional hop-
ping models [6,7]. So far, these models have been extensively
studied, and the mean velocity, effective diffusion constant,
and mean first passage time have been obtained [8–11]. In these
models, a particle in state i can jump forward to state i + 1
with rate ui or backward to state i − 1 with rate wi . Where
the forward and backward transition rates ui and wi satisfy
periodic conditions uN+i = ui and wN+i = wi , where N is the
number of states in one cycle. Meanwhile, for some special
problems, this simple hopping model has been generalized in
some aspects [12].

Recently, experimental data of a type of synthetic light-
driven rotary molecular motor, which was devised by Feringa
and coworkers, found that the motor in state i can jump forward
to state i + 2 or backward to state i − 2 directly [13–16]. In
fact, it also has been found that, for many molecular motors
[17–21], there are usually more than two ways for the motor
to leave its present state. Therefore, it is necessary to study
more general one-dimensional hopping models, in which the
particle in state i is allowed to jump to other states besides
i − 1 and i + 1.

In this paper, one of the simple cases, which we call the
modified periodic one-dimensional hopping model, during
which, in addition to states i − 1 and i + 1, the particle in
state i also can jump forward to state i + 2 with rate u′

i , or
backward to state i − 2 with rate w′

i , is theoretically analyzed.
Using an idea similar to Derrida’s [8], the mean velocity V

and effective diffusion constant D are obtained. Meanwhile,
by a method similar to the one in [9], the mean dwell time in
one single cycle is also obtained. The reason that we discuss
this simple case here is not only because it is theoretically
convenient but also because the corresponding results can
be verified by the experimental data [16]. Compared with
the more general discussions in [22], the expressions of the
effective diffusion constant D and mean dwell time Tdwell

in one mechanochemical cycle are also provided, and then
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the effective forward and backward transition rates, ueff and
weff , are obtained using the recent results [23], which are
then employed to get the rotational excess of this modified
one-dimensional hopping model, as discussed in detail in
Sec. V. Moreover, the results obtained here can be applied
directly to the recent experimental studies about synthetic
rotary molecular motors [16].

This paper is organized as follows. The modified model is
briefly introduced in the next section, and then in Secs. III
and IV, the formulations of mean velocity, effective diffusion
constant, and mean dwell time in one mechanochemical cycle
are obtained. In Sec. V, the theoretical results are illustrated
numerically and verified by experimental data of the rotary
molecular motor. Finally, this paper is summarized in the last
section.

II. ONE-DIMENSIONAL HOPPING MODEL WITH
NONADJACENT STATE TRANSITION

Our modified one-dimensional hopping model of period
N is schematically depicted in Fig. 1, in which ui is the
forward transition rate from states i to i + 1, while u′

i

is the forward transition rate from states i to i + 2, and
likewise for the backward transition rates wi (i → i − 1)
and w′

i (i → i − 2). Periodicity requires ui+N = ui,u
′
i+N =

u′
i ,wi+N = wi,w

′
i+N = w′

i .
Similar to the analysis in [6,8], if p̃i(t) is the probability of

finding the particle in state i at time t , then the master equation
reads

dp̃i(t)

dt
= (u′

i−2p̃i−2 + ui−1p̃i−1 + wi+1p̃i+1 + w′
i+2p̃i+2)

− (ui + u′
i + wi + w′

i)p̃i . (1)

Let

p̄i =
+∞∑

k=−∞
p̃kN+i , s̄i =

+∞∑
k=−∞

(kN + i)p̃kN+i ; (2)

then

p̄i = p̄N+i , s̄i = s̄N+i ,

N∑
i=1

p̄i =
+∞∑

i=−∞
p̃i = 1, (3)
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FIG. 1. Schematic depiction of the modified one-dimensional hopping model of period N , in which the particle in state i can jump forward
to state i + 1 with rate ui or to state i + 2 with rate u′

i or jump backward to state i − 1 with rate wi or to state i − 2 with rate w′
i . The rates

ui,u
′
i ,wi, and w′

i satisfy the periodicity conditions ui+N = ui,u
′
i+N = u′

i ,wi+N = wi, and w′
i+N = wi .

and p̄i ,s̄i satisfy

dp̄i(t)

dt
= (u′

i−2p̄i−2 + ui−1p̄i−1 + wi+1p̄i+1 + w′
i+2p̄i+2)

− (ui + u′
i + wi + w′

i)p̄i , (4)

ds̄i(t)

dt
= (u′

i−2s̄i−2 + ui−1s̄i−1 + wi+1s̄i+1 + w′
i+2s̄i+2)

− (ui + u′
i + wi + w′

i)s̄i + 2u′
i−2p̄i−2 + ui−1p̄i−1

−wi+1p̄i+1 − 2w′
i+2p̄i+2. (5)

In the long time limit, we assume, as in [8], that

p̄i(t) → pi, s̄i(t) → ait + bi, (6)

where pi,ai,bi are constants to be determined (see the
Appendix).

III. MEAN VELOCITY AND EFFECTIVE
DIFFUSION CONSTANT

Mathematically, the definitions of the mean velocity V and
effective diffusion constant D are as follows (see [8,24]):

V = lim
t→∞

d〈x(t)〉
dt

, D = 1

2
lim
t→∞

d

dt
[〈x2(t)〉 − 〈x(t)〉2],

(7)

where 〈xk(t)〉 := ∑∞
i=−∞ ikp̃i(t) is the average kth moment of

the particle position at time t . One can easily show that

V = lim
t→∞

d〈x(t)〉
dt

= lim
t→∞

N∑
i=1

ds̄i

dt

= lim
t→∞

N∑
i=1

(2u′
i−2p̄i−2 + ui−1p̄i−1 − wi+1p̄i+1−2w′

i+2p̄i+2)

=
N∑

i=1

(2u′
i−2pi−2 + ui−1pi−1 − wi+1pi+1 − 2w′

i+2pi+2),

(8)

where pi is the long time limit of p̄i [see (2) and (6)], and it
can be obtained by (A1) or (A5). Meanwhile,

d〈x2(t)〉
dt

=
N∑

i=1

∞∑
k=−∞

(kN + i)2[u′
i−2p̃kN+i−2 + ui−1p̃kN+i−1

+wi+1p̃kN+i+1 + w′
i+2p̃kN+i+2

− (ui + u′
i + wi + w′

i)p̃kN+i]

=
N∑

i=1

[(4u′
i + 2ui − 2wi − 4w′

i)s̄i

+ (4u′
i + ui + wi + 4w′

i)p̄i]. (9)

Combining Eqs. (6)–(9), we have

D =
N∑

i=1

[(2u′
i + ui − wi − 2w′

i)(ait + bi)

+ 1

2
(4u′

i + ui + wi + 4w′
i)pi] − V

N∑
i=1

(ait + bi)

=
N∑

i=1

[(2u′
i + ui − wi − 2w′

i)bi

+ 1

2
(4u′

i + ui + wi + 4w′
i)pi] − V

N∑
i=1

bi, (10)

where �b = (b1, . . . ,bN )T satisfies (6). In numerical calcula-
tions, �b can be replaced by any solutions of Eq. (A8) (for
details, see the Appendix).

FIG. 2. Kinetic model of the synthetic rotary molecular motors
recently devised by Feringa and coworkers [16]. The processes
1 → 2 and 3 → 4 correspond to photochemical conversions, while
2 → 3 and 4 → 1 correspond to subsequence thermal conver-
sions. The rates u2,w3,u4, and w1 depend on the environmen-
tal temperature T , and the transition rates u1,u3,w2, and w4

and all u′
i and w′

i for i = 1–4 scale linearly with the light
intensity l.

031104-2



PERIODIC ONE-DIMENSIONAL HOPPING MODEL WITH . . . PHYSICAL REVIEW E 84, 031104 (2011)

FIG. 3. (a) The mean velocity and (b) the effective diffusion constant of the synthetic rotary molecular motor, as depicted in Fig. 2, as
functions of temperature T .

IV. MEAN DWELL TIME IN ONE SINGLE
MECHANOCHEMICAL CYCLE

Let Tk be the mean first passage time (MFPT) of the
particle starting at mechanochemical state k (−N + 1 � k �
N − 1) to reach the next mechanochemical cycle (backward
or forward), i.e., to reach any of the states i with |i − k| � N .
Then the mean dwell time Tdwell of the particle in a single
mechanochemical cycle can be obtained as follows:

Tdwell =
N−1∑
k=0

pkTk. (11)

The mean first passage time Tk can be obtained by the
methods presented in [9,25]. For example, T0 can be obtained
as follows: Let T̄i be the mean first passage time of the particle
starting at state i (−N + 1 � i � N − 1) to reach one of the
absorbing boundaries i = −N, − N − 1,N,N + 1; then T̄i is
governed by

T̄i = 1 + uiT̄i+1 + u′
i T̄i+2 + wiT̄i−1 + w′

i T̄i−2

u′′
i + w′′

i

, (12)

in which u′′
i = ui + u′

i , w′′
i = wi + w′

i . T̄i can be obtained by
Eq. (12) and the absorbing boundary conditions

T̄i = 0, i = −N, − N − 1,N,N + 1. (13)

Consequently, the mean first passage time T0 for the particle
at state k = 0 to reach another mechanochemical cycle can
be obtained by T0 = T̄0. The mean first passage times Tk for
k = 1, . . . ,N − 1 can be obtained similarly. Finally, the mean
dwell time of the particle in a single mechanochemical cycle
can be obtained by formulation (11).

It can be verified that, if u′
i = w′

i = 0 for 1 � i � N , i.e.,
the model is reduced to the usual periodic one-dimensional
hopping model, then Tdwell = T0 = · · · = TN−1.

V. NUMERICAL RESULTS

To illustrate and verify the methods to calculate the mean
velocity V , effective diffusion constant D, and mean dwell
time Tdwell, we discuss a class of synthetic rotary molecular
motors here that was recently devised by Feringa and cowork-
ers [13,16] and that can be schematically depicted by Fig. 2.
The rotation of such molecular motors can be described by the
modified one-dimensional hopping model with N = 4.

In numerical calculations, the parameters obtained by
experiments [16] are used. The transition rates are as follows
(with units of s−1):

u1 = 27.4 × 10−5, u′
1 = 0.7 × 10−5,

u2 = kBT

h
e− �G23

RT , u′
2 = 0.35 × 10−5,

FIG. 4. (a) The mean velocity and (b) the effective diffusion constant of the synthetic rotary molecular motor, as schematically depicted in
Fig. 2, as functions of light intensity l.

031104-3



YUNXIN ZHANG PHYSICAL REVIEW E 84, 031104 (2011)

FIG. 5. The Péclet number Pe = V/D has a maximum as a function of both (a) temperature T and (b) light intensity l.

u3 = 20.6 × 10−5, u′
3 = 0.8 × 10−5,

u4 = kBT

h
e− �G41

RT , u′
4 = 0.55 × 10−5,

w1 = kBT

h
e− �G14

RT , w′
1 = 0.7 × 10−5,

w2 = 2.1 × 10−5, w′
2 = 0.35 × 10−5,

w3 = kBT

h
e− �G32

RT , w′
3 = 0.8 × 10−5,

w4 = 3.2 × 10−5, w′
4 = 0.55 × 10−5. (14)

Here kB = 1.38 × 10−23 J K−1 is Boltzmann’s constant,
h = 6.626 × 10−34 J s is Planck’s constant, R = 1.9872 cal
K−1 mol−1 is a gas constant, and the empirical values �Gij

are (kcal mol−1)

�G23 = 25.6, �G32 = 30.3,
(15)

�G41 = 25.3, �G14 = 30.

Since the processes 1 → 2 and 3 → 4 are photochemically
induced conversions, the adjacent transition rates u1,u3,w2,

and w4 and all the nonadjacent transition rates u′
i and w′

i for i =
1–4 scale linearly with the light intensity l. Illumination with

λ = 365 nm corresponds to light intensity l = 1 (for details,
see [16]).

The numerical results of the mean velocity and effective
diffusion constant as functions of temperature T are plotted in
Fig. 3. In the calculations, we assumed that the motor rotates
π/2 in each of the four processes. The velocity v = 1 s−1

means the motor completes one quarter rotation per second,
with a similar meaning for the effective diffusion constant
D. Figures 3(a) and 3(b) are almost the same as the ones
obtained in [16].1 Note that in [16], different methods are used
by Feringa and coworkers, which implies that our methods
to get the mean velocity and effective diffusion constant of

1The values of velocity V versus temperature T [see Fig. 3(a)] are
the same as the ones obtained in [16] [see Fig. 3(A) therein]. But
for the effective diffusion constant D, the values obtained here [see
Fig. 3(b)] are only half of the ones in [16] [see Fig. 3(B) therein].
The reason is that a factor of 1/2 is included in our definition (7), but
no factor of 1/2 is used in the expression in [16] [see Eq. (9) therein
or its related supporting information]. Consequently, the values of Pe
[see Fig. 5(a)], defined as V/D, are two times bigger than the values
obtained in [16] [see Fig. 3(C) therein].

FIG. 6. (a) The maximum of the Péclet number as a function of temperature: Pemax(T ) := max
l

Pe(T ,l). The numerical results indicate

Pemax(T ) is almost a constant. (b) Roughly speaking, the corresponding optimal value of light intensity lopt at which Pemax(T ) is reached
increases exponentially with temperature T .
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FIG. 7. The mean dwell time Tdwell of the synthetic rotatory molecular motor, as schematically depicted in Fig. 2, decreases with (a)
temperature T and (b) light intensity l.

the modified one-dimensional hopping model are accurate to
some extent.

To better understand the properties of this molecular motor,
the numerical results of the mean velocity V and effective
diffusion constant D as functions of light intensity l are plotted
in Fig. 4. One can easily see that both V and D increase
with T and l. But, as pointed out in [16], their ratio, i.e., the
Péclet number Pe = V/D, has a maximum as a function of T .
Further calculations show that the Péclet number Pe also has a
maximum as a function of l (see Fig. 5). The numerical results
also indicate that the maximum of Pe satisfies

max
T ,l

Pe(T ,l) ≈ max
T

Pe(T ,l) ≈ max
l

Pe(T ,l) ≈ 1.5. (16)

So, for any given temperature T , we always can find an
optimal value of light intensity lopt(T ) at which the value
of Pe is maximum. But, roughly speaking, lopt(T ) increases
exponentially with T (see Fig. 6).

From the results plotted in Fig. 7, one also finds that the
mean dwell time Tdwell decreases with T and l; this is consistent
with the corresponding results for the mean velocity [see
Figs 3(a) and 4(a)]. Since there are no experimental data of
mean dwell time Tdwell in [16], in the following we will verify
our theoretical formulation of Tdwell through an indirect way.
Instead, a dimensionless quantity, rotation excess, denoted by
re, is defined.

In [23], it had been proved that, to some degree, a general
N -state model can be approximated by a one-state model with
effective forward and backward transition rates ueff and weff .
As a one-state model, the probability flux is J = ueff − weff ,
while the mean dwell time in one single cycle is Tdwell =
1/(ueff + weff) (see [8,9,26]). So the effective transition rates
ueff and weff satisfy

ueff − weff = J, ueff + weff = 1

Tdwell
; (17)

therefore,

ueff = 1

2

(
1

Tdwell
+ J

)
, weff = 1

2

(
1

Tdwell
− J

)
. (18)

Intuitively, for the rotary molecular motor devised in [16], ueff

and weff denote the numbers of full forward and backward
rotations per unit time, which are denoted by �+ and �− in
[16]. Therefore, the dimensionless rotational excess re defined
by Feringa and coworkers, re = (�+ − �−)/(�+ + �−), can
be obtained here by

re = ueff − weff

ueff + weff
= JTdwell. (19)

The numerical results plotted in Fig. 8 are almost the same as
the ones obtained by Feringa and coworkers in [16], where a
completely different and special method is used. This implies

FIG. 8. The rotational excess re = JTdwell [see Eq. (19)] as a function of (a) temperature T and (b) light intensity l.
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that the formulation (11) of the mean dwell times is accurate
enough. In fact, the numerical results about ueff and weff are
also almost the same as the ones obtained in [16].

In conclusion, by applying our formulations of the mean
velocity V , effective diffusion constant D, and mean dwell
time Tdwell to the model of recently devised second generation
rotary molecular motors, one can easily see that our results are
accurate and valuable.

VI. SUMMARY

In this paper, one modified periodic one-dimensional
hopping model is discussed. In this model, the particle in
state i can not only jump forward to state i + 1 or backward to
state i − 1 but is also allowed to jump to states i + 2 or i − 2
directly. One example of this modified hopping model is the
one given by Feringa and coworkers for their second generation
rotary molecular motors. In this paper, similar methods to those
in [6,8] are used to get the mean velocity and effective diffusion
constant, and the basic idea in [9] is employed to obtain the
mean dwell time in one single mechanochemical cycle. The
theoretical results are illustrated and verified by being applied
to the model of Feringa. The method used in this paper is
universal. It also can be employed for detailed studies of other
types of one-dimensional hopping models and, consequently,
to theoretical analysis of various kinds of biophysical and
biochemical precesses, including the motion of many other
synthetic molecular motors [17–21,27–32].

ACKNOWLEDGMENTS

This study is funded by the Natural Science Foundation
of Shanghai (Grant No. 11ZR1403700). The author thanks
Michael E. Fisher and Michael Hinczewski for their helpful
suggestions in this study. The referees’ critical reading is also
very appreciated.

APPENDIX: THE CALCULATION OF pi ,ai , AND bi

From Eqs. (4), (5), and (6), one can easily verify that pi,ai,

and bi for 1 � i � N satisfy the following equations:

0 = (u′
i−2pi−2 + ui−1pi−1 + wi+1pi+1

+w′
i+2pi+2) − (ui + u′

i + wi + w′
i)pi, (A1)

0 = (u′
i−2ai−2 + ui−1ai−1 + wi+1ai+1

+w′
i+2ai+2) − (ui + u′

i + wi + w′
i)ai, (A2)

and

ai = (u′
i−2bi−2 + ui−1bi−1 + wi+1bi+1 + w′

i+2bi+2)

−(ui + u′
i + wi + w′

i)bi + 2u′
i−2pi−2

+ui−1pi−1 − wi+1pi+1 − 2w′
i+2pi+2. (A3)

If we define

Ji− 1
2

= (u′
i−2pi−2 + ui−1pi−1 + u′

i−1pi−1)

− (wipi + w′
ipi + w′

i+1pi+1), (A4)

then Eq. (A1) implies Ji− 1
2

=: J is constant. For the sake
of convenience, we rewrite the linear algebraic equation
(A1) as

A �p = 0, (A5)

where �p = (p1, . . . ,pN )T is a column vector and A is the
corresponding coefficient matrix.

Usually, the steady state probability pi for 1 � i � N can
be determined by Eq. (A1) or (A5), and the normalization
condition

∑N
i=1 pi = 1. In our discussion, we always assume

this fact holds, which implies that the characteristic space of
eigenvalue 0 of matrix A is one-dimensional. [It is easy to see
that det(A) = 0 since

∑N
i=1 Aij = 0 for any 1 � j � N . This

implies 0 is one of the eigenvalues of matrix A.] So, from (A1)
and (A2), one can see

ai = V pi, (A6)

where V is a constant. In view of the normalizing condition∑N
i=1 pi = 1, one easily finds

V =
N∑

i=1

ai =
N∑

i=1

(2u′
i−2pi−2 + ui−1pi−1

−wi+1pi+1 − 2w′
i+2pi+2)

=
N∑

i=1

Ji− 1
2

= NJ = V. (A7)

To get �b = (b1, . . . ,bN )T , we rewrite Eq. (A3) as follows:

A�b = �a − G �p = (V I − G) �p, (A8)

where I = diag(1, . . . ,1) is the unit matrix, �a = (a1, . . . ,aN )T

is a column vector, and G is the matrix corresponding to vector
�p in Eq. (A3).

Since det(A) = 0, �b cannot be uniquely determined by
Eq. (A8). However, the value of the effective diffusion constant
D is uniquely determined by (10) and (A8). In fact, if �b1 and
�b2 are two different solutions of (A8), then their difference
�b0 = �b1 − �b2 satisfies A�b0 = 0. Since the characteristic space
of eigenvalue 0 of A is one-dimensional, from (A5), one
finds that �b0 = c �p with constant c = (

∑N
k=1 b0k), i.e., b0i =

(
∑N

k=1 b0k)pi . Thus,

D(�b1) − D(�b2)

=
N∑

i=1

(2u′
i + ui − wi − 2w′

i)b0i − V

N∑
k=1

b0k

=
N∑

i=1

(2u′
i + ui − wi − 2w′

i)b0i

−
[

N∑
i=1

(2u′
i + ui − wi − 2w′

i)pi

] (
N∑

k=1

b0k

)

=
N∑

i=1

{
(2u′

i + ui − wi − 2w′
i)

[
b0i − pi

(
N∑

k=1

b0k

)]}

= 0. (A9)
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Therefore, in the numerical calculations of the effective
diffusion constant D [see Eq. (10)], we can use any one of

the solutions of Eq. (A8). This random choice will not affect
the final value of the effective diffusion constant D.
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